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Abstract
Several existing resources are available for sentiment analysis (SA) tasks that are used for learning sentiment specific
embedding (SSE) representations. These resources are either large, common-sense knowledge graphs (KG) that cover a limited
amount of polarities/emotions or they are smaller in size (e.g.: lexicons), which require costly human annotation and cover
fine-grained emotions. Therefore using knowledge resources to learn SSE representations is either limited by the low coverage
of polarities/emotions or the overall size of a resource. In this paper, we first introduce a new directed KG called ‘RELATE’,
which is built to overcome both the issue of low coverage of emotions and the issue of scalability. RELATE is the first KG of
its size to cover Ekman’s six basic emotions that are directed towards entities. It is based on linguistic rules to incorporate the
benefit of semantics without relying on costly human annotation. The performance of ‘RELATE’ is evaluated by learning SSE
representations using a Graph Convolutional Neural Network (GCN).
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1. Introduction

A variety of neural networks have been at the core of
ground-breaking results in several different research ar-
eas in natural language processing (NLP). However,
one disadvantage of these models is that they gener-
ally require large amounts of labelled data, whilst the
knowledge contained in this data could be described
in smaller more efficient knowledge representations
(Yaqi et al., 2019). Therefore, research efforts have in-
creasingly focused on developing methodologies that
make prior knowledge accessible, where one of the
most flourishing approaches include embedding rep-
resentations (Liang et al., 2019). In order to incorpo-
rate knowledge into deep learning methods, researchers
have focused on building many different resources.
There have been three dominant ways to store knowl-
edge in Knowledge-bases (KBs), namely lexicons, on-
tologies and KGs. Over recent years particularly lexi-
cons and KGs have been successfully created and ap-
plied to different NLP tasks. Most notably the creation
of lexicons such as WordNet (Miller, 1995) has influ-
enced tasks such as dependency parsing (Herrera et al.,
2005). This has also led to the creation of lexicons spe-
cific for SA, such as WordNet-Affect (Strapparava et
al., 2004) or the NRC emotion lexicon (Mohammad
and Turney, 2013). At the same time Language Models
(LMs), such as BERT (Devlin et al., 2018) or ELMO
(Peters et al., 2019), have been achieving state-of-the-
art results in a variety of NLP tasks by incorporating
contextual information. However, this approach has of-
ten led to words carrying opposing sentiment or emo-
tional meaning having similar vector representations
(Zhang et al., 2019), which can impact on worse SA
performance (Tang et al., 2015). The key challenge

therefore in learning embedding representations that
are sensitive towards emotion or sentiment lies in be-
ing able to learn word vector representations that not
only reflect context but also ensure that emotion words
of opposite meanings do not occupy the same vector
space. A common approach to overcome this issue re-
lies on using fixed embeddings or fine-tuning them with
external resources. These methods range from post-
editing already learned embeddings (Yu et al., 2017) to
introducing separate ‘sentiment channels’ to learn new
embeddings (Lan et al., 2016). In this paper, we make
two contributions to overcome the aforementioned is-
sues in creating fine-grained SSEs. Firstly, a new KG
generated from free text is introduced, that contains
both fine-grained emotions based on Ekman (Ekman,
1999) and covers a wide range of concepts. Secondly
SSE representations are learned using Graph Convo-
lutional Neural Networks (GCNs) to incorporate emo-
tion knowledge implicitly. The SSE representations are
compared to existing state-of-the-art LMs in the task of
fine-grained emotion classification in tweets. Finally,
we present an analysis of the learned representation and
outline a number of ethical considerations when utilis-
ing social media data to generate embedding represen-
tations.

2. Related Work
Existing Knowledge Sources Several KBs have
been created with the specific intent to capture human
emotions, through both fine-grained emotions and po-
larities that are associated with words. These often in-
clude lexicons, ontologies or KGs, where some of the
more advanced KBs also rely on linguistic rules in or-
der to improve the accuracy of the KB. Research con-
ducted by (Cambria et al., 2010) creates a new KB for
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opinion mining, where a collection of polarity concepts
is created. There have been many iterations of this
work leading to the latest release of SenticNet 5 (Cam-
bria et al., 2018), which uses Recurrent Neural Net-
works to discover concept primitives. OntoSenticNet
(Dragoni et al., 2018) was build on top of SenticNet
as an ontology for SA tasks. New techniques were de-
veloped by (Ofek et al., 2016), that learn polarities of
new concepts and therefore increase SenticNet’s com-
monsense affective concepts. Another commonly used
resource is the NRC lexicon (Mohammad and Turney,
2013), which is a lexicon created through human anno-
tation using Amazon Mechanical Turk. In this work,
around 14,000 words are annotated for both polarities
and fine-grained emotions based on the emotion theory
proposed by (Plutchik, 1984). The NRC lexicon also
contains a suite of different resources that include an
emotion hashtag lexicon (Mohammad and Kiritchenko,
2015) and support in different languages (Kiritchenko
et al., 2016). Further work by (Mohammad et al., 2013)
described the creation of a lexicon based on tweets con-
taining positive and negative emoticons. More recently,
work by (Xu et al., 2020) has developed a knowledge
graph based on emotion co-occurrence statistics, where
each emotion is a node in the graph.

LMs and Sentiment Embeddings Word embed-
dings can be grouped into static word embeddings and
contextualised word embeddings (Ethayarajh, 2019;
Peters et al., 2019). The two most popular static
word embeddings are called Word2Vec (Mikolov et al.,
2013b) and GloVe (Pennington et al., 2014). The main
disadvantages of these embeddings have been that they
cannot take advantage of larger context when produc-
ing embeddings representations as these are all based
on co-occurrence of words with each other or predict-
ing words from a very short context (skip gram). There-
fore, contextualised LMs have gained increasing pop-
ularity due to their ability to incorporate context suc-
cessfully. These models include BERT (Devlin et al.,
2018), ELMO (Peters et al., 2018) or ERNIE (Sun et
al., 2019). Most of the previously mentioned methods
have been applied to SA tasks, but this has often been
limited to polarity detection only. Furthermore most
work in the space of LM models has focused on finding
the semantic and syntactic similarities of words (Ben-
gio et al., 2003), which is natural given the tasks they
were originally used for. Less attention has been paid to
incorporating emotional context or meaning. Work by
(Ren et al., 2016) has argued that one of the limitations
of current approaches is that one embedding is gener-
ated for each word and it does not take into account that
a sentiment-bearing word could be polysemous.
Research conducted by (Liang et al., 2019) proposes
the use of refined word embeddings for Target Aspect
Based Sentiment Analysis (TABSA) that aims to iden-
tify aspects in relation to their targets and infer a sen-
timent from target-aspect pairs. (Yu et al., 2017) pro-
posed a vector refinement model that can be applied

to pre-trained word embeddings (e.g., Word2Vec and
GloVe), where word embeddings are adjusted so that
semantically and sentiment similar words are closer to
each other and vice versa. This is done by utilising a
sentiment lexicon that contains real-valued sentiment
scores. Work by (Tang et al., 2014) introduce Senti-
ment Specific Word Embeddings (SSWE), where the
nearest neighbours in an embedding representation are
not only semantically close but also close in sentiment.
For this task, sentiment embeddings are learned from
tweets using emoticons as labels for positive and nega-
tive polarities. (Ren et al., 2016) proposes a method to
enrich embeddings with topic and sentiment informa-
tion to overcome the issue of traditional word embed-
dings, without taking into account sentiment-bearing
words and the context or topic they are used in. Two
learning models are introduced to generate Topic Sen-
timent Word Embeddings (TSWE) and Topic-Enriched
Word Embeddings (TEWE). Both models are using an
n-gram based neural network (C&W model) that is ca-
pable of learning local context and semantic relations.
Work by (Maas et al., 2011) uses a probabilistic topic
model that derives polarities based on the embeddings
of each word. The model is compared to other exist-
ing topic models, including LDA and LSA. (Labutov
and Lipson, 2013) use logistic regression to re-embed
existing embeddings.

Graph Neural Networks Graph Neural Networks
(GNNs) were first introduced by (Scarselli et al., 2008)
and have since then impacted on a number of different
research disciplines such as social science (Kipf and
Welling, 2016) and knowledge graphs (Hamaguchi et
al., 2017). Since the introduction of the original GNN
by (Scarselli et al., 2008), a number of new variations
have been developed which include GNNs that use gat-
ing and attention mechanisms (Zhou et al., 2018). Most
recently work by (Yao et al., 2019) introduced a GCN
for text classification, where both word and document
embeddings are learned. (Li and Goldwasser, 2019)
use GCN to both capture social context in a document
and utilise it as a source of distant supervision. Work
by (Hu et al., 2021) have utilised GCNs to learn entity
embeddings that are integrated into an existing knowl-
edge graph.

3. Emotion Classification Task and Data
The emotion classification task was first introduced by
(Klinger et al., 2018), where a Twitter dataset was col-
lected based on emotion keywords that were then re-
moved from the tweet. The aim of the task is then to ac-
curately classify a tweet into an emotion category based
on Ekman’s six basic emotions. For the benchmarking
task the dataset collected by (Klinger et al., 2018) is
used. Another dataset was collected based on the same
principles (see Figure 1) and then used to create RE-
LATE. The data collection was started in September
2017 and finished in December 2018 and there is an
imbalance in the number of tweets acquired per emo-
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tion category. This is not intentional and is a product of
the availability of data that contains certain keywords
in tweets. 1

Emotion Tweets Keywords
Anger 44320 anger,angry, furious
Fear 76718 fear, scared, fearful
Disgust 41742 disgust, disgusting
Surprise 41647 surprise, surprising
Joy 184507 joy, happy
Sadness 48909 sad

Total 398595

Table 1: Data set for Experiments

3.1. Data Preprocessing
Prior to preprocessing each tweet, the streamed data is
checked for any duplicates based on the unique tweet
IDs. If any duplicates are found the tweet will be re-
moved. The reason for removing the re-tweets are
twofold: (i) collecting re-tweets would introduce dupli-
cates as the original message is included in the stream
and (ii) it is hypothesised that re-tweets always involve
some form of conversation which might be incomplete
due to the way the API works and any emotion key-
words might be lost. Also, there are ethical concerns
to be taken into account when working with data col-
lected on public social media platforms. This includes
but is not limited to identifying information such as a
username or mentioned user in a tweet. We consulted
the ‘Social Media Research: A Guide to Ethics’ by
(Townsend and Wallace, 2016) to ensure we adhere to
all ethical standards. Furthermore, it has to be noted
that due to the nature of the data set that the there is an
inherent bias, which will be discussed in section 7.1.

4. RELATE
In an effort to include emotions, new KBs have been
created either from scratch (Cambria et al., 2010; Mo-
hammad and Turney, 2013) or built on existing re-
sources (Strapparava et al., 2004). However, there
seems to be a trade-off between granularity of emo-
tions, where larger KBs only contain polarities (Cam-
bria et al., 2010) and more fine-grained emotion KBs
that are smaller in size (Strapparava et al., 2004; Mo-
hammad and Turney, 2013). To overcome this problem
between coverage and affective granularity ‘RELATE’,
a KG build on Ekman’s six basic emotions is proposed.
For this Twitter data introduced in section 3 is utilised.
Constructing a KG from natural language is tradition-
ally seen as a challenging task, because of the com-
plex structure of language data (Kertkeidkachorn and
Ichise, 2018). A commonly used technique when cre-
ating KGs from text is using linguistic theory in the
form of semantic parsing (Exner and Nugues, 2012;

1The authors are happy to share the Tweet IDs for collect-
ing this dataset in accordance with Twitters regulations.

Carlson et al., 2010; Fader et al., 2011). The follow-
ing section will outline the preprocessing steps taken to
obtain the typical triple structure containing ‘Subject-
Verb-Object’ for the KG.

4.1. Text and Emoji Preprocessing
There are several challenges when working with Twit-
ter data because there is no restriction put upon Twit-
ter users, except the limitation of characters per tweet
(maximum of 250 characters per tweet). Therefore
people are free to use any form of language in order
to communicate their message. This can include collo-
quialism, well-known acronyms (e.g., BRB = Be Right
Back) or emojis (Agarwal et al., 2011) amongst oth-
ers. Two well-known NLP tools, Ekphrasis (Baziotis
et al., 2017) and Spacy (Explosion, 2017) were used
for anonymising and preprocessing the data, which is
a common step in producing a new KG (Exner and
Nugues, 2012; Cattoni et al., 2012). Ekphrasis was
used to replace and remove all usernames and URLs
with placeholders. This is effective for ensuring any
tagged person is not mentioned, however there is still a
risk that a person is named by name only (e.g., ‘Barack
Obama’). We then decided to replace personal pro-
nouns, such as (i ’ m to i am) and helping verbs to
make dependency parsing easier. Similar to (Exner and
Nugues, 2012) references, such as mark-ups were re-
moved and only the running text is kept. This also in-
cludes the preprocessing of emojis in the data. To get
accurate representations of each emoji, Spacymoji (Ex-
plosion, 2017) was used to identify all emojis. Then the
description provided for each entry was used to create a
new textual representation (see Figure 1). Overall there
were over 1,069 different types of emojis found in this
dataset.

Figure 1: Example of a Emoji to textual description
representation

4.2. Sentence Segmentation
To obtain more high-quality triples, sentence segmen-
tation was performed to distinguish between minor
and major sentences. Minor sentences usually follow
an abnormal pattern and often compromise emotional
noises, such as ‘ugh!’ or proverbs, e.g., ‘easy come,
easy go’, which means that they often do not follow
the rules of English grammar (Crystal and McLachlan,
2004). Major sentences mostly follow the rules of En-
glish grammar and clauses contain some variation of
the Subject-Verb-Object order (Crystal and McLach-
lan, 2004). Therefore, minor and major sentences are
distinguished by splitting each tweet based on three
types of punctuation marks: full stop, question and
exclamation mark. The authors are aware that this
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approach does not ensure that all fragments contain-
ing less than two words are minor sentence and that
there are no minor sentences mistaken for major sen-
tences. Major sentences can be split into two main
types—simple and multiple— sentences where simple
sentences often contain only one clause and multiple
sentences often follow a pattern of ‘clause’ + ‘link-
ing word’ + ‘clause’ and therefore contain multiple
clauses. The four main types of clauses are either sim-
ple or linked by coordination or subordination (Crys-
tal and McLachlan, 2004). Three different dictionaries
that contain both coordinators and/or subordinators as
outlined by (Crystal and McLachlan, 2004) (see Table
2) are generated.

Type of Sentence Number
Major 617,078
Minor 47,658

Simple 380,079
Compound 86,233
Complex 86,987
Compound Complex 63,779

Table 2: Types of Sentences in Dataset

4.3. Obtaining Triples
Spacy’s dependency parser (Explosion, 2017) is used to
extract triples from the data. Several different depen-
dency parsers are available for NLP tasks (Loper and
Bird, 2002; Chen and Manning, 2014). There are also
parsers for Twitter data such as Tweebo (Kong et al.,
2014); however, it was found that these were less ef-
fective in identifying an appropriate sentence structure.
This could be due to the noise and complexity that is
present in tweets. Therefore, we decided to split each
clause of the type compound, complex and compound-
complex based on coordinators as outlined by (Crystal
and McLachlan, 2004). This yielded a total of 617,078
clauses before using dependency parsing. Using an ap-
proach similar to (Schmitz et al., 2012), all syntactic
information given was used to extract the main subject,
relation and object from the tweets and annotate each
clause with syntactic information.
For clauses containing no coreference, triples were ob-
tained as described in Algorithm 1. We iterated over
each clause to find the main ROOT (see 4) of the sen-
tence. This is in most instances the main verb and it
is used as the relation linking the subject and the ob-
ject. There is a strict pattern for grammatically cor-
rect sentences, where the subject is usually found on
the left side of the main verb and the object on the
right side. Named Entity Recognition (NER) is often
used in these tasks; however, in this instance no ex-
isting NER tool was used, because of the lack of cov-
erage existing tools provided. Therefore, both subject
and object are manually identified in each clause by
traversing the dependency tree. The subject (see 10)
was identified to the left of the main verb. If there was

no left side to the root word, the whole clause was con-
sidered to search for the dependency tag ‘subj’. The
object was identified to the right of the ROOT word
(see 10) using the dependency tag ‘obj’. Furthermore,
‘modifiers’ and ‘compounds’ were added to the identi-
fication of the object on the right of the main verb. For
clauses that contain coreferences, the same methodol-
ogy as above was used. However, to identify the main
subject, Spacy’s (Explosion, 2017) neural coreference
module was used. For this, the first item in the returned
list of coreferences as the main subject. Only triples
where there is two or more types of each triple identi-
fied were kept, e.g.: Subject and Object or Subject and
Relation. There were 490,299 remaining triples after
completing the whole process. There are some down-
sides to this approach, where we only identify the main
triple in each clause and not account for clauses that
have more than one Root.

input : Single clause with no coreference
output: A triple with the structure Subject-Verb-Object

/* Each word in a clause is annotated with a dependency tag */
1 relations = []

2 subjects = []

3 objects = []

/* Find the main ROOT in each clause and use it as the relation */
4 for ( dependency tag in clause ) {
5 if dependency tag == ‘ROOT’ then
6 relations.append(word)
7 end
8 }

/* Iterate over the subtree to the left of the ROOT and find main
subject */

9 left root=ROOT.lefts

10 if len(left root)==0 then
11 dependency tag == ‘SUBJ’

12 subjects.append(word)
13 else
14 subject.append(left root)
15 end

/* Iterate over the subtree to the right of the ROOT and find main
object */

16 right root=ROOT.rights

17 o=””

18 for ( s in right root.subtree ) {
19 if dependency tag == ‘COMP’ then
20 o+= word
21 end
22 if dependency tag == ‘MOD’ then
23 o+= word
24 end
25 if dependency tag == ‘OBJ’ then
26 o+= word

27 objects.append(o)
28 else
29 objects.append(””)
30 end
31 }

Algorithm 1: Obtaining Triples

5. Learning embedding representations
In the following section, we first outline our approach
to learning sentiment-specific embedding representa-
tions. Then we describe our experiments comparing
the representations against existing approaches.

5.1. Learning model
The learning model used in these experiments to gen-
erate embedding representations is a GCN as proposed
by (Yao et al., 2019), where both TF-IDF and PMI are
used to calculate the edges between nodes in the input
KG. More specifically, emotion knowledge is implic-
itly included in the model by using emotion keywords
or triples as nodes (see Figure 2 for an overview). One
of the key benefits of using a graph to represent textual
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data is, that text is not just seen in as an isolated data
point, but as a set of connections containing entities
and relations describing the relationships between the
texts. The embedding representations are learned with
the following experiment setup for the GCN, learning
rate = 0.001, hidden units = 200, dropout = 0.5.

Data In order to generate new embedding represen-
tations using a GCN, four different datasets are used
(see Table 7 in Appendix A). This is done to compare
how effective embedding representations based on the
knowledge graph ‘RELATE’ are.

6. Comparison of embedding
representations

In the following section, we compare the previously
trained embedding representations to popular existing
approaches. For this we use the IEST shared task
dataset, described in section 3.

6.1. Experiments
A performance baseline is established for the task of
classifying the IEST dataset into six different emotion
categories, where a simple two-layer LSTM is used
with a simple embedding look-up layer. The IEST
data is split into 80% training, 10% validation and 10%
test data, where the input into each network are 200-
dimensional embedding representations unless speci-
fied otherwise. All LSTM’s share the same hyperpa-
rameters, where the learning rate = 0.001, batch size =
128, dropout = 0.5 and the hidden size = 40 units. All
experiments were conducted using Tensorflow (Abadi
et al., 2016), and early stopping was used to prevent
overfitting. The embeddings learned by the GCN are
compared against two static word embedding meth-
ods GloVe (Pennington et al., 2014) and Word2Vec
(Mikolov et al., 2013a) and two state-of-the-art LMs,
including BERT (Devlin et al., 2018) and ELMO (Pe-
ters et al., 2019). Each competing embedding method
was then used as an embedding layer to the plain
vanilla LSTM to see if and how much they contribute
to the successful classification of fine-grained emotions
in tweets. Whilst fine-tuning was used in both BERT
and ELMO; it was decided not to train new LMs based
on those architecture using the data provided in sec-
tion 3, because of the size and nature of these learning
models. More specifically, these LMs were developed
using large amounts of training data and resources that
are nearly impossible to match in an academic setting.

