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Abstract 
This paper presents a toolkit that applies named-entity extraction techniques to identify information related to criminal activity in texts 
from the Polish Internet. The methodological and technical assumptions were established following the requirements of our application 
users from the Border Guard. Due to the specificity of the users’ needs and the specificity of web texts, we used original methodologies 
related to the search for desired texts, the creation of domain lexicons, the annotation of the collected text resources, and the combination 
of rule-based and machine-learning techniques for extracting the information desired by the user. The performance of our tools has been 
evaluated on 6240 manually annotated text fragments collected from Internet sources. Evaluation results and user feedback show that 
our approach is feasible and has potential value for real-life applications in the daily work of border guards. Lexical lookup combined 
with hand-crafted rules and regular expressions, supported by text statistics, can make a decent specialized entity recognition system in 
the absence of large data sets required for training a good neural network. 
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1. Introduction 

In recent years, the problem of combating organized crime 
related to cross-border criminal activities (e.g., illegal 
smuggling of various goods across borders, particularly 
drugs, and other criminal activities like slavery, 
prostitution, trafficking in human organs) has become 
particularly important. Valuable criminal-justice analyses 
based on web texts are currently difficult to be 
automatically accessed and used by intelligence 
investigators. In their daily work, employees of the Border 
Guard manually collect, read, and analyze dozens of 
documents from various websites. Most of these 
documents are not relevant to the desired activity, e.g., drug 
trafficking. The process is highly time-consuming, and the 
results are not necessarily satisfactory. It is necessary to 
automate searching for information, extracting the desired 
information, classifying documents, and profiling the text 
authors and organized groups. Informal text coming from 
heterogeneous sources is hard to process entirely 
automatically. Therefore, identifying and recognizing 
entities, i.e., places, organizations, or personal names, 
could help police and Border Guard officers understand 
and find relevant information in the data extracted. 
The problem of recognizing named entities is well 
researched (Minkov, Wang, and Cohen, 2005), also in 
terms of language-independent solutions. Even so, only 
preliminary work has been presented for crime detection 
based on web text.  
An excellent overview of the literature dedicated to NER 
extraction is given by Al-Moslmi et al. (2020). The paper 
provides an overview of state of the art in this area, 
including Named Entity Recognition (NER), Named Entity 
Disambiguation (NED), and Named Entity Linking (NEL). 
The authors not only explain the concept of NER in detail 
but also introduce the concept of NED, which refers to the 
ambiguity of the extracted units, and NEL, which refers to 
the mutual relations of the identified units. 
Web texts are particularly useful in domain-specific 
applications because they contain information that may not 
be available in well-structured databases. However, such 
information is frequently hidden in unstructured text, thus 
limiting its usage in criminal activity detection. Despite the 
availability of generic named entity recognition tools, 
analyzing short informal texts collected from networks 

signaling illegal activities of individuals or organized crime 
groups poses the following challenges (Chau, Xu, and 
Chen, 2002). 

• The analysis of texts in terms of crime-related 
content requires recognizing not only standard 
named entity categories like person names, 
organizations, and locations. Other expression 
categories, such as addresses, product names (e.g., 
drug names, cigarette and alcohol brands), 
descriptions, or actions, are equally relevant to 
crime intelligence analysis. Therefore, it is 
necessary to define the taxonomy of named 
entities precisely. 

• Web texts are very specific: they are very noisy 
compared to other types of text data, such as well-
prepared documents. They are mostly very short, 
contain many typos, spelling errors, and different 
kinds of grammatical errors, thus making the 
entity extraction task very difficult. 

• The vocabulary is full of domain jargon and 
numerous ambiguities at every level of linguistic 
analysis. 

These conditions are more or less important, depending on 
the language. For the Polish language, irregular grammar, 
numerous ambiguities at each linguistic level, and a 
relatively free sentence order sometimes make it 
impossible to interpret the extracted information correctly, 
even in the case of human analysis. Methods used in named 
entity recognition systems for Polish include conditional 
random fields (Waszczuk et al., 2013; Marcińczuk, Kocoń, 
and Oleksy, 2017) and recurrent neural networks 
(Borchmann, Gretkowski, and Graliński, 2018; 
Marcińczuk, Kocoń, and Gawor, 2018).  
We discuss the following research questions based on the 
analysis of actual crime text collected from the Internet. 
Section 2 presents the applied methodology, including the 
list of entity categories we distinguished and the named 
entity extraction approaches we used. In Section 3, we 
discuss the process of gathering and annotating our 
experimental dataset and present their results. Section 4 
describes the algorithms and models we developed to 
extract named entities from the text. In Section 5, we 
present the evaluation results. Section 6 contains the 
discussion of the obtained results and the further plans.  
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2. Methodology 

2.1 Entity Categorization 

Named entities considered in the context of analyzing texts 
in terms of crime-related expressions are not limited to 
proper names but also include descriptions, names of 
actions, etc. We have distinguished nine categories 
pertinent to the task: 

• Identifier is a named entity allowing to directly 
identify the author of the text, e.g., first name, last 
name, nickname, telephone number. This category 
also includes all named entities that facilitate 
locating the event or identifying the author of the 
text, e.g., e-mail addresses, links, URLs, website 
names, etc. Examples: Zbyszek (a given name), 
zb@example.com (an e-mail address), 
+48123456789 (a phone number). 

