
Proceedings of the 13th Conference on Language Resources and Evaluation (LREC 2022), pages 6200–6211
Marseille, 20-25 June 2022

© European Language Resources Association (ELRA), licensed under CC-BY-NC-4.0

6200

Query Obfuscation by Semantic Decomposition

Danushka Bollegala1,2, Tomoya Machide3, Ken-ichi Kawarabayashi3
University of Liverpool1, Amazon2, National Institute of Informatics3

danushka@liverpool.ac.uk, machide@nii.ac.jp, k keniti@nii.ac.jp

Abstract
We propose a method to protect the privacy of search engine users by decomposing the queries using semantically related and
unrelated distractor terms. Instead of a single query, the search engine receives multiple decomposed query terms. Next, we
reconstruct the search results relevant to the original query term by aggregating the search results retrieved for the decomposed
query terms. We show that the word embeddings learnt using a distributed representation learning method can be used to
find semantically related and distractor query terms. We derive the relationship between the obfuscity achieved through the
proposed query anonymisation method and the reconstructability of the original search results using the decomposed queries.
We analytically study the risk of discovering the search engine users’ information intents under the proposed query obfuscation
method, and empirically evaluate its robustness against clustering-based attacks. Our experimental results show that the proposed
method can accurately reconstruct the search results for user queries, without compromising the privacy of the search engine users.

Keywords: Query Obfuscation, Information Retrieval, Word Embeddings, Reconstrutability

1. Introduction
As web search engine users, we are left with two options
regarding our privacy. First, we can trust the search en-
gine not to disclose the keywords that we use in a search
session to third parties, or even to use for any other
purpose other than providing search results to the users
who issued the queries. However, the user agreements in
most web search engines do not allow such user rights.
Although search engines pledge to protect the privacy
of their users by encrypting queries and search results,1

the encryption is between the user and the search engine
– the original non-encrypted queries are still available to
the search engine. The keywords issued by the users are
a vital source of information for improving the relevancy
of the search engine and displaying relevant adverts to
the users. For example, in learning to rank (He et al.,
2008), keywords issued by a user and the documents
clicked by that user are recorded by the search engine to
learn the optimal dynamic ranking of the search results,
user interests and extract attributes related to frequently
searched entities (Pasca, 2014; Sadikov et al., 2010;
Santos et al., 2010; Richardson, 2008; Pasca, 2007).
Considering the fact that placing advertisements for
the highly bid keywords is one of the main revenue
sources for search engines, there are obvious commer-
cial motivations for the search engines to exploit the user
queries beyond simply providing relevant search results
to their users. For example, it has been reported that
advertisements contribute to 96% of Google’s revenue.2

Therefore, it would be unrealistic to assume that the user
queries will not be exploited in a manner unintended by

Danushka Bollegala holds concurrent appointments as
a Professor at University of Liverpool and as an Amazon
Scholar. This paper describes work performed at the Univer-
sity of Liverpool and is not associated with Amazon.

1https://goo.gl/JSBvpK
2https://www.wordstream.com/articles/

google-earnings

Figure 1: Overview of the proposed method. The orig-
inal query A is decomposed into a set of relevant (X)
and distractor (Y) terms at the user-end. The search
engine returns documents relevant for both X and Y ,
denoted by D(X) ∪D(Y). We will ignore D(Y) and
reconstruct the search results for A using D(X).

the users.
As an alternative approach that does not rely on the
goodwill of the search engine companies, we propose
a method (shown in Figure 1), where we disguise the
queries that are sent to a search engine such that it is
difficult for the search engine to guess the real informa-
tion need of the user by looking at the keywords, yet
it is somehow possible for the users to reconstruct the
search results relevant for them from what is returned
by the search engine. The proposed method does not
require any encryption or blindly trusting the search en-
gine companies or any third-party mediators. However,
this is a non-trivial task because a search engine must be
able to recognise the information need of a user in order
to provide relevant results in the first place. Therefore,
query obfuscation and relevance of search results are at
a direct trade-off.
Specifically, given a user query A, our proposed
method first finds a set of n noisy relevant terms
X1, X2, . . . , Xn (denoted by the set {Xi}ni=1) and m
distractor terms Y1, Y2, . . . , Ym (denoted by the set
{Yj}nj=1) for A to obfuscate the user query. We use
pre-trained word embeddings for identifying the noisy-
relevant and distractor terms. We add Gaussian noise to
the relevant terms such that it becomes difficult for the

https://goo.gl/JSBvpK
https://www.wordstream.com/articles/google-earnings
https://www.wordstream.com/articles/google-earnings

6201

search engine to discover A using {Xi}ni=1. However,
{Xi}ni=1 is derived using A, so there is a risk that the
search engine will perform some form of de-noising
to unveil A from {Xi}ni=1. Therefore, using {Xi}ni=1

alone as the keywords does not guarantee obfuscity. To
mitigate this risk, we generate a set of distractor terms
{Yj}nj=1 separately for each user query. We then issue
X1, X2, . . . , Xn, Y1, Y2, . . . , Ym in random order to the
search engine to retrieve the corresponding search re-
sults. We then reconstruct the search results for A using
the search results we retrieve from the noisy-relevant
terms and discard the search results retrieved from the
distractor terms. It is noteworthy that during any stage
of the proposed method, we do not issue A as a stan-
dalone query nor in conjunction with any other terms to
the search engine. Moreover, we do not require access
to the search index, which is typically not shared by the
search engine companies with the outside world.
We do not collect, process or release any personal data
with ethical considerations in this work. Our contribu-
tions in this paper can be summarised as follows:

• We propose a method to obfuscate user queries
sent to a search engine by semantic decomposition
to protect the privacy of the search engine users.
Our proposed method uses pre-trained word em-
beddings.

• We introduce the concepts of obfuscity (i.e., how
difficult it is to guess the original user query by
looking at the auxiliary queries sent to the search
engine?), and reconstructability (i.e. how easy it
is to reconstruct the search results for the origi-
nal query from the search results for the auxiliary
queries?), and propose methods to estimate their
values.

• We theoretically derive the relationship between
obfuscity and reconstructability using known prop-
erties of distributed word representations.

• We evaluate the robustness of the proposed query
obfuscation method against clustering-based at-
tacks, where a search engine would cluster the
keywords it receives within a single session to fil-
ter out distractors and predict the original query
from the induced clusters. Our experimental re-
sults show that by selecting appropriate distractor
terms, it is possible to guarantee query obfuscity,
while reconstructing the relevant search results.

2. Query Obfuscation
2.1. Finding Noisy-Related Terms
Expanding a user query using related terms (Carpineto
and Romano, 2012) is a popular technique in infor-
mation retrieval to address sparse results. Although
query expansion is motivated as a technique for im-
proving recall, we take a different perspective in this
paper – we consider query expansion as a method for

obfuscating (Gervais et al., 2014) the search intent of a
user. Numerous methods have been proposed in prior
work on query expansion to find good candidate terms
for expanding a given user query such as using pre-
compiled thesauri containing related terms and query
logs (Carpineto and Romano, 2012). We note that any
method that can find related terms for a given user query
A can be used for our purpose given that the following
requirements are satisfied:

1. The user query A must never be sent to the search
engine when retrieving related terms for A because
this would obviously compromise the obfuscation
goal.

2. Repeated queries to the search engine must be min-
imised in order to reduce the burden on the search
engine. We assume that the query obfuscation pro-
cess to take place outside of the search engine using
a publicly available search API. Although modern
Web search engines would gracefully scale with
the number of users/queries, obfuscation methods
that send excessively large numbers of queries are
likely to be banned by the search engines because
of the processing overhead. Therefore, it is impor-
tant that we limit the search queries that we issue
to the search engine when computing the related
terms.

3. No information regarding the distribution of doc-
uments nor the search index must be required by
the related term identification method. If we had
access to the index of the search engine, then we
could easily find the terms that are co-occurring
with the user query, thereby identifying related
terms. However, we assume that the query ob-
fuscation process happens outside of the search
engine. None of the major commercial web search
engines such as Google, Bing or Baidu provide
direct access to their search indices due to security
concerns. Therefore, it is realistic to assume that
we will not have access to the search index during
anytime of the obfuscation process, including the
step where we find related terms to a given user
query.

4. The related terms must not be too similar to the
original user query A because that would enable
the search engine to guess A via the related terms
it receives. For this purpose, we would add noise to
the user query A and find noisy related neighbours
that are less similar to A.

We propose a method that uses pre-trained word
embeddings to find related terms for a user query
that satisfy all of the above-mentioned requirements.
Context-independent word embedding methods such as
word2vec (Mikolov et al., 2013) and GloVe (Penning-
ton et al., 2014) can represent the meanings of words
using low dimensional dense vectors. Using word em-
beddings is also computationally attractive because they

6202

are low dimensional (typically 100 − 600 dimensions
are sufficient), consuming less memory and faster when
computing similarity scores. Although we focus on sin-
gle word queries for the ease of discussion, we note
that by using context-sensitive phrase embeddings such
as Elmo (Peters et al., 2018) and BERT (Devlin et al.,
2019) we can obtain vectors representing multi-word
queries, which we defer to future work.
We denote the pretrained word embedding of a term
A by v(A). To perturbate word embeddings, we add
a vector, θ ∈ Rd, sampled independently for each A
from the d-dimensional Gaussian with a zero mean and
a unit variance, and measure the cosine similