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Abstract
We propose using lexical resources (thesaurus, VAD) to fine-tune pretrained deep nets such as BERT and ERNIE. Then at
inference time, these nets can be used to distinguish synonyms from antonyms, as well as VAD distances. The inference
method can be applied to words as well as texts such as multiword expressions (MWEs), out of vocabulary words (OOVs),
morphological variants and more. Code and data are posted on https://github.com/kwchurch/syn_ant.
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1. Introduction: Training on Lexicons
We do not normally think of lexical resources as
training data, though others have trained on dic-
tionaries (Brown et al., 1993; Chairatanakul et al.,
2021). Suppose we have a thesaurus such as (Fal-
lows, 1898).1 Consider the thesaurus to be a set of
triples: w1, w2, rel, where w1 and w2 are two words,
and rel is 0 if w1 and w2 are synonyms and 1 if they
are antonyms. We can then fine-tune a pretrained deep
net such as BERT (Devlin et al., 2019) or ERNIE (Sun
et al., 2020) using eq (1).

rel ∼ w1 + w2 (1)

The fine-tuning code is very simple. We modified an
example from HuggingFace2 in straightforward ways.3

This code takes a pretrained net as input, and a set of
triples, and outputs a fine-tuned net.

text1 text2 y1 y2
good bad -3.95 4.54
bad evil 4.44 -5.00
good benevolent 4.43 -5.05
bad benevolent -3.44 4.16
good terrorist -3.43 4.10
bad terrorist 4.48 -5.10

Table 1: Inference: synonymy iff y1 > y2

Then there is another program for inference.4 The in-
ference program takes a fine-tuned net, and a pair of
texts, and outputs two logits, y1 and y2, as illustrated in
Table 1. The program predicts that the two input texts
are synonymous iff y1 > y2.

1https://www.gutenberg.org/files/
51155/51155-0.txt

2https://github.com/huggingface/
accelerate/blob/main/examples/nlp_
example.py

3https://github.com/kwchurch/syn_ant/
blob/main/sentiment4.py

4https://github.com/kwchurch/syn_ant/
blob/main/sentiment4_inference.py

In Table 1, the first two columns, text1 and text2, are
single words, but the inference program accepts arbi-
trary texts as input (up to 512 subword units). Table 2
shows inference on multiword expressions (MWEs)5

(Baldwin and Kim, 2010). It has been said that multi-
word expressions (MWEs) are a pain in the neck for
natural language engineering (Sag et al., 2002), though
MWEs are less of a pain in the neck for the proposed
approach than for alternatives.
In other words, the inference program uses eq (2) to
predict y from two input texts:

y ∼ text1 + text2 (2)

This notation is inspired by general linear models in R6

(Guisan et al., 2002). We will start with binary classi-
fication (logistic regression). Later, classification will
be replaced with regression when we consider VAD
(Valance, Arousal and Dominance) distances in §5.

text1 text2 y1 y2
freedom fighter good 2.33 -2.56
freedom fighter bad -1.50 2.19
white supremacist good -2.05 2.91
white supremacist bad 1.67 -1.61

Table 2: Mutiword Expressions (MWEs)

The proposed approach generalizes naturally to address
many other challenges in natural language processing
such as OOVs (out of vocabulary words), negation,
multiple languages, etc.
The remainder of this paper is organized as follows:

• Syn/Ant Binary Classification (§2)
• From Words to Texts (§3)
• Leakage with Standard Benchmarks (§4)
• VAD (Valance, Arousal, Dom) Regression (§5)