• Object–person. This category includes all terms 
referring to people, such as demonyms, 
ethnonyms, names of professions, functions, 
nationalities, etc. Examples: Polak (‘Pole’), 
żoliborzanin (‘inhabitant of Żoliborz district’), 
starzec (‘old man’), sekretarka (‘secretary’). 

• Object–thing. This category is related to potential 
crime objects, excluding people. It includes 
physical or virtual (e.g., data) goods, works, and 
products – anything that may be the object of 
trafficking or a crime. A variety of entity types 
belongs to this category: names of drugs and 
medical substances, alcohols, guns, documents, 
vehicle brands, etc. Examples: dowód osobisty 
(‘identity card’), LSD, tequila, Volkswagen 

• Action. This category includes the names of 
actions directly or indirectly related to criminal 
activity. Actions directly associated with illegal 
activity include selected types of crimes, e.g., 
smuggling or drug trafficking. Activities 
indirectly related to criminal activity include, for 
example, traveling, accessing information, using 
websites, or shipping goods.  Actions can be 
expressed with verbs (e.g., wysłać ‘to send’) or 
nouns (e.g., wysyłka ‘shipment’). Verbs denoting 
actions refer to dynamic situations, i.e., situations 
that involve a change in the state of the performer 
of this activity, the object to which the activity 
relates, or the relationship between the 
participants of the action. These actions are 
carried out consciously, i.e., under the contractor’s 
control. They include verbs for movement (walk, 
drive, move, carry), making sounds (talk, whisper, 
cry), judging (praise, condemn), physical activity 
(work, beat, pull), and much more. Actions are 
generally expressed by verbs denoting activities or 
dynamic situations. Verbs in the first person are 
particularly valuable, e.g., sprzedam (‘I will sell’), 
kupiłem (‘I bought’). Actions can also be signaled 
indirectly with other parts of speech, e.g., 
sprzedaż i kupno (‘sale and purchase’), wymiana 
(‘exchange’), handel (‘trade’), dystrybucja 
(‘distribution’). 

• Organization. This category includes the names 
of major Polish and international organizations 
and organizations related to cross-border 
smuggling. Examples: Straż Graniczna (‘Border 

Guard’), WORD (‘Voivodship’s Road Traffic 
Center’). 

• Location category includes geographical places, 
addresses, and names of institutions. Examples: 
Warszawa (‘Warsaw’), ul. Słowackiego 8 (an 
address). 

• Time. This category includes temporal 
expressions of various kinds, such as date (an 
expression that describes the appointment 
according to the calendar), time (exact 
hour/minutes), time of day/night (does not have to 
be very precise), duration (a time interval that 
answers the question “how long”), or set (an 
expression that describes a series of events; it 
answers the question “how often”). 

• Measure. This category includes terms relating to 
size: physical measures, terms indicating the size, 
numbers concerning specific items, also names of 
currencies. Measures can be expressed with 
different parts of speech. Examples: 100 dolarów 
(‘100 dollars’), 5 zł (‘5 zlotys’), 200 mg, 5 szt. 
(‘5 pieces’) 

• Description category includes various 
expressions of characteristics, explanation, 
comments and can be expressed with different 
parts of speech. Examples: bezpośrednio od 
producenta (‘directly from the manufacturer’), 
białe (‘white’), z zagranicy (‘from abroad’), tanie 
w dobrej cenie (‘cheap at a good price’), bez 
akcyzy (‘duty free’). 

2.2 Named Entity Extraction Approaches 

We can distinguish three primary named-entity extraction 
approaches: based on lexicon lookup and rules, statistical 
approach, and machine learning. The last concept includes 
neural networks, which can automatically infer features 
through deep learning. 
Rule-based systems rely on hand-crafted rules that do not 
require annotated training data since they depend on lexical 
resources. These rules can be structural, contextual, or 
lexical (Krupka and Hausman, 1998). Their precision can 
become high because of the lexicons and domain-specific 
knowledge. The disadvantage is that this also makes them 
domain-dependent, that lexicon resources may be 
unavailable, and that constructing and maintaining such 
resources for many languages is costly. 
Statistic-based systems use statistical models to identify 
specific patterns or cues for entities in texts and require a 
training data set to obtain the statistics. Such systems may 
use a statistical language model to identify named entities 
in texts (Witten et al., 1999). 
Machine-learning-based systems rely on entropy 
maximization (Borthwick et al., 1998), neural networks 
(Lample et al., 2016), decision trees (Baluja, Mittal, and 
Sukthankar, 2000), hidden Markov models (Miller, Leek, 
and Schwartz, 1998), or other machine learning techniques. 
Deep learning methods can be used to infer features 
automatically. Neural networks do not need seeds, 
ontologies, or domain-specific lexicons and are therefore 
more domain-independent. However, building robust 
models require large datasets. 
Instead of relying on a single approach, our named entity 
extraction system utilizes a combination of lexicon lookup, 
hand-crafted rules, statistics, and neural networks. 
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3. Experimental Data 