6.2. Results and evaluation
Table 3 show the results for all experiments that were
outlined in the previous section, where the top half
of the table shows experiments using the GCN, differ-
ent resources and the bottom half shows the results of
the already existing and established embedding mod-
els. Firstly, it can be seen that all embedding represen-
tations learned by the GCN, except EEK-small, outper-
form the baseline. Furthermore, it is shown that the

best performing embedding representations generated
by the GCN are based on the SEMI and RELATE re-
source. This is especially interesting, because of the
size difference and nature of the two resources, which
means that the same results can be achieved regardless
of whether a GCN is trained on either a larger resource
or a linguistically inspired knowledge-graph. Further-
more, it can be seen that the best results were achieved
using GloVe, which was pre-trained on 2billion tweets,
and the BERT model produced the lowest results. This
is particularly surprising, given the amount of data and
methodology that is used, and the groundbreaking re-
sults that were achieved in other NLP tasks (Gao et al.,
2019; ?). Finally, it can also be seen that ELMO per-
forms better than BERT on this task. This might be due
to the 1billion words ELMO was pre-trained on. Table
4 shows the training setup for each model, including
the approximate training time (in hours and minutes)
and the model parameters for each embedding layer.
For all experiments two Tesla P100 GPUs were used.
From this it can be inferred that whilst GloVe achieves
the best results, ‘RELATE’ is most efficient to train and
can therefore be seen as a more lightweight embedding
model. This is also in stark contrast to the time taken
by ELMO and BERT to train for 100 epochs. Therefore
evidence suggests that (i) it is important which type of
data is used to train the embedding model on and (ii)
the size of the data is important when not using addi-
tional linguistic rule.

Model Precision Recall F-1 Score
LSTM PLAIN 0.52 0.52 0.52
EEK - small 0.47 0.46 0.46
EEK 0.57 0.56 0.56
RELATE 0.58 0.57 0.57
SEMI 0.57 0.57 0.57
Word2Vec 0.52 0.52 0.52
GloVe 0.60 0.59 0.59
ELMO 0.58 0.58 0.58
BERT 0.58 0.59 0.58

Table 3: Experiment results for the GCN embeddings
and existing language models using f-1 scores

7. Evaluation
In the following section, we provide two types of anal-
ysis for RELATE and discuss ethical considerations.

7.1. Qualitative analysis of RELATE
RELATE is evaluated by firstly looking at the distribu-
tion of emotion keywords in each triple. This is done
to show how many triples in this directed knowledge
graph carry affective meaning. Secondly, in section ??
this KG will be used as a resource to generate new SSE
representations.

Distribution of triples Table 5 shows the overall
amount of triples and the number of individual entries
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Figure 2: Example of a clause going through preprocessing of ‘RELATE’ (orange box to the left) and then input
into the GCN (blue box to the right - graphic adapted from (Yao et al., 2019)). Blue circles show whole triples and
green circles show each individual part of a triple. Green lines indicate word-to-word edges (using PMI) and blue
lines show word-to-document edges (using TF-IDF). The first image in the blue box shows the Word-Document
graph generated, the second image shows the learned representations for both words and documents and third
image shows the output of an m x n dimensional matrix for each triple.

Resource Comments Training Time Embedding Parameters
RELATE 02:46 11,035,400
EEK 04:31 11,035,400
EEK - small 00:36 683,000
SEMI 03:43 11,035,400
Word2Vec 02:43 22,070,800
GloVe 03:11 11,035,400
ELMO 11:38 262,400
BERT fine tuning layers = 10 15:18 110,104,890

Table 4: Overview of the different settings, training times (hours :mintues) and model parameters for each embed-
ding layer

for each triple. The total number of triples is 490,299.
Table 6 shows the distribution of emotion keywords in
the KG, and it can be seen that 42,646 triples contain
emotion keywords, which means that there are around
8.69% of the whole KB contain emotion keywords. It
could be argued that when splitting tweets into their
sentence segments that there is not necessarily an emo-
tion keyword in each sentence segment. Furthermore,
it can be seen that there is a large number of triples
in the happy emotion category. This is not surprising,
because of the initial distribution of keywords in the
original dataset.

Discussion A common downside of many KGs is
that they only contain the knowledge that was explic-
itly referenced in the text and therefore fails to capture
anything beyond that (Bosselut et al., 2019). This also
applies to the emotions represented in this KG, because
by default, these are limited to Ekman’s six basic emo-

Triple Type Number of Entries
Subject 400,166
Relation 464,295
Object 323,106

Table 5: Overall number of triples in the knowledge
base

tions. There are many challenges when working with
this type of noisy data, which means that many exist-
ing NLP toolkits fall short. One such example is us-
ing a NER toolkit that is commonly used in KG cre-
ation (Mesquita et al., 2019) to detect entities. In our
case, we tried existing methodologies; however, this
was unsuccessful, where empty values were returned.
This is attributed to two main issues: (i) many existing
toolkits are trained for texts that are mostly procedural,
e.g., news articles or Wikipedia entries, which means
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Emotion Subject Relation Object Total
Anger 641 1,143 2,312 4,096
Fear 701 4,019 1,421 6,141
Disgust 484 2,639 1,748 4,871
Surprise 687 3,062 1,062 4,811
Joy 7,632 5,813 3,539 16,984
Sadness 816 2,539 2,388 5,743

Total 10,961 19,064 12,470 42,646

Table 6: Emotion keywords that are part of a triple

that models presented with a different language struc-
ture would not work well; and (ii) much of the lan-
guage used in tweets is non-standard, where previous
approaches have often relied on capitalisation to detect
entities, and this is often not done in informal language
(Mayhew et al., 2019). There are many use cases for
an emotion KG in a range of different tasks, such as
commercial and health care applications to robotics.
This includes tracking the sentiment people express to-
wards a range of different topics (e.g., products or pol-
itics), creating dialogue systems that can give an ad-
equate response to emotions expressed by its users or
improving Human-Computer-Interaction designs (Mo-
hammad and Turney, 2013).

7.2. Analysis of embedding representations
In order to visualise the embedding representation,
Tensorboard Embedding projector (Tensorflow, 2020)
was used. This was done for both the best performing
GCN representations using RELATE and the represen-
tations learned by GloVe. Figures 3 and 4 show the vi-
sualisation for the keyword ‘joy’, where the 100 closest
words (measured in cosine similarity) are highlighted
around the keyword. The x and y - axis are fixed to the
left and right for the words ‘good’ and ‘bad’ (indicat-
ing positive and negative valence) respectively in order
to identify bias in the embedding representation. In the
following section, we will give two examples of emo-
tion keywords that are categorised as positive valence
(‘Joy’) and negative valence (‘sad’).

‘Joy’ emotion keyword It can be seen that for RE-
LATE (3) the emotion word ‘joy’ is closely associated
to concepts of time such as ‘winewednesday’ or ‘’ for
the word ‘good’(on the x-axis to the left), but further
away from terms such as ‘singlesawarenessday’ and
‘gym’ are seen for the word ‘bad’ (on the y-axis to the
right). On the other side, GloVe (4) shows that con-
cepts such as ‘love’ and ‘goodness’ are more close to
the emotion word ‘joy’, whereas ‘confusion’ and ‘pain’
are further away from it.

‘Sad’ Emotion Keyword The emotion keyword
‘sad’ as shown in Figures 5 and 6 is positioned further
towards the left in RELATE and the middle in GloVe.
Furthermore, it can be seen that words such as ‘snap-
ping’ and ‘superspecial’ are close to the emotion key-
word. In GloVe words such as ‘goodbye’ and ‘bad’ are
closer to ‘sad’.

Figure 3: Visualisation of the emotion keyword ‘joy’
in the embedding representation of the GCN using RE-
LATE

Figure 4: Visualisation of the emotion keyword ‘joy’ in
the embedding representation of GloVe

Discussion This qualitative analysis shows that even
though RELATE is far smaller in terms of size, it shows
emotion keywords are correctly positioned according
to their valence. Furthermore, it can be seen that
other words that carry similar emotional meaning (e.g.:
‘fine’) are also positioned accoriding to the expected
valence. It can be seen that GloVe shows more stan-
dard/general representations of words and concepts,
whilst RELATE includes colloquial and social media
language. This also includes hashtags shown in RE-
LATE, but interestingly neither embedding representa-
tion shows any preprocessed emoji representations in
the 100 closest words as measured by cosine similar-
ity. It can also be seen that often in GloVe words are
closely related to their singular and plurals, whereas in
RELATE words reflect more current events or thoughts
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Figure 5: Visualisation of the emotion keyword ‘sad’
in the embedding representation of the GCN using RE-
LATE.

Figure 6: Visualisation of the emotion keyword ‘sad’
in the embedding representation of GloVe.

and opinions that may have been talked about during
the collection of the data (e.g.: The Manchester bomb-
ings). Also it was found that ‘surprise’ is positioned
in the middle for both embedding representations and
both make references to people. Overall, it could be
argued that GloVe is better at capturing general con-
cepts based on the millions of pretraining word that
were used in its training, whilst RELATE is showing
embeddings that are more closely related to ongoing
events at the time of collection and incorporates non-
standard language (e.g.: hashtags and colloquial lan-
guage). On the other hand, RELATE exposes inherit
bias in the embedding representation, which if used in
real world task could lead to further increasing inequal-
ity and discrimination. Therefore, future work should
first and foremost look at how to circumvent this bias
in embedding representation to create fairer and ethical

representations that are not potentially harmful. Fur-
thermore, it should look at pretraining RELATE on a
larger dataset to see if these findings change. Also,
it should be considered to use not just cosine similar-
ity, but also Euclidean distance to show how words are
closely related to each other.

8. Conclusion
In this paper, we first introduced a new resource called
‘RELATE’, which was then used to train a GCN to gen-
erate embedding representations. It was shown that the
embeddings generated with the GCN produce similar
classification results compared to other LMs. How-
ever, one of its advantages is that it is more efficient
and requires less resources compared to models such
as BERT. Furthermore, it was established that any new
LMs need to be tested on a variety of real world tasks,
before they are applied to a particular type of task such
as Sentiment Analysis. Future work, needs to look at
further methods of evaluating this knowledge graph as
well as the use of GCNs to learn embedding represen-
tations.
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A. Appendix A

Resource Description Size
RELATE Triples are used as input into the GCN to generate

200-dimensional embeddings for each triple.
42,646

EEK The full EEK dataset was used as input to the
GCN

390,000

EEK - small The resources was randomly generated to see how
effective RELATE would be when the inputs are
plain tweets and the resource size is the same.

42,646

SEMI Not all triples in RELATE have labels, therefore a
GCN was used to automatically label all missing
triples with emotion labels so that all knowledge
graph triples could be used as input

490,299

Word2Vec Tweets collected and pre-trained by
godin2015multimedia

400 million

GloVe Tweets collected and pre-trained by penning-
ton2014glove

2billion

ELMO This LM was taken from Tensorflow-hub
https://tfhub.dev/google/elmo/2

1Billion

BERT This LM was taken from Tensorflow-hub
https://tfhub.dev/google/bert_
uncased_L-12_H-768_A-12/1

Table 7: Overview of the different resources that were
used as input to the GCN

https://tfhub.dev/google/elmo/2
https://tfhub.dev/google/bert_uncased_L-12_H-768_A-12/1
https://tfhub.dev/google/bert_uncased_L-12_H-768_A-12/1

	Introduction
	Related Work
	Emotion Classification Task and Data 
	Data Preprocessing

	RELATE 
	Text and Emoji Preprocessing
	Sentence Segmentation
	Obtaining Triples

	Learning embedding representations
	Learning model

	Comparison of embedding representations
	Experiments
	Results and evaluation

	Evaluation
	Qualitative analysis of RELATE
	Analysis of embedding representations

	Conclusion
	References
	Appendix A