5https://aclanthology.org/venues/mwe/
6https://www.r-project.org/

https://github.com/kwchurch/syn_ant
https://www.gutenberg.org/files/51155/51155-0.txt
https://www.gutenberg.org/files/51155/51155-0.txt
https://github.com/huggingface/accelerate/blob/main/examples/nlp_example.py
https://github.com/huggingface/accelerate/blob/main/examples/nlp_example.py
https://github.com/huggingface/accelerate/blob/main/examples/nlp_example.py
https://github.com/kwchurch/syn_ant/blob/main/sentiment4.py
https://github.com/kwchurch/syn_ant/blob/main/sentiment4.py
https://github.com/kwchurch/syn_ant/blob/main/sentiment4_inference.py
https://github.com/kwchurch/syn_ant/blob/main/sentiment4_inference.py
https://aclanthology.org/venues/mwe/
https://www.r-project.org/
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Dataset train val test
adj 5562 398 1986

noun 2836 206 1020
verb 2534 182 908

fallows 58,494 7190 7366
fallows-s 5886 753 777

Table 3: Sizes (edges) of synonym-antonym datasets

Test Train
adj noun verb fallows fallows-s

adj 0.886 0.598 0.652 0.820 0.727
noun 0.662 0.863 0.685 0.706 0.638
verb 0.580 0.673 0.899 0.820 0.731

fallows 0.621 0.566 0.556 0.663 0.595
fallows-s 0.629 0.574 0.537 0.660 0.586

Table 4: Performance (accuracy) of Mixture of Experts
(MoE) with default settings. (Chance is 0.5.)

2. Syn/Ant Binary Classification
2.1. Baseline: Mixture of Experts (MoE)
Consider the synonym-antonym task discussed in
(Nguyen et al., 2017). The task is to input a pair of
words and output a binary label: 0 (synonym) or 1
(antonym). We will evaluate on the datasets in Table 3.
The first three datasets are borrowed from the supple-
mental materials of (Xie and Zeng, 2021).7 Fallows is
based on an online thesaurus (Fallows, 1898). Fallow-s
(small) is a sample of Fallows. Our train/val/test splits
are posted on github.8

Tables 4-5 show the results of the mixture of experts
(MoE) method, proposed by (Xie and Zeng, 2021), us-
ing their code (see footnote 7). Table 4 uses default set-
tings and Table 5 uses a new embedding, dLCE, from
their github. They suggested that dLCE is better. Ta-
bles 4-5 provide additional evidence in favor of dLCE,
though performance on fallows remains an opportunity
for improvement.
They report just 3 of these 25 pairs:

1. Train on adj and test on adj,
2. Train on noun and test on noun, and
3. Train on verb and test on verb

We added the off-diagonal cases to see how well vari-
ous methods generalize to mismatches between train-
ing sets and testing sets. Testing, of course, is per-
formed on the test splits, and training is performed on
the other splits.
As expected, mismatches often degrade accuracy. In
general, there is a trade-off between quantity (size of
training set) and quality (representativeness of training
set to test set). It is sometimes said that there is no data

7https://aclanthology.org/2021.
acl-short.71/

8https://github.com/kwchurch/syn_ant/
tree/main/datasets/datasets_syn_ant

Test Train
adj noun verb fallows fallows-s

adj 0.921 0.859 0.852 0.897 0.868
noun 0.841 0.917 0.857 0.828 0.785
verb 0.813 0.829 0.903 0.851 0.794

fallow 0.633 0.604 0.620 0.666 0.634
fallow-s 0.659 0.602 0.591 0.659 0.627

Table 5: Accuracy of MoE with dLCE embeddings.

Test Train
adj noun verb fallows

adj 0.908 0.657 0.713 0.881
noun 0.773 0.877 0.792 0.797
verb 0.767 0.722 0.906 0.867

fallows 0.722 0.610 0.698 0.947

Table 6: Accuracy with fine-tuning (bert-base-
uncased).

like more data9 (Pieraccini and Rabiner, 2012; Schmitt
et al., 2021), but in this case, the relatively low scores
in so many off-diagonal cells in Tables 4-5 suggest that
quality often dominates quantity, at least for this task.
There is an exception, of course, for fallows-s. When
testing on fallows-s, it is better to train on fallows than
fallows-s, since they are both sampling from the same
population.
Ideally, we would like to be able to generalize from the
training data to as many other cases as possible. From
this perspective, the degradation in accuracy for the off-
diagonal cases is disappointing. It is useful, neverthe-
less, to have an estimate of how much degradation is
to be expected from mismatches in training and test-
ing. Tables 4-5 provide estimates of the performance
penalty for mismatches between training and test.

