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Abstract
Constructions are direct form-meaning pairs with possible schematic slots. These slots are simultaneously
constrained by the embedded construction itself and the sentential context. We propose that the constraint
could be described by a conditional probability distribution. However, as this conditional probability is
inevitably complex, we utilize language models to capture this distribution. Therefore, we build CxLM, a deep
learning-based masked language model explicitly tuned to constructions’ schematic slots. We first compile a
construction dataset consisting of over ten thousand constructions in Taiwan Mandarin. Next, an experiment
is conducted on the dataset to examine to what extent a pretrained masked language model is aware of the
constructions. We then fine-tune the model specifically to perform a cloze task on the opening slots. We find that
the fine-tuned model predicts masked slots more accurately than baselines and generates both structurally and
semantically plausible word samples. Finally, we release CxLM and its dataset as publicly available resources

and hope to serve as new quantitative tools in studying construction grammar.
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1. Introduction

Constructions are direct form-meaning pairs with-
out intermediate structures. Morphemes, words,
idioms, and phrasal patterns are all constructions,
and there are no clear-cut boundaries between lex-
icon and syntax (Fillmore, 1988). Following this
approach, one does not have to assume a domain-
specific_cognitive process that is adapted to lan-
guage (Croft, 2001). Constructions, just like sylla-
bles and words, are emerged from language users’
everyday linguistic experiences: by sorting and
matching incoming utterances by their similarities
(Bybee, 2006). That is, the constructions do not
have to be exactly the same; they may contain
schematic slots, which could be filled by various
elements. For example, the idiom construction,
“X take Y for granted”, has two schematic slots.
They can be filled by various candidates: “ You take
him for granted”. “ Many people take freedom for
granted” (Hoffmann and Trousdale, 2013).

Constructions do not leave their slots uncon-
strained. They have a preference and restriction on
how the slots are being fulfilled in text. The mea-
sures of such constraints are extensively studied in
the literature (Stefanowitsch, 2013). For example,
one can compute the attraction and reliance of a
word in a given construction (pattern) (Schmid,
2010). The attraction measures how a pattern
prefers certain words to fill its slot; conversely,
reliance indicates how a word tends to occur in
particular constructions. A more detailed analysis
may include the collostruction analysis, where the

word attracted to a particular construction is re-
ferred to collexeme. One can study the attraction
and repulsion in the slots with collexeme analy-
sis; and the interaction among them with distinc-
tive and covarying collexeme analyses (Stefanow-
itsch and Gries, 2003; Gries and Stefanowitsch,
2004; Stefanowitsch and Gries, 2005). These cor-
pus statistics address how one can explore the con-
struction, which inherently involves paradigmatic
structure, from syntagmatic, linear, and colloca-
tional textual data.

The constraints of the slots could be further formu-
lated as conditional probabilities, that is, what the
most probable candidates (words) will be, given
the construction itself and the sentential context.
This conditional probability implies a (masked)
language model, which could be n-gram models
(Hanna et al., 2006; McMahon and Smith, 1998)
or ones involving deep learning architecture. In
recent years, numerous deep learning architectures
have been found to be adept in such tasks. One of
these models is BERT (bidirectional encoder repre-
sentations from transformer) (Devlin et al., 2018),
which uses a masked language model as a pretrain-
ing task and is trained with a transformer archi-
tecture (Vaswani et al., 2017). The BERT model
is applied to virtually all NLP tasks and achieves
good results on them. In addition to its practical
value, multiple studies have attempted to argue the
linguistic relevance of its internal model represen-
tations (Manning et al., 2020; Madabushi et al.]
2020). These studies even show that BERT has
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already learned something about constructions. If
this is the case, it is fascinating and pertinent to
ask whether the model could capture the condi-
tional distributions of the construction slots, given
the constructions, or, more challengingly, given the
sentential context.

In this paper, we present CxLM, which captures
the conditional probabilities in constructions’ slots
and generates high-quality samples from them.
This paper is organized as follows. Section P briefly
reviews construction grammar and how it is re-
lated to deep learning models. Section E describes
how we compile a construction dataset consisting
of 11,642 construction usages in Taiwan Mandarin
via social media corpus. We then conduct an ex-
periment to demonstrate that a pretrained masked
language model is aware of the constructions in
the sentence (Section {). However, the pretrained
model does not capture the word distributions in
variable slots. Therefore, in Section b, we fine-tune
the model with a variable slot cloze task and eval-
uate the model quantitatively and qualitatively.
Finally, we release CxLM model along with its
dataset as publicly available resources B. We hope
these resources to serve as new tools to studying
constructions.