The entire process of preparing the evaluation corpus can 
be divided into three key steps. The steps include locating 
the sources of adequate texts, extracting and storing the 
found data, and finally, annotating gathered texts. The 
following subsections describe the process in an analogous 
order. 

3.1 Text Collecting 

To create an evaluation corpus of the Named Entity 
Recognition algorithm, it was necessary to collect texts rich 
in domain lexis corresponding to the criminal environment 
and containing as many of the categories listed in section 
2.1 as possible. Depending on the source of given texts, 
either a manual or automatic approach was employed to 
capture them. 

3.1.1 Indication of potential text sources 

The first step towards creating an evaluation corpus was to 
identify potential sources of such texts. The sources used in 
the process can be divided into two main categories - those 
originating from the Clearnet and those originating from 
the anonymous TOR (The Onion Router) network. By 
making it impossible to trace a user's movements, the TOR 
network allows them to use the web anonymously1. This 
feature allows the network to be used by criminals to 
provide or use illegal services. To access content published 
on the TOR network, it is necessary to install a suitable 
browser that allows such access. TOR sites with illegal 
content are usually secured and require registration (Mider, 
2019). Moreover, the URLs of TOR networks are usually 
strings of random characters - letters and numbers ending 
with the domain ".onion" (Krauz, 2017), which was an 
additional complication in the text collection process. 
These factors meant that the texts found in the pre-imposed 
requirements were collected manually rather than 
automatically, as was the case with those from Clearnet. In 
this case, the manual method was much more effective than 
developing a script that bypassed the safeguards mentioned 
above. 
In order to determine Polish sources of criminal texts 
meeting the established criteria, a list of active Polish sites 
operating in the TOR network, published by the ITcontent2 
service, was used. The Polish sites Cebulka and Darknet 
were selected from this list. However, international sites 
such as Apollon Market or Dream Market were also used 
as text sources.  
In the case of Clearnet, the traditional Google search engine 
was used to find texts. Mainly two-part queries consisting 
of an action verb and a following illegal object were used. 
Of the results returned, the most relevant were selected. 
Their content was then searched analogously to locate more 
texts. The following list presents the sources used for 
linguistic data extraction. 

• Cebulka – the most popular Polish discussion 
board and auction site operating in the TOR 
network. Partial access is available without 
registration. 

• Darknet (Polka) – Polish discussion board and 
auction site operating in the TOR network. Access 
to the content requires registration. 

 
1 https://www.torproject.org/ 

• Apollon Market / Dream Market / White 
House Market – international auction services 
operating in the TOR network. Each of them 
requires registration for the contents to be viewed.  

• oglaszamy24h.pl / top-ogloszenia.pl – Polish 
advertising websites operating in the Clearnet. 
Registration is not required. 

• dopalacze-sklep.org – Polish online shop 
offering illegal drugs of various kinds. It operates 
in the Clearnet and does not require registration. 

3.1.2 Text extraction and results 

The automatic approach to text extraction employed in the 
case of Clearnet sources was based on a proprietary web 
scraper developed in the Python programming language. 
The script was being adjusted individually for each 
website. It employed three modules, namely – Requests: 
HTTP for Humans (for handling HTTP requests), Beautiful 
Soup (HTML/XML parser), and re (for enabling the usage 
of regular expressions). The results of both manual and 
automatic data extraction amounted to 3337 full texts 
stored in the csv format. 