2.2. Proposed Method: Fine-Tuning
Table 6 uses the proposed method described in §1.
These results are competitive with results for MoE. Ac-
curacy is higher on the diagonal; it is better to match
testing and training conditions than not. That said, for
practical applications, it would be convenient to train a
system on whatever data is available at the time, even
though users will run the system later on inputs that
cannot always be anticipated in advance.
Differences between Tables 5-6 are shown in Table 7.
Most differences are small with two exceptions high-
lighted in red. The proposed method is much better on
fallows; MoE is slightly better on the datasets that it
was developed on.
There are some special case rules in MoE for certain
prefixes discussed in §3.2. While their ablation stud-
ies established that rules improve accuracy, such rules
complicate the system and do not always generalize to
new datasets such as fallows.

9http://www.lrec-conf.org/lrec2004/
doc/jelinek.pdf

https://aclanthology.org/2021.acl-short.71/
https://aclanthology.org/2021.acl-short.71/
https://github.com/kwchurch/syn_ant/tree/main/datasets/datasets_syn_ant
https://github.com/kwchurch/syn_ant/tree/main/datasets/datasets_syn_ant
http://www.lrec-conf.org/lrec2004/doc/jelinek.pdf
http://www.lrec-conf.org/lrec2004/doc/jelinek.pdf
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Test Train
adj noun verb fallows

adj -0.013 -0.202 -0.139 -0.016
noun -0.068 -0.040 -0.065 -0.031
verb -0.046 -0.107 0.003 0.016

fallows 0.089 0.006 0.078 0.281

Table 7: Comparison of proposed method and MoE.
Difference between two previous tables. MoE is better
when difference is negative, and otherwise, proposed
method is better. Large differences are shown in red.
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Figure 1: Clustering of correlations in Table 8 (bot-
tom), illustrating biases in model.

3. From Words to Texts
As mentioned in §1, although the proposed method was
trained on words, it can be applied to texts. This was
useful for multiword expressions (MWEs) such as free-
dom fighter.

3.1. Undesirable Biases
Some generalizations are desirable and some are not.
Biases are clearly problematic for embeddings and
deep nets (Bolukbasi et al., 2016; Ali et al., 2019;
Mehrabi et al., 2021). Figure 1 and Table 8 show that
the proposed model is encoding some highly undesir-
able biases.
This example illustrates the use of a probing technique
(Goodwin et al., 2020; Hewitt and Manning, 2019) for
interpreting fine-tuned models. The probing technique
starts with a set of words/phrases/texts. We run infer-
ence on all pairs of the inputs to produce logits, as
shown on the top of Table 8. Figure 1 plots correla-
tions of the logits as a dendrogram. In this case, there
are two salient clusters separating words “like” good
from words “like” bad.

black ter bad evil good ff white
black -3.493 -5.090 -5.05 -5.05 3.59 -3.117 -4.46

ter -5.107 -4.635 -5.06 -5.07 4.27 -0.517 3.99
bad -5.051 -5.105 -5.06 -5.00 4.02 1.804 3.74
evil -5.008 -5.042 -4.99 -4.99 4.35 2.685 4.28

good 4.297 4.098 4.54 4.49 -5.04 -5.127 -5.12
ff -1.512 0.687 2.19 3.30 -2.56 -2.713 -3.16

white -0.612 4.313 4.20 4.51 -3.52 -5.122 -5.07
black ter bad evil good ff white

black 1.000 0.884 0.885 0.859 -0.918 -0.805 -0.772
ter 0.884 1.000 0.992 0.982 -0.981 -0.813 -0.743