2. Related Works

2.1. Construction Grammar (CxQG)

Construction Grammar (CxG) is a subfield of cog-
nitive linguistics which assumes that patterns and
syntax have their own meanings. They cannot be
understood solely from their components or word
order. CxG suggests that a form-meaning pair,
namely a construction, is the fundamental unit
of human language. A construction contains im-
mutable parts and open slots, and its productivity
is achieved by replacing the element in the slots.
From the usage-based point of view, humans can
recognize form-meaning pairs with high frequen-
cies. Therefore, we are able to generalize the pat-
terns and the alternating instances which compose
the constructions (Goldberg, 2006).

In Cognitive Construction Grammar (CCG), the
emergence of constructions is considered to be mo-
tivated by perception, cognition, and mutual in-
teraction among speakers. Despite the various al-
ternatives, constructions seem to acquire instanti-
ating words that bear similarities to each other.
In addition to the internal composition of con-
structions, the resemblance is also noticed between
different constructions representing close seman-
tic meanings (Boas, 2013). Kaschak and Glenberg
(2000) also claim that we rely on constructions to
interpret the meanings of new words and that sen-
tences in the same construction have semantic re-
lations. With its concentration on mental activity,

"https://github.com/lopentu/CxLM

CxG reflects the cognitive function in the human
mind, which brings about insightful viewpoints to
explore the intricate language structures.

2.2. CxGBERT

To discuss to what extent deep learning models
could recognize constructional information, Mad-
abushi et al. (2020) conducted experiments to
evaluate the performance of BERT (Devlin et al..
2018), when tackling constructions in textual data.
With an aim to evaluate the performance, prob-
ing techniques were adopted. Madabushi et all
(2020) categorized sentences in the WikiText-103
corpus based on Dunn’s (2017) construction pat-
terns. With the assumption that sentences with
the same constructions share specific knowledge, a
classification model, CxGBERT, was built to ana-
lyze whether two sentences contain the same con-
struction or not.

Results showed that instances of the same con-
struction could provide similar linguistic informa-
tion with neural network models, which is in line
with humans’ conceptual behavior of represent-
ing related concepts by similar lexical expressions.
Moreover, the results implied that CxGBERT may
have the ability to predict the similarity among 21
thousand constructions. As the finite terms formed
constructions with alike combinations, their results
were in accordance. In terms of constructional in-
formation, CxGBERT seemed to be capable of ac-
quiring semantic meanings of constructions via lex-
ical instances.

CxGBERT reached a high accuracy after being
trained by merely 500 examples of certain con-
structions. It implies the model does have access to
a significant amount of information about the con-
structions. However, due to the nature of the clas-
sification task used in the study, the model tends
to be less sensitive to highly general constructions,
which accepted a large number of variables in the
slots.

2.3. Learning Probability Distribution

One way to learn a complex, non-parametric prob-
ability distribution model is through a genera-
tive adversarial model (GAN) (Goodfellow et al.,
2014). Essentially, it trains two models as a pair:
one discriminator, which is trained to differentiate
real and fake samples; and one generator, which
tries to generate fake samples indifferentiable with
the real ones. Specifically, GAN’s idea is that the
real samples are drawn from a complex joint prob-
ability distribution, and the generator is learning
from that distribution under the discriminator’s
supervision signal. GAN models achieve great suc-
cess in computer vision, speech processing and even
apply to natural language processing (Gui et al.,
2021). However, compared to image generation
task, learning text probability distributions with
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GAN has a unique challenge. Texts are composed
of discrete tokens rather than pixels of continuous
real values; therefore, the backpropagation signals
could not travel back to update the generator’s
parameters. One way to address the issue is to
formulate the problem as a reinforcement learn-
ing task and generate the samples through policy
gradient (Guo et al., 2018). However, Clark et
al. (2020) found that if the task is just to gener-
ate samples from the masked sites, as in the MLM
task, using maximum likelihood estimates (MLE)
is good enough, if not better, than the policy gradi-
ent. Consistently, [Alvarez-Melis et al. (2020) also
showed that optimizing MLE is as efficient as train-
ing an adversarial model in NLP settings. Taken
together, to learn the probability distribution un-
derlying a particular site in the text, for example,
the constructions’ variable slots, training a masked
language model may be a viable option.
Therefore, we build a masked language model
called CxLM specifically tuned for constructions’
variable slots. First, we compile a construction
dataset. Secondly, we examine to what extent a
pretrained model is already aware of constructions.
Finally, we build CxLM and evaluate the model
both quantitatively and qualitatively.

3. Construction Dataset

3.1.

To collect construction instances, we utilized
Xiandai Hanyu Goushi Shujikd (CCGD)E, a
knowledge database of Mandarin Chinese con-
structions (Zhan, 2017). Being designed as a lan-
guage resource based on CxG, it contains 1,110
simplified Chinese constructions. Each construc-
tion is a phrasal expression that conveys an id-
iomatic meaning that cannot be inferred from its
components. For instance, the construction a+ %
+ & (a+ddo+bao) literally means explosion, but
its genuine meaning is to exaggerate the intensity
of the adjective a. Following Zhan (2017), the a is
the schematic slot, or the variable in the construc-
tion; the fixed elements, i.e., £ (dao), #& (bdo) are
constants.

This paper focuses on constructions that contain
repetitive variables or constants. These construc-
tions are productive in usage and less susceptible
to false megative in pattern detection algorithm.
Examples of these constructions are & —7E (zou
yt zou ‘take a walk’), which has a repetitive vari-
able £ (z0u), and FVEHUR (gdn dai gan hén ‘dare
to love and hate’), which has a repetitive constant
BY (gdn). Other constructions without repetitive
elements are excluded from the dataset (e.g. “ffl
+verb® shén+verb ‘extremely (stative verb)) be-
cause the algorithm cannot readily detect the in-
tended construction usages (e.g. ‘T#FIZ’ shén hdo

Data Pre-processing

Zhttp://ccl.pku.edu.cn/ccgd/

cht ‘extremely delicious‘), from those that inciden-
tally follow the surface form (e.g. #1% (1 N) shén
ai (shi rén) ‘God loved (the world)’). All construc-
tion candidates were automatically converted to
traditional Chinese before proceeding to the next
processing stage.

3.2. Construction Selection

To collect example sentences for the constructions,
we first verified that the construction candidates
(originally in simplified Chinese) were also com-
monly used in Taiwan Mandarin. Some construc-
tions, such as ‘X+ £’ X+ddng ‘X+club’ (e.g. FAK
% do yé dang nightowl club), are less used this way
in Taiwan Mandarin. Identifying these construc-
tions also help us find the intended construction
usages. Therefore, we devised a frequent-of-use an-
notation task. Two annotators, both of whom are
Taiwan Mandarin native speakers with linguistics-
related majors, were recruited to rate “how com-
monly use each construction candidate” is on the
5-point Likert scale. The rating scale from 1 to 5
was respectively very uncommon, uncommon, neu-
tral, common, and very common. Constructions
were removed from the candidate lists if rated as
no more than 2 points by both annotators.

After determining commonly used constructions,
their example sentences were collected from the
PTT H text data. PTT is the largest bulletin board
system (BBS) in Taiwan with more than 1.5 million
registered users. There are more than ten thousand
boards in PTT, and each board serves for a spe-
cific discussion topic. With its immediate and in-
teractive nature, posts on PTT excellently reflect
present-day language use. We gathered posts in
2020 from sixteen different boards, including pop-
ular boards such as Gossiping and WomenTalk, re-
gional ones such as Tainan and Kaohsiung, and
other boards with different content to balance the
topics, All posts content was first segmented with
Jseﬁ (Liu, 2014) and POS-tagged with CkipTag-
gerf an open-source Chinese NLP tool developed
by Academia Sinica.

We extracted the construction instances with regu-
lar expressions for each selected constructions. To
minimize the false positives, repetitive elements
and part-of-speech tags were checked to better en-
sure the intended use of such construction pat-
terns. However, since the extraction algorithm
considered only forms, some of the instances were
incorrect due to word segmentation errors or poly-
semous words. Therefore, we randomly selected 20
instances of each construction from PTT. We then
devised another annotation task to verify whether
the matched instance was the intended use of those
construction patterns. Annotators should mark

https://www.ptt.cc/bbs/index.html
“https://github.com/ckiplab/ckiptagger
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{
"board": "Kaohsiung",
"cnstr_form": ["v", " —", "y"],
"cnstr_example":
[n EJJH, no—u éj]ll],
"text": ['ZEE)', 'SR,
A, K,
vE e, A
gy, v, E#f)
"Cl‘lStI‘"Z [IDI’ ID!, IDU’
'e', 'o', 'o', '0',
'BX', 'IX', 'IX'],
"slot": ['O', 'O', '0O',
'e', 'o', 'o', '0',
IBVI’ IBC!, lev]
}

Listing 1: An example of a construction instance

each instance as 1 (correct) or O (incorrect). Fi-
nally, 38 construction forms with 100% correct in-
stances made it to our final construction list. The
list included 11,642 constructions, and was stored
in a_JSON file. An example is demonstrated in List-
ing

3.3. Slot Tags

After all data that comprise appropriate construc-
tion types were collected, we create inside—outside—
beginning (I0B) tags for each instance. Three data
fields are created for each instance: text, cnstr,
and slot. text contains each of the raw tokens in
the given sentence. cnstr and slot, on the other
hand, symbolize the IOB tags given to their corre-
sponding tokens in text. cnstr marks whether a
character is inside, outside, or at the beginning of
a construction. A BX tag that is given to a char-
acter stands for the beginning of a construction,
while a character with an IX tag is located inside a
construction. An 0 tag indicates that the token is
outside of a construction. slot concerns the con-
stant and the variable slots in a construction. The
BC tag and the BV tag are attached to a token if it
occupies the starting position of the constant and
the variable slots, respectively, in a construction.
The IC tag and the IV tag are given to the tokens
inside the constant and variable slots, respectively,
in a construction. And all the other characters that
are outside of a construction also carry an 0 tag in
slot. The IOB tags together with the textual data
will serve as the input of the following experiments
and model training. An example is demonstrated
in Listing [l.

4. Constructions and MLM

To build a construction-tuned language model, we
first examine whether, or to what extent, the model

has already learned about constructions. If the
model behavior is undifferentiated between con-
structions’ sites and random masking, we should
first improve the language model. On the other
hand, if the model already learned something
about constructions, we can furthermore fine-tune
the model to learn the specifics, for example, the
variable sites.

To examine the extent to which the pretrained
model captures the constructions, we compare
the conditional probabilities in a series of con-
ditions. The underlying rationale is that if the
model could already capture the occurrence of the
constructions, along with its constants and vari-
ables, the conditional probability should be high.
Conversely, if the model does not learn the usage
of constructions, especially their constituents, the
predictive probability should be low.

We systematically test the hypothesis with a series
of cloze tasks. We compare three different masking
sites. For each construction, we mask (1) the whole
construction, (2) the constant sites, or (3) the vari-
able sites. The hypothesis is that if the model
already captures the usage of constructions, and
given that the constructions are rather indepen-
dent form-meaning pairs, the prediction of such us-
age will be harder for the model. The comparison is
based on two different controls. The first control is
shifted condition, where the masked sites have the
same length as the constructions, but we shift the
masks to the left or the right with a random offset.
This condition helps us establish a baseline when a
random number of consecutive tokens are masked.
The second control is random condition, where the
masked sites are randomly chosen and they are not
necessarily following the original masked pattern.
This condition establishes a baseline of masked to-
ken number. Specifically, if the masked construc-
tions are harder to predict, but not in the shifted
and the random conditions, the prediction difficul-
ties cannot be attributed to the number of masked
tokens or the consecutive masks alone.

Likewise, the constant sites and the variable sites
have the three corresponding conditions as the
whole constructions do. The contrasts of differ-
ent conditions of constant sites help us clarify the
nature of the fixed elements in the constructions.
Similarly, the comparisons in variable sites will
show how the model captures the word selection
distributions on the open slots. The overall exper-
iment scheme is shown in Figure

The experiment is carried out with a BERT-based
model pretrained on traditional Chinese text, by
CKIP, Academia Sinica i and an off-the-shelf pre-
trained bert-base-chinese model (Wolf et al.]
2020). We randomly sampled 10% (1,165) of the
items from our construction dataset (Sec. E) For

®https://github.com/ckiplab/ckip-transformers
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Figure 1: Masking conditions in the MLM experiment.

each sample, we mask the target sites in the condi-
tion respectively and calculate the average of the
probabilities (the negative log-likelihood) of each
token in masked sites. The condition score is the
average of all the masked token probabilities. We
repeat the sampling and computation process 10
times to estimate the standard deviations in each
condition. The results are shown in Table P.

The results show that the models, both ckip-bert
and bert-base-chinese, find predicting construc-
tions harder than the ones in control baselines.
Specifically, the negative log-likelihood (NLL, the
lower the numbers mean the higher the probabil-
ities) is higher in the masked constructions (8.51
and 8.09 for ckip-bert and bert-base-chinese,
respectively) than the ones in shifted (7.35 and
6.94) and random controls (5.96 and 5.57). That
is, consistent with our hypotheses, even though the
pretrained model is not directly tuned to the con-
structions, the models do pick up the usage pat-
tern in constructions. The difference between the
masked conditions and the controls also demon-
strates that the difficulties of predicting construc-
tions cannot be accounted for by the consecutive
patterns or the number of masked tokens alone.
More interestingly, the difference between differ-
ent masking sites shows that variable sites are the
most difficult prediction targets. The score of vari-
able sites (9.95 and 8.90) is both higher than the
ones in constants (8.09 and 7.36), and the full con-
structions (8.51 and 8.09). The same patterns are
also observed when the second order difference is
compared: the difference between control baselines
and the target mask condition in variable sites are
the largest among the ones in constructions and
constants. The general patterns suggest that the
pretrained model do capture the usage of construc-
tions, and the variable sites, or the open slots, in
the constructions are the least predictable for the
models.

ckip-bert
Masked Shifted Random
Cnstr. 8.51 (0.04) 7.35 (0.06) 5.96 (0.05)
Cst. 8.07 (0.05) 7.83 (0.05) 7.66 (0.06)
Var. 9.95 (0.04) 6.63 (0.08) 6.33 (0.07)
bert-base-chinese
Masked Shifted Random
Cnstr.  8.09 (0.04) 6.94 (0.05) 5.57 (0.07)
Cst. 7.36 (0.06) 7.16 (0.05) 7.00 (0.07)
Var. 8.90 (0.05) 6.15 (0.09) 5.88 (0.08)

Table 1: Model predictions’ negative log-likelihood
in different conditions. The lower the numbers the
easter the model to predict the masked tokens.
Cnstr, Construction. Number in parentheses are
standard deviations. Cst., Constant sites. Var.
Variable sites.

However, the word distributions of the variable
sites are one of the most valuable information in
the constructions. On the one hand, the word
selection in the variable site determines the con-
crete meaning realization conveyed by the con-
structions. On the other, the word selections them-
selves reflect how the sentential context interact
with the structural constrained exerted by the con-
structions. Therefore, given the results of the ex-
periments, we specifically fine-tuned the masked
language model on the variable sites in construc-
tions, and build CxLM.

5. Training and Evaluating CxLM

To better capture the constraints on the construc-
tions’ variable slots, we fine-tuned the masked lan-
guage model to be construction aware. The train-
ing scheme follows a standard procedure of masked
language modeling: tokens in the sequence are ran-
domly masked out, and the model is to predict the
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masked token. However, here, we change the mask-
ing scheme to only mask those tokens in variable
slots. That is, the model is forced to learn to pre-
dict words in variable sites.

We use the dataset compiled in Section E as train-
ing data. There are 11,642 constructions in the
dataset, and we used random 90-10 splits for train-
ing and testing data, with proportional stratified
random sample on each construction types. The
training data comprise 10,477 sequences, which
are composed of 461,745 tokens under a character-
based tokenization, among which 92% are Chinese
characters. We masked every occurrence of vari-
able sites in the constructions, which are 23,417
(5%) masked tokens. The model training is based
on CKIP-pretrained BERT model, and a masked-
language-model readout head. The parameters are
updated by AdamW, the base learning rate is le-4,
B1 =0.9, B2 =0.999, A = 0.1, and the batch size
is 16. The learning rate is further adjusted by a
linear decreasing scheduler with a warmup period
of 50 iterations throughout the training process.

We use the top-k prediction accuracies to evalu-
ate the model performance. In addition, we in-
clude three models for comparison: the pre-trained
CKIP base-bert, the unigram model, and a random
guessing baseline. The unigram model serves as a
the-most-frequent baseline. It first calculates the
frequency distributions of all the masked charac-
ters (there are 891 unique characters that occurred
in the masked sites), and it invariably predicts the
most frequent ten characters. For example, the top
3 characters in the unigram model are ¥t (si ‘pass
away’), 2 (widng ‘think’), & (kan ‘see’). Con-
versely, the random guessing baseline randomly se-
lects a set of characters as its predictions.