3.2 Annotations 

The subsequent step in the process of evaluation set 
preparation was the annotation of the linguistic data 
gathered in the previous steps in compliance with the afore-
established entity categorization. From the texts collected 
in the previous steps, a subset of 450 texts was extracted 
and divided into packages of ten full texts each. The 
number of 450 texts was primarily due to the limited time 
commitment of the annotators. Given the availability of 
annotators and the estimated time needed to tag one entire 
text file, it was decided to entrust each annotator with 
tagging 50 full texts in a month, giving an average of one 
file annotated per week. Each bundle was saved in the txt 
format and labeled with a unique sequence number. The 
first month was intended to be an introductory period, as 
there was provision for students involved in annotation to 
continue their involvement in the project after the first 
month. However, due to the insufficient annotators willing 
to do so, the work had to be terminated at 450 texts.  
Each of the nine annotators involved was a third-year 
student of Linguistics and Information Science at Adam 
Mickiewicz University. The annotators were provided with 
two extensive text files covering the guidelines for the 
annotation. Additionally, an introductory meeting was 
organized to train the annotators and clarify matters of 
concern in the Q&A format. Due to the aforementioned 
linguistic background of the students involved, it was 
possible to commence the operation swiftly after 
conducting the introductory meeting. Annotators were in 
constant contact with the coordinator throughout the entire 
process. 
The workspace was organized in the cloud. Every text 
bundle was saved in the txt format and labeled with a 
unique sequence number. Each annotator was given their 
own identifier with a structure corresponding to “A<No.>” 
(e.g., A1, A2, etc.). A file was created showing the text 
allocation of each annotator. After completing the 
annotation of a given text bundle, an annotator was to place 
the file in a designated folder and mark the work progress 
in a designated spreadsheet.  

2 https://itcontent.eu/aktywne-strony-tor/ 
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The annotators were instructed to mark the beginning and 
end of each identified named entity and to mark its 
category. Entities of different categories could be nested. 
One subset (A6) has been annotated by two independent 
annotators. Figure 1 presents the scheme of conducted 
annotation in a concise way. 

3.3 Resulting Datasets 

450 collected texts were split into fragments according to 
line breaks. Each fragment consists of one to several 
sentences or sentences equivalents. As a result, we obtained 
a set of 6240 annotated text fragments. We will refer to this 
whole set as A_all. Its subset A6, annotated by two 
independent annotators, contained 554 fragments. We used 
it to evaluate the quality of the manual annotation, as 
described in Section 5. Additionally, in some experiments, 
we used sets A_train and A_aug. The set A_train was 
created as the difference of sets A_all and A6 (i.e., A_train 
:= A_all – A6). The set A_aug was created from A_train 
using data augmentation techniques, as described in 
Section 4.3. The details of the datasets are summarized in 
Table 1. 
 

Dataset A_all A6 A_train A_aug 

Number of texts 450 50 400 N/A 

Number of text 

fragments 

6240 554 5686 34960 

Num. of sentences 6674 637 6037 41955 

Number of words 44391 5070 39321 468708 

Number of entity 

instances 

11695 1949 9746 75891 

 Identifier 398 32 366 1446 

Object 4658 807 3851 34094 

 Person 79 4 75 678 

Thing 4579 803 3776 33416 

Action 1188 192 996 9630 

Organization 163 0 163 518 

Location 124 43 81 1408 

Time 320 38 282 3618 

Measure 3020 662 2358 12495 

Description 1824 175 1649 12682 

Table 1: The details of the collected datasets. 

 
3 https://flask.palletsprojects.com 

4. Named Entity Recognition 

4.1 System Overview 

The named entity recognition system described in this 
paper is a part of the Context module, developed as a part 
of the AISearcher software (Demenko et al., 2022). The 
purpose of the AISearcher system is to support the 
operation of the Polish Border Guard by facilitating the 
analysis of Internet resources in terms of crime-related 
contents, using natural language processing and artificial 
intelligence. 
AISearcher system consists of several modules. In brief, 
the usage scenario for collecting and analyzing Web texts 
is the following. First, the user initiates the search, entering 
a query in a source language (e.g., Polish). The Query 
Expansion module expands the search term with 
synonymic expressions. The expanded query is translated 
to target languages (Russian, Ukrainian, Belorussian) by 
the Translator module (Nowakowski and Jassem, 2021) 
and entered into search engines. The search results are 
translated back to the source language. Then, the Context 
module is responsible for multi-layer linguistic analysis of 
the collected texts. The translated and analyzed results are 
presented to the user. The crucial part of the Context 
module is the named entity recognition submodule, 
accountable for the semantic analysis of texts. 
The Context module has been developed as a RESTful Web 
service built upon the Flask web framework3 to facilitate 
integration with other AISearcher modules. We also used 
the Sacred tool (Greff et al., 2017) to manage experiments 
and the Gonito platform (Graliński et al., 2016) for 
comparing experiment results. 
The Context’s NER submodule has a modular structure that 
allows for testing various NER algorithms, as well as 
creating ensembles and buckets of multiple algorithm 
variants. Algorithms are encapsulated in classes following 
the principles of object-oriented programming so different 
classes can use the same utility tools, e.g., POS tagger, 
lemmatizer, or spellchecker. 
For POS tagging, we use the Multilingual Universal Part-
of-Speech Tagging model (flair/upos-multi-fast) – a 
multilingual model based on Flair embeddings (Akbik et 
al., 2018) and LSTM-CRF. For morphological analysis, we 
use the Morfeusz morphological analyzer for Polish 
(Kieraś and Woliński, 2017). For spellchecking we use the 
GNU Aspell spellchecker4. 
We implemented various NER algorithms, both 
lexicon/rule-based and machine-learning-based, to see 
which one best performs. 

4.2 Approaches Based on Lexicons and Rules 

Our rule-based algorithm for recognizing named entities 
uses carefully prepared lexicons and hand-crafted regular 
expressions. It also uses hand-crafted rules to assign 
confidence scores for different entities. These scores are 
further used in the disambiguation procedure. 

4.2.1 Lexicons 

For the lexicon-based approach, we prepared domain 
vocabulary lexicons, as described by Jankowska, 
Pieniowski, and Demenko (2022). The lexicons contain 
3135 lexical units related to different kinds of criminal 
activity, including the illegal trade of drugs, alcohol, 

4 http://aspell.net 

Figure 1: Graphic representation of the annotation process. 
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cigarettes, cars, machines, weapons, and explosives, as 
well as document forgery, human trafficking, and sexual 
offenses. The identified lexical units are categorized 
according to the classification described in Section 2.1. 
The lexicon files are not used by the algorithm as-is but are 
pre-processed first. We distinguish several kinds of source 
lexicon files that are treated somewhat differently: 

• Most lexicons are just lists of expressions that are 
to be marked as a particular category. Each of 
these word lists is assigned a specific category 
and a specific confidence value. 

• Some lexicon files have a frequency value 
assigned to each contained expression. E.g. the 
lexicon of towns is a list of town names and their 
population. A confidence score is calculated 
based on the population value according to the 
following rule: the larger population, the more 
likely the town name should be recognized by the 
algorithm. A similar method is used for lexicons 
of given names and family names. 

• Some lexicons include inflected terms. The 
confidence score is calculated taking into account 
the term’s morphological form. For example, 
nouns in nominative are given a higher score than 
nouns in other cases. 

• There are also lexicons of ambiguities. These 
files contain expressions that can be interpreted 
differently depending on the context, e.g., 
Warszawa – ‘the city of Warsaw’ – should be 
recognized as location, but Warszawa – a car 
brand – should be recognized as object–thing. 

Multi-word expressions in the source lexicon files are 
treated specially. A dedicated multi-lexicon object is 
created for them, taking into account the dependencies 
between the constituent words of the expressions. This is 
done because the process of matching the multi-word 
expressions should take into account the proper inflection. 
The street names lexicon file is also treated specially. 
During its pre-processing, various common variants of 
address expressions are added to the target lexicon object, 
e.g., locative case. 
The pre-processing of disambiguation lexicon files consists 
of creating a dedicated disambiguation dictionary that 
stores the information about the expression, its category, 
and the sets of positive and negative context words. 
Other lexicons are pre-processed by adding the relevant 
terms and, if necessary, their inflected forms to the so-
called pre-lexicon. Then, to speed up the lexicon lookup 
procedure, this pre-lexicon is converted to an automaton 
using the pyahocorasick5 implementation of the Aho-
Corasick algorithm (Aho and Corasick, 1975). Finally, all 
the pre-processed lexicons and the automaton are dumped 
onto the disk to accelerate the process of loading lexicons 
when the service starts. 
Other lexical resources used in the system are: 

 
5 https://github.com/WojciechMula/pyahocorasick 
6 from https://github.com/stopwords-iso/stopwords-iso 
7 ([a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]
+)[.,!?*)]? 
8 ((https?://)?(www[.])?[a-zA-Z0-9.-]+[.][a-z]{2
,5}) 

• the word frequency list created from the one-
million-word subcorpus of the National Corpus of 
Polish (National Corpus of Polish, 2012; 
Przepiórkowski et al., 2012) for disambiguation 
purposes, 

• the stop words list6. 

They are also stored on the disk. 

4.2.2 Regular Expressions 

Hand-crafted regular expressions are used to recognize 
entities belonging to the following categories: 

• identifier: e-mail addresses7, URLs8, phone 
numbers9, 

• location: postal addresses10,  
• time: date and time expressions, 
• measure: expressions of numbers with units of 

measurement and currencies, percentages11. 

4.2.3 Recognizing Named Entities with Rules 

In our rule-based named entity recognizer, named entities 
are recognized in three ways: from regular expressions, the 
automaton, the lexicons. Recognizing entities from regular 
expressions is straightforward: a text fragment is marked as 
a particular named entity category if it matches the 
corresponding regular expression. Identifying entities from 
the automaton is similar, but it takes into account word 
boundaries because the automaton only deals with whole-
word phrases. Recognizing entities directly from the 
lexicons consists of iterating over the lexicon entries (one-
word lexicon, multi-word lexicon, and disambiguation 
lexicon), using the lemmatizer to check for inflected forms, 
checking grammatical agreement for multi-word entries, 
checking context for disambiguated entries, and 
prioritizing obtained matches with confidence scores. 
The results are then filtered, rejecting stop words and one-
letter words. For some entity types, a recognized entity is 
rejected if the frequency list indicates that it should be 
considered a common word rather than a proper name. 
Finally, the results from all three sources are gathered and 
disambiguated before being returned to the user. 

4.3 Machine-learning-based Approaches 

In addition to the rule-based named entity recognizer, we 
decided to train a neural network model. To achieve this 
goal, we needed a large set of text fragments annotated with 
categories described in Section 2.1. This means that none 
of the publicly available general-purpose NER datasets 
would meet our needs. 
Due to these constraints, we decided to use the text 
fragments from the A_all set, except those contained in the 
A6 subset. We will refer to this dataset as A_train (i.e., 
A_train := A_all – A6). The dataset A_train contains 5686 
annotated text fragments. 
Furthermore, we created an additional dataset using data 
augmentation techniques (Shorten and Khoshgoftaar, 
2019). For this purpose, we used the Query Expansion 

9 ([+]?[0-9- ]{9,15})[.,!?*)]? 
10 ([aApPuU]l[.]( [A-ZĄĆĘŁŃÓŚŹŻ][a-ząćęłńóśźż]+)
+( [1-9][0-9]*[a-zA-Z]?(([\/]| m[.]? ?)[1-9][0-
9]*)?)?)[.,!?*)]? 
11 ([+-]?[0-9]+([.,][0-9]+)?[ ]?%) 
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module of the AISearcher system (Nowakowski and 
Jassem, 2021). This way, we obtained a set of 34960 
annotated text fragments. We will refer to this dataset as 
A_aug. 
The neural network architecture is based on the sequence 
tagger implemented in the Flair framework (Akbik et al., 
2019). The input layer is followed by a stack of Flair 
contextual string embeddings (Akbik, Blythe, and Vollgraf, 
2018) for Polish (from both forward and backward 
language models). The hidden layer size is 512. 
Additionally, a conditional random field (Lafferty, 
McCallum, and Pereira, 2001) is used to obtain predictions 
from the network because the research shows that CRFs are 
useful in NER-like tasks (Settles, 2004). 
This way, we built two neural network models: one trained 
on the A_train set and the other trained on the A_aug set. 

4.4 Statistical Approach 

We experimented with using some text statistics from the 
A_train set to improve the rule-based recognizer. This way, 
we developed a series of “statistically adjusted” rule-based 
models. The models are parameterized by two parameters: 
gt (“general feasibility threshold”) and st (“specific 
feasibility threshold”). 
We gathered the statistics from the annotated A_train 
corpus: for every token (wordform) and its lemma in the 
corpus, we counted how many times it was marked as a 
named entity of each category. The file with these statistics 
is used to filter out the output from the rule-based entity 
recognizer the following way. 
For every returned entity (w, e), where w denotes a word  
and e denotes the entity category, two values are calculated: 
the “general feasibility” g(w), and the “specific feasibility” 
s(w, e), defined as: 

𝑔(𝑤) ≔
∑ 𝑐(𝑤, 𝑒′)𝑒′∈𝐸 − 𝑐(𝑤, ∅)

∑ 𝑐(𝑤, 𝑒′)𝑒′∈𝐸

, 

𝑠(𝑤, 𝑒) ≔
𝑐(𝑤, 𝑒)

∑ 𝑐𝑒′ ∈𝐸 (𝑤, 𝑒′)
, 

where c(w, e) denotes the number of occurrences of word 
w annotated as category e in the corpus, c(w, ∅) denotes the 
number of occurrences of word w not marked as a named 
entity in the corpus, and E denotes the set of all entity 
categories and ∅. An entity (w, e) is rejected if g(w) < gt or 
s(w, e) < st. 

4.5 Ensemble Models 

An ensemble of models is a classifier that combines 
individual predictions of constituent models in some way 
(Dietterich, 2000; Dzeroski and Zenko, 2002). Ensembles 
are created to benefit from the advantages of constituent 
classifiers.  
Our experimental setup allows for building ensembles of 
models in two ways: 

• A bucket classifier uses different models for 
different named entity categories. We expect that 
such a bucket model will better reflect the variety 
of entity categories. 

• A weighted ensemble is a classifier that gathers 
results from constituent models and gives them 
different weights. These weights are multiplied by 
obtained confidence scores. The resulting scores 

are used to prioritize and disambiguate the results 
by rejecting lower-score entities. 

Because ensemble models are implemented so that they all 
inherit from a model base class, they can be further 
combined, creating mixed ensembles, e.g., weighted 
ensembles of buckets. 

5. Evaluation 

For evaluation, we used the multi-label precision p, recall r 
and Fβ-score metric defined as follows: 

𝑝 =
|𝑇 ∩ 𝑃|

|𝑃|
 , 

𝑟 =
|𝑇 ∩ 𝑃|

|𝑇|
 , 

𝐹𝛽 = (1 + 𝛽2) ⋅
𝑝 ⋅ 𝑟

(𝛽2 ⋅ 𝑝) + 𝑟
 , 

where P and T are sets of predicted labels and true labels, 
respectively. The F1-score is the harmonic mean of the 
precision and recall. If 𝛽 < 1, then the 𝐹𝛽-score values the 
precision more than the recall. In addition to the widely 
used F1-score, we chose the F0.5-score for evaluation 
because we expected users to be more concerned with 
precision than recall. 
We evaluated many models and their combinations 
(ensembles) and modifications. For comparison, we used 
the Nerf general-purpose named entity recognizer for 
Polish (Waszczuk et al., 2013). Nerf is a statistical NER 
based on linear-chain conditional random fields. 
Because the A6 set has been annotated by two independent 
annotators, we used this to evaluate the quality of manual 
annotation, calculating the multi-label F1-score of one 
annotation versus the other annotation. 
Table 2 shows evaluation results for selected classifiers, 
metrics, and test sets. 
 

Classifier 

F1-score on 

A6 A_all 

nerf  0.00512 0.01670 

rules 0.45998 0.20874 

rules + multiword agreement 0.45904 0.20830 

rules + spellcheck 0.39489 0.17865 

rules + spellcheck + multiword 

agreement 

0.39419 0.17797 

rules + spellcheck + threshold 0.1 0.48718 0.21943 

rules + spellcheck + threshold 0.3 0.48020 0.22331 

rules + spellcheck + multiword 

agreement + threshold 0.2 

0.48425 0.22119 

bucket 1 (rule-based only) 0.47263 0.22128 

bucket 2 (rule-based only) 0.45319 0.21482 

rules + statistics (0.5, 0.3) 0.49059 N/A 

rules + spellcheck + threshold 0.1 + 

statistics (0.5, 0.3) 

0.51383 N/A 

neural 0.37364 N/A 

neural augmented 0.35335 N/A 

bucket 3 0.52232 N/A 

ensemble 1 0.52100 N/A 

manual 0.62138 N/A 

Table 2: Multi-label F1-score on both test sets for 
different classifiers 
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Classifiers trained on the A_train set or the A_aug set were 
not evaluated on the A_all set but only on the A6 set. 
Selected classifiers are: 

• nerf – the Nerf tool described above, 
• rules – the basic rule-based classifier, as 

described in Section 4.2, but without spelling 
correction or checking the grammatical agreement 
of multi-word named entities, 

• rules + multiword agreement – the rule-based 
classifier with checking the grammatical 
agreement of multi-word named entities, 

• rules + spellcheck – the rule-based classifier with 
spelling correction, 

• rules + spellcheck + multiword agreement – the 
rule-based classifier with a spelling correction and 
checking the grammatical agreement of multi-
word named entities, 

• rules + threshold t – rule-based classifier but 
results with confidence c below given threshold 
(i.e., c < t) are filtered out, 

• rules + statistics (gt, st) – rule-based classifier 
enhanced with statistical information, as 
described in Section 4.4, with general feasibility 
threshold gt and specific feasibility threshold st, 

• neural – a neural model trained on the A_train set, 
as described in Section 4.3, 

• neural augmented – a neural model trained on 
the A_aug set, 

• bucket 1 – a bucket classifier composed of the 
following rule-based classifiers: 

o nerf for object–person and organization 
categories, 

o rules + spellcheck + threshold 0.1 for 
object–thing category, 

o rules + spellcheck + threshold 0.3 for 
description category, 

o rules + multiword agreement for time 
and action categories, 

o rules + multiword agreement + 
threshold 0.4 for identifier and location 
categories, 

o rules + multiword agreement + 
threshold 0.5 for measure category, 

• bucket 2 – a bucket classifier composed of the 
following rule-based classifiers: 

o nerf for object–person and organization 
categories, 

o rules + multiword agreement + 
threshold 0.4 for location, object–thing, 
action, and time categories, 

o rules + multiword agreement + 
threshold 0.6 for identifier and measure 
categories, 

o rule + spellcheck + multiword 
agreement + threshold 0.3 for 
description category, 

• bucket 3 – a bucket classifier composed of the 
following classifiers: 

o neural for identifier and object–person 
categories, 

o neural augmented for time category, 
o rules + statistics (0.5, 0.3) for action, 

measure, and description categories, 

o rules + spellcheck + threshold 0.1 + 
statistics (0.5, 0.3) for object–thing and 
organization categories, 

o rules + spellcheck + threshold 0.3 for 
location category, 

• ensemble 1 – a weighted ensemble of the rules + 

spellcheck + threshold 0.1 + statistics (0.5, 0.3) 

algorithm and the neural augmented model, where both 

constituents are given the same weight, 
• manual – manual annotation. 

Tables 3, 4 and 5 show precision, recall, F1-score and F0.5-
score by category for manual annotation and for two select 
algorithms with relatively high F1-scores: rules + 
spellcheck + threshold 0.1 and rules + spellcheck + 
threshold 0.1 + statistics (0.5, 0.3). Categories object – 
person and object – thing were grouped together as object, 
and the organization category was not included due to 
insufficient data in the A6 set. Figures 2, 3 and 4 are 
precision and recall plots for these three models. 
 

Category Prec. F0.5 F1 Recall 

Identifier 0.40678 0.44776 0.52747 0.75000 

Object 0.75941 0.66851 0.56674 0.45205 

Action 0.53521 0.39916 0.28897 0.19792 

Location 0.10811 0.10471 0.10000 0.09302 

Time 0.17500 0.17677 0.17949 0.18421 

Measure 0.75772 0.67988 0.58910 0.48187 

Description 0.20188 0.20935 0.22165 0.24571 

Table 3: Multi-label precision, F0.5-score, F1-score, and 
recall for rules + spellcheck + threshold 0.1 algorithm. 

Category Prec. F0.5 F1 Recall 

Identifier 0.52174 0.55556 0.61538 0.75000 

Object 0.86375 0.72419 0.58292 0.43990 

Action 0.70000 0.48611 0.33333 0.21875 

Location 0.22222 0.12658 0.07692 0.04651 

Time 0.12500 0.12048 0.11429 0.10526 

Measure 0.80151 0.70763 0.60189 0.48187 

Description 0.26562 0.24745 0.22442 0.19429 

Table 4: Multi-label precision, F0.5-score, F1-score, and 
recall for rules + spellcheck + threshold 0.1 + statistics 

(0.5, 0.3) algorithm. 

Category Prec. F0.5 F1 Recall 

Identifier 0.38889 0.33654 0.28000 0.21875 

Object 0.73378 0.72073 0.70200 0.67286 

Action 0.48000 0.47085 0.45777 0.43750 

Location 0.42857 0.21127 0.12000 0.06977 

Time 0.46429 0.43333 0.39394 0.34211 

Measure 0.91725 0.88787 0.84715 0.78701 

Description 0.10302 0.11602 0.14311 0.23429 

Table 5: Multi-label precision, F0.5-score, F1-score, and 
recall for manual annotation. Note that precision scores 
for the first annotator can be treated as recall scores for 

the second annotator and vice versa. 
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6. Discussion 

Developing a specialized named entity recognition tool is 
challenging. The results achieved by Nerf show that 
general-purpose recognizers are not suitable for highly 
specialized tasks of this kind. Analytic scores obtained 
from comparing two independent annotators are much 
lower than 1.0 - the annotators performed annotation 
differently despite being given strict guidelines. That is 
because we are not dealing here with a classical named 
entity recognition task. Some categories, like identifiers or 
locations, are named entities, but others, like descriptions 
or actions, are less precisely defined. The annotators tended 
to agree on the annotation of measures and objects, but 
descriptions, identifiers, and, surprisingly, locations turned 
out to be more ambiguous. The ambiguity of location 
annotation resulted from the presence of the expressions 
like na terenie Warszawy (‘on the territory of Warsaw’) or 
do 50 km od Sandomierza (‘up to 50 km from 
Sandomierz’), where it was not clear whether the whole 
phrase or only the place name should be marked. 
These issues were also reflected in the performance of our 
models. As Tables 2–5 show, our best algorithms (i.e., 
bucket 3, rules + spellcheck + threshold 0.1 and similar) 
scored comparably to humans for categories like identifier 
or description, and only slightly worse for categories like 
object, action, and measure. The time and location 
categories proved to be the most challenging. 
Rule-based algorithms that filtered out the least confident 
results achieved one of the highest F1-scores. The use of 
statistical data was helpful for this purpose. Neural models 
performed significantly worse, probably due to a too-small 
training set. Data augmentation did not mitigate this 
problem. Carefully designed bucket ensembles proved to 
be the best. 
Another interesting remark is that the analytic measures of 
NER performance like precision, recall, or F1-score do not 
always coincide with the users’ experience. Although the 
statistically enhanced models achieved better scores than 
lexicon-based algorithms, the system users preferred the 
simple rule-based algorithms. They perceived the statistical 
and neural models as less “coherent” and “predictable”. 
We plan to carry out an evaluation on a larger scale in the 
future. We are systematically updating our named entity 
recognition algorithms. For this purpose, users – the 
employees of the Border Guard – constantly collect 
original materials and provide valuable comments. We 
analyze these materials and remarks to optimize the entire 
NER process interactively. We also plan to collect more 
training data, hopefully allowing us to train more accurate 
neural models.  
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