bad 0.885 0.992 1.000 0.997 -0.995 -0.799 -0.753
evil 0.859 0.982 0.997 1.000 -0.991 -0.786 -0.749

good -0.918 -0.981 -0.995 -0.991 1.000 0.819 0.784
ff -0.805 -0.813 -0.799 -0.786 0.819 1.000 0.938

white -0.772 -0.743 -0.753 -0.749 0.784 0.938 1.000

Table 8: Biases in output model. Top (logits); Bottom
(correlations of logits). Positive logits → antonyms.
Headings are abbreviations for words in Figure 1.
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Figure 2: Heatmap of morphological variants of an out-
of-vocabulary (OOV) word: grock.

3.2. Morphology, OOVs, MWEs, etc.
Figure 1 and Table 8 show how the proposed method
can handle MWEs like freedom fighter. Out-of-
vocabulary (OOV) words are another challenge for
many methods. Figure 210 is similar to the previous
tables and figures, but emphasizes OOVs and morphol-
ogy. Note that the proposed method produces two dis-
tinct clusters: (1) positive: grocking, grock, grockness,
grockify, grocks, grocker, grockable, and (2) negative:
grockless, ungrockable, disgrocker, ungrockification.
This example was inspired by a rule in MoE for certain

10The heatmap has slightly different rows and columns be-
cause predictions from the model need not be symmetric.
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Figure 3: Clustering of morphological variants and
translations of an out-of-vocabulary (OOV) word:
grock. Base model: bert-base-multilingual-cased.

prefixes: de, a, un, non, in, ir, anti, il, dis, counter,
im, an, sub, ab. They attribute this rule to (Rajana et
al., 2017) and (Ali et al., 2019). While such rules do
well in ablation studies, they complicate the system and
may not generalize well to unanticipated cases. The
rule for a-, for example, degrades accuracy on fallows.
Rather than stipulate such rules, we prefer to use such
observations in probing tasks to interpret deep nets (so-
called Bertology (Rogers et al., 2020)).
Examples such as Figure 2-3 suggest that the model is
remarkably successful in capturing some of these more
salient morphological relations including both prefixes
and suffixes. Both figures cluster variants of the OOV,
grock. Figure 3 uses Google Translate to add some ad-
ditional variants from other languages. The clusters
separate the positive terms from the negative ones, as
we hoped they would.
These anecdotal examples are far from definitive evi-
dence, but they suggest that the proposed approach of-
fers a promising way forward on some challenging is-
sues. Morphology is, of course, a huge topic.11 Some
recent papers on morphology and OOVs include: (Hof-
mann et al., 2021; Hofmann et al., 2020; Haley, 2020).

3.3. Negation
Many other generalizations are possible. The example
in Figure 4 is similar to previous examples, but this ex-
ample clusters sentences as opposed to words. These
sentences involve various negations that are somewhat
similar to synonyms and antonyms. It appears that fine-
tuning for the synonym/antonym task may be transfer-
ring some learnings from lexical semantics that may be

11https://sigmorphon.github.io/
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Figure 4: Clustering of correlations of logits of all pairs
of six sentences.

useful for negation in sentences.
Transfer learning has been so successful on so many
tasks that it is very natural to suggest its applicability to
negation (Kassner and Schütze, 2020; Khandelwal and
Sawant, 2020). It ought to be possible to use lexical
resources such as (Fallows, 1898) to learn facts about
negation that extend well beyond lexical semantics.

4. Paths and Leaks from Train to Test
It turns out that there is substantial leakage in the
datasets in §2. This leakage casts serious doubt on
the results reported in Tables 4-7, as well as (Nguyen
et al., 2017; Xie and Zeng, 2021). This leakage is
somewhat similar to leakage that we have discovered
in WN18RR, a popular benchmark based on WordNet
for research on knowledge graph completion (KGC)
(Church and Bian, 2021).
The clusters in the previous section suggest that there is
considerable structure among synonyms and antonyms.
From a theoretical point of view, one might expect syn-
onyms and antonyms to be symmetric. Moreover, it
is natural to assume transitivity. Of course, there are
many exceptions in practice, but there are clearly larger
structures that could leak information between splits in
experiments like those reported above (Figures 4-6).
The splits can be viewed as sparse graphs, as shown
in Table 9. SimLex-999 (Hill et al., 2015) and NRC-
VAD are shown for comparison. NRC-VAD will be
discussed in §5.
Fallows-s is a random sample of the edges in fallows.
Note that fallows-s has many more connected compo-
nents than fallows. More generally, the standard prac-
tice of randomly assigning edges to train, val and test
splits will cut connected components. Parts of a com-
ponent will end up in one split, and the rest will end up

https://sigmorphon.github.io/
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training set V E CC
adj 3315 5562 285

noun 3654 2836 1204
verb 1859 2534 199

fallows 15,466 58,494 32
fallows-s 6326 5886 907
SimLex 1028 999 151

NRC-VAD 20,007 20, 0072 1

Table 9: Most graphs are sparse, E ≪ V 2, except
NRC-VAD. V (vertices), E (edges) and CC (connected
components) are computed over training sets.

Path Length adj noun verb fallows
0 2
1 99 59 60 946
2 80 7 15 3835
3 59 3 7 1156

4+ 70 2 35 639
NA 90 135 65 612

total 398 206 182 7190

Table 10: For most pairs of words in the validation set,
w1 and w2, there is a short path from w1 to w2 based
on edges in the training set.

in other splits. There is a risk that information could
leak from one split to another if there are clues left be-
hind suggesting how to reconstruct components.
Path lengths appear to be a useful clue for reconstruct-
ing components, as suggest in Table 10. Consider the
398 edges, E = (w1, w2), in the validation set for adj.
Table 10 reports that that 99 of these 398 edges have
a path of length 1 using edges from the training set.
There are another 80 of 398 with a path of length 2.
All but 90 of 398 are part of a connected component in
the training set. When an edge in one split is part of a
connected component in another split, it is likely that
the label on the edge can be inferred from the labels as-
sociated with the component in the other split. In this
way, it is likely that information is leaking across splits,
when edges are randomly assigned to splits in the stan-
dard way.
Consider the 99 edges of length 1. These are particu-
larly worrisome. There are 99 pairs like good and aw-
ful, where the same edge is in both train and validation,
but in different directions. This pair is clearly leaking
information between the training and validation splits.
The path lengths in Table 10 were computed using a
shortest path tool. The tool provides options for di-
rected and undirected graphs. The undirected option
was used to find pairs such as good and awful.
Edges of length 2 are not leaking as badly as edges
of length 1, but we are concerned about them. Some
examples from adj of length 2 paths are: innocent →
harmless (via harmful), fresh → old (via aged), dead
→ deceased (via alive).
How can we use these paths to leak labels across splits?

fallows
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Figure 5: A-leakage: Decision trees learn to classify
pairs as antonyms iff A is odd.

val test
acc applicable acc applicable

adj 0.916 308/398 0.906 1482/1986
noun 0.930 72/206 0.983 302/1020
verb 0.872 118/182 0.882 587/908

fallows 0.945 6576/7190 0.949 6722/7366
fallows-s 0.683 223/753 0.694 241/777

Table 11: A-leakage: Pr(ant) > Pr(syn) iff A is
odd. Accuracy is computed over applicable edges. De-
nominators are borrowed from Table 3.

Let A be the number of antonym labels on a path. The
decision trees in Figure 5 suggest that an edge should
be labeled as an antonym iff A is odd. We will refer to
this heuristic as A-leakage. Table 11 shows substantial
A-leakage.

There are 4 trees in Figure 5. The two trees on the left
fit: gold ∼ A for two datasets: fallows and adj. Based
on these two trees, we obtained the simpler trees on the
right by fitting: gold ∼ A + A.odd. Decision trees
learn to ignore A.

These trees were created with rpart.12 There are three
numbers associated with each subtree: a label (1/0),
Pr(1), coverage. By construction, at each level in the
tree, the coverage sums to 1.

In short, the trees in Figure 5 make it clear that there
is substantial leakage in these datasets. Work based on
these resources may need to be retracted.

12https://www.rdocumentation.org/
packages/rpart/versions/4.1-15/topics/
rpart

https://www.rdocumentation.org/packages/rpart/versions/4.1-15/topics/rpart
https://www.rdocumentation.org/packages/rpart/versions/4.1-15/topics/rpart
https://www.rdocumentation.org/packages/rpart/versions/4.1-15/topics/rpart
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word Val Arousal Dom Dist
open 0.620 0.480 0.569 0.00

unfold 0.612 0.510 0.520 0.06
reopen 0.656 0.528 0.568 0.06

close 0.292 0.260 0.263 0.50
closed 0.240 0.164 0.318 0.55

undecided 0.286 0.433 0.127 0.56

Table 12: Words above the double line are near open.
The last column is the Euclidean distance to open.

Antonyms Sim
adj noun verb fallows SimLex

cor 0.55 0.48 0.44 0.52 -0.40

Table 13: VAD distances are positively correlated with
antonyms, and negatively correlated with SimLex sim-
ilarities, though none of these correlations are large.

5. VAD: Valence, Arousal & Dominance
Given the observations about leakage in the previous
section, we became concerned about the syn/ant clas-
sification task. To address these concerns, we intro-
duce a new task which we call VAD regression. Some
examples of NRC-VAD13 (Mohammad, 2018) scores
are shown in Table 12.14 NRC-VAD lists 20k lemmas
with three scores between 0 and 1 for V (Valence), A
(Arousal) and D (Dominance).
There is a considerable literature on VAD norms in psy-
chology (Osgood et al., 1957). VAD has some similar-
ities with synonyms and antonyms, but there are some
important differences. While many synonyms are near
one another in VAD space, and most antonyms are far
from one another, there are many exceptions, as indi-
cated by the modest correlations in Table 13.15

We create train, val and test data by selecting pairs of
words, w1 and w2. Each word is assigned V AD(w),
a point in R3. y are distances between pairs of words.
That is, y(w1, w2) = |VAD(w1)− VAD(w2)|.
VAD regression is similar to syn/ant classification.
Datasets consist of three splits: train, val, test. Each
split contains pairs of words and labels. Eq (1) uses
training and validation splits to learn a model that takes
w1 and w2 as input and predicts ŷ. Evaluations report
loss between y and ŷ on the test split.
There are a few differences between regression and
classification.16 Losses are reported in terms of mean

13https://saifmohammad.com/WebPages/
nrc-vad.html

14See http://crr.ugent.be/archives/1003
(Warriner et al., 2013) for more VAD norms.

15One set of exceptions are taboo words such as the seven
words you cannot say on television. As (Pinker, 2007) points
out, euphemisms are different from synonyms. The f-word is
more about shock than sex. These words are far apart in VAD
space: |VAD(f-word)− VAD(sex)| = 0.66.

16https://github.com/kwchurch/syn_ant/
blob/main/fine_tune_VAD_pairs.py

squared error (and R2),17 as opposed to classification
accuracy.18 Labels are also different; y ∈ R for regres-
sion, as opposed to y ∈ {0, 1} for binary classification.
In addition to concerns about leaks, another motivation
for moving from syn/ant classification to VAD regres-
sion is scale. VAD has 20, 0002 edges, many more
than alternatives in Table 9. The large number of edges
makes it possible to study different sampling methods.
We looked at losses over a number of variables: epochs,
base model, sample size, vocabulary. We had more suc-
cess for larger splits than smaller splits.
Splits over vertices (V ) are very different from splits
over edges (E). Note that while NRC-VAD is larger
than many alternatives, V = 20k is too small to cover
many corpora and therefore, we need to find ways to
generalize to unseen words. Unfortunately, the pro-
posed method works better when testing and training
splits use the same words than when the test split con-
tains unseen words that do not appear in the other splits.

5.1. Morpheme Diagnostic
VAD can also be viewed as an embedding, though in
three dimensions, as opposed to static and contextual
embeddings that typically make use of hundreds of di-
mensions. Figure 6 introduces a novel morpheme di-
agnostic to compare VAD distances to WNews30019

and GNews300.20 The diagnostic constructs 16 lists
of word pairs based on 6 prefixes21 and 10 suffixes.22

The list for over-, for example, includes pairs of words
that differ by that prefix, e.g., overlook/look, over-
take/take. The plots summarize vector distances for
each list. Red lines are provided for reference at y = 0
(most similar) and y =

√
2 (high reference).23 The

morpheme diagnostic favors VAD embeddings over
WNews and GNews because affixes toward the right
should have relatively large distances. That is, pairs
such as fear/fearless have large VAD distances, like
most antonyms. Conversely, affixes toward the left
should have relatively small distances. That is, pairs
such as fear/fears have relatively small VAD distances.

5.2. Related Work
It is well-known that standard embeddings do not sep-
arate synonyms from antonyms very well (Nguyen et
al., 2016). (Faruqui et al., 2015) proposed retrofitting
to address this issue. Our proposal of fine-tuning on
VAD distances can be viewed as a form of retrofitting.

17sklearn.metric.r2 score
18Empirically, mean square error and R2 have a correla-

tion near −1, and therefore, they are about equally informa-
tive. Much of the discussion below, though, will focus on R2
because it is easier to interpret. Ideally, R2 values should be
near 1. Values will be near 0 (or even negative) when predic-
tions are uninformative.

19https://fasttext.cc/docs/en/english-vectors.html
20https://code.google.com/archive/p/word2vec/
21re-, pro-, under-, over-, dis-, un-
22-s, -ism, -ly, -ment, -ed, -ness, -ing, -ite, -able, -less
23|a−b| ≈

√
2 if a and b are random vectors of unit length.

https://saifmohammad.com/WebPages/nrc-vad.html
https://saifmohammad.com/WebPages/nrc-vad.html
http://crr.ugent.be/archives/1003
https://github.com/kwchurch/syn_ant/blob/main/fine_tune_VAD_pairs.py
https://github.com/kwchurch/syn_ant/blob/main/fine_tune_VAD_pairs.py
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Figure 6: Morpheme diagnostic favors VAD over alternative embeddings because affixes on the right should have
relatively large distances. That is, pairs such as fear/fears are similar to one another (small VAD distance of 0.03),
unlike fear/fearless (large VAD distance of 0.87). For other embeddings, most pairs have large distances, even
morphologically related pairs like fear/fears.

Figure 6 suggests this kind of retrofitting could also be
useful for capturing certain morphological regularities.
(Mohammad, 2020; Mohammad, 2016) surveys work
on VAD and similar topics such as sentiment classifi-
cation (Pang et al., 2002; Turney, 2002; Liu, 2012) and
emotion classification (Park et al., 2019). This survey
mentions tasks at nearly every Semeval meeting since
2013. Challenges with antonyms are discussed in §5.2
(Cruse et al., 1986; Justeson and Katz, 1991; Fellbaum,
1995; Mohammad et al., 2008).

5.3. Results and Discussion
As mentioned above, the regression task is to input two
texts and output ŷ, an estimate of the VAD distance be-

tween these two texts. The test, validation and training
splits are based on a vocabulary of V = 16k of the
20k entries in NRC-VAD. The remaining entries were
held back so we could evaluate how well the proposed
method generalizes to words that did not appear in the
three splits.
Table 1424 shows a case where fine-tuning transfers
well across splits. In this case, the splits are large and
similar to one another. All three sets sample edges be-

24In Table 14, BERTc and BERTun refer to bert-base-cased
and bert-base-uncased. Similarly, SciBERTc and SciBERTun
refer to SciBERT with and without case. BERTmulti refers to
bert-base-multilingual-cased. ERNIE refers to ernie-2.0-en.
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base model train val test unseen
BERTun 0.993 0.993 0.993 0.092

SciBERTun 0.993 0.993 0.992 0.095
ERNIE 0.991 0.990 0.990 0.075

SciBERTc 0.988 0.988 0.987 0.110
BERTmulti 0.988 0.987 0.991 0.133

BERTc 0.995 0.995 0.988 0.062

Table 14: R2 scores are near 1.0 when the training set
is large (1M edges), and the splits are sampled from the
same distribution. R2 is worse on unseen words.

tween the same V = 16k words. The sets are disjoint
but otherwise representative of one another. The train-
ing set contains 1M edges, and the validation and test
sets contain 100k edges.
On the other hand, if the sets are too small or too differ-
ent from one another, then fine-tuning does not transfer
well. That is, fine-tuning improves R2 on the train-
ing set, but not on the other splits. We experimented
with training sets of 10k, 100k and 1M edges. With 1M
edges, fine-tuning almost always transferred well. On
the other hand, with 10k, fine-tuning rarely transfers
well. With 100k edges, fine-tuning produced large im-
provements in R2 on the training set, but the improve-
ments on the other splits are relatively modest.
Unfortunately, even our best models do not general-
ize well to unseen words, as shown in Table 14. The
unseen column in Table 14 is a test set sampled over
words in in NRC-VAD but not in the 16k vocabulary
used for fine-tuning.
Figure 7 uses the morpheme diagnostic to compare two
sampling methods. The top panel uses 1M sampling (as
in Figure 14). The bottom panel uses ABCD sampling,
where the VAD vocabulary is partitioned into 4 sets:
A, B, C, D. The training set samples edges from A to
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Figure 7: ABCD sampling does not pass the morpheme
diagnostic. Red lines are provided for reference.

B, the validation set samples edges from A to C, and
the test set samples edges from A to D. Unfortunately,
ABCD sampling does not transfer well, and does not
pass the morpheme diagnostic.25

6. Conclusions
This paper proposed fine-tuning pretrained deep nets
such as BERT and ERNIE on lexical resources such
as thesauri and VAD lexicons. We do not normally
think of lexical resources as training data, but maybe
we should.
We proposed a simple fine-tuning framework for
syn/ant classification and VAD regression. Both meth-
ods fit: y ∼ text1 + text2. For syn/ant classifica-
tion, y ∈ {0, 1} and for VAD regression, y ∈ R. We
compared the proposed method to MoE (Xie and Zeng,
2021). The proposed method is competitive on stan-
dard benchmarks, and considerably better on a new
benchmark based on (Fallows, 1898). The proposed
method can be applied at inference time to novel words,
as well as MWEs, OOVs and longer texts in multiple
languages.
On a cautionary note, we found evidence of leakage
across splits in standard benchmarks as well as the
proposed benchmark based on (Fallows, 1898). Work
based on these resources may need to be retracted.
To address these concerns with leakage, we introduced
a new task, VAD regression. Since the VAD graph is
fully connected, we could study different methods for
creating train/val/test splits.
Much of the rest of this paper is concerned with how
well the proposed method transfers to unseen words
and unanticipated cases. We found that transfer learn-
ing depends on the size and representativeness of the
splits. If the splits are sufficiently large and represen-
tative of one another, then it is likely that fine-tuning
on the training set will not only improve the loss on the
training set, but also on the other splits as well. When
fine-tuning improves validation loss, results often gen-
eralize well to unseen edges, though less well to un-
seen nodes. That is, the proposed method appears to be
effective for predicting labels for pairs of words in the
training set, but less effective for pairs of unseen words.
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