Table E shows that the fine-tuned CxLM achieved
the highest accuracies among the four models, no
matter top-1, top-5, or top-10 accuracies. It shows
that the fine-tuned model becomes better at pre-
dicting the constructions’ variable slots. However,
an interesting comparison is the one between the
bert-base and unigram models. It is worth not-
ing that the bert-base model has never seen the
training data, while the unigram model is directly
trained on the dataset (on which it computes the
frequency distribution). Despite their difference in
the experiences, the two models are very similar in
this task-specific performance. It implies that the
bert-base model, although not specifically tuned on
constructions, nevertheless captures, at least func-
tionally similar to the unigram model, the possible
candidates on the variable sites. This observation
is consistent with the experiment results in Section

, where we found the pretrained model already
has an idea of construction usage. Therefore, af-
ter fine-tuning, the model could better capture the
candidates in variable slots with higher accuracies.

Topl Topb ToplO
CxLM 30.05 50.70  59.98
Bert-Base  6.11 13.26  18.28
Unigram 4.74 15.67  21.66
Random 0.04 0.05 1.12

Table 2: Top-k accuracies of different models

The prediction accuracy is an important metric,
but not the whole picture as to characterize the
constraints on variable slots. Similar to the chal-
lenge in generative adversarial models, it is not
straightforward to evaluate a model that aims to
capture underlying representations (Salimans et
al., 2016). One of the most useful evaluations
is to inspect samples the model generates. Ta-
ble B shows three examples, each of which con-
tains the model input and the model predictions.
Each example exemplifies interesting model behav-
iors which help us delineate the underlying learned
distributions.

The first example is when the model is well-tuned
and has a clear idea what the sentence is about.
It can be seen by the model predictions that the
model unequivocally predicts the correct words
(i.e. # ban ‘mix’). It is also interesting to note
that the other predicted candidates, while not be-
ing “correct”, are also plausible in the given sen-
tence. There are two types of predictions shown
in Table E The separated predictions are com-
puted with the respective logits from each of the
masked sites, while the merged predictions are the
pooled predictions by summing the logits of all the
masked sites. The merged predictions essentially
assume that both masked slots should be the same
characters, which is usually the case in this dataset.
The second example shows the case when the
model misses one of the slots. In this example,
the model only correctly predicts the second slot
but missed the first one. However, if we constrain
the two slots from being the same character (the
merged predictions), the prediction is nevertheless
accurate (i.e. U shou ‘take’). It is noteworthy that
while the second and third candidates in merged
predictions (i.e. ¥I dd ‘do, get’; 2 chi ‘eat’) are
not interchangeable with the correct one, they are
still structurally and semantically acceptable in the
sentence.

The third example is when the model is slightly
confused. The model completely missed the cor-
rect ones, at least in the top-3 predictions shown
here. However, even in this scenario, the model
still provides plausible samples that are acceptable
in the construction. One highlight in the listed
samples is that all of them are structurally correct
candidates given the samples, and most of them
are context-appropriate.
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Samples

Input: #HH S #2 2 AR ABRIATZS 1R (MASK] — [MASK] BRZETRIEHS ([MASK]= Ff)

the potatoes inside are also delicious; the instant noodle tastes good when (properly) mized.
L CxLM (sep): ¥ (mix), # (cook), M2 (eat); ¥ (mix), "2 (eat), Z (cook)

CxLM (mrg): ¥ (mix), IZ (eat), £ (cook)

Input: A~ [MASK] HA [MASK] BEATT —BEUAHS 695 [MASK] ([MASK] = )

Just take it; it’s alright to receive a gift.

2 CxLM (sep): T (get), Bk (stamp), XE (fry); ¥ (take), 7% (give), FZ (eat)

CxLM (mrg): W (take), T (get), "2 (eat)

Input: EH)5HE IR A K EE MASK] — [MASK] ([MASK]= &)

The exercise intensity is not very high, (I) just want to work out a bit.
3 CxLM (sep): F (rise), & (relax), Al (add); #& (relax), & (endure), Ft (rise)

CxLM (mrg): Ft (rise), #&% (relax), 2 (endure)

Table 3: Three samples generated by CxLM. The Input are masked at the variable sites, and the full
constructions are indicated with underlines. The top three words generated by CxLM are listed, where
the bold texts are the correct words. sep, separated, the respective samples at the two variable sites.
mrg, merged, the samples from the joint distributions of the variable sites.

Other examples illustrate how CxLM captures
higher-order dependencies on the constructions’
realization and its context. For example, when
the input is a standalone construction, [MASK] —
[MASK], the model predicts 8 (zidng ‘think’). On
the contrary, when the input has more context,
such as HANE [MASK] — [MASK], the model pre-
dicts & (kan ‘look’). Both of these predictions
are highly plausible and contextually accurate.
Other examples include 47K _E ¥ [MASK]
[MASK] ‘lying on the bed half [MASK]half [MASK]’,
CxLM predicts B (shui ‘asleep’) and & (wing
‘awake’) from the input . On the contrary, the pre-
dictions become A (féi ‘fat’) and & (shou ‘lean’)
when the input is ZZH A} [MASK] *f* [MASK]‘The
meat is half [MASK]half [MASK]’ These examples
highlight the variable slots, although being a struc-
tural or semantic element of a construction, are
still influenced by the overall sentential context.
This dependency can only be inferred by colloca-
tion statistics, but is directly observed in CxLM.
Finally, it will be informative to visualize the prob-
ability landscape of CxLM. Although the categor-
ical nature of discrete tokens prevents us from di-
rectly visualizing the joint distributions used in
sample generations, we can still inspect a more con-
fined view of such distribution. Figure P shows the
joint distribution of CxLM predicting the first ex-
ample of Table B, along with the ones of two other
models, base-bert and unigram models, for com-
parison. All three panels plot the same function.
For CxLM and base-bert, the function is defined
as follows:

p(z1, w2|t) = softmax(f(z1) + f(z2))
where f(.) is the logit from CxLM or base-bert, =1

and z, stand for the tokens in the masked site 1
and site 2 respectively; and t denotes the rest of
the unmasked tokens. For the unigram model, we
assume independence of two masked tokens; there-
fore the function is defined as the product of two
probabilities.

Puni (1, 22[t) = pypi(®1) - pupi(22)

Both z; and x> are distributed over the same set
of tokens, which include the candidates from the
union of three models’ top 10 predictions. These
candidates are arbitrarily ordered in the x- and y-
axes (the correct token is positioned at the center
for better visualization). The plots are color-coded
with the respective model’s log-probabilities. The
white blocks on the figures denote the locations of
the correct tokens.

Figure E shows a clear difference between unigram
models and the ones with language models. The
difference is expected as the unigram model is
context-free; therefore the possibilities of all the
candidates only reflect the frequency distributions
in the variable slots. On the contrary, two context-
sensitive language models, CxLM and base-bert,
have more focused frequency distributions. It can
also be observed that two distributions have dif-
ferent band on the plots, exemplifying their differ-
ent underlying distributions. These figures comple-
ment the accuracies and qualitative sample obser-
vations. Together, these results demonstrate that
CxLM does learn and tune conditional probabil-
ity distributions underlying the constructions’ vari-
able slots.
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Figure 2: The prediction distribution of different models.

6. Conclusion

Constructions are conventionalized form-meaning
pairs with varying degree of schematicities. Those
schematic slots raise interesting questions, as they
are constrained by the constructions but still influ-
enced by the higher sentential contexts. We aim
to characterize the interaction between the open-
ing slots, constructions, and the embedded context
as a conditional probability distribution. This dis-
tribution is inevitably complex; therefore we build
CxLM, a masked language model specifically tuned
for constructions’ variable slots.

We first conducted an experiment to examine to
what extent a pretrained language model would
be aware of constructions. The results show that
while the model is aware of the construction, it is
confused at the variable slots. Therefore, we fine-
tuned the model to learn the probability distribu-
tions underlying the variable site. The quantita-
tive evaluation shows CxLM achieves higher ac-
curacies in predicting masked words. More im-
portantly, CxLM also generates semantically and
structurally plausible samples at the variable slots.
Future works include expanding the coverage of
CxLM’s constructions types and using CxLM to
build a higher precision model of construction ex-
traction. The CxLM model and its construction
data are released as public resources. We hope
CxLM would provide another tool and perspec-
tive on studying the constraints of opening slots
in schematic constructions.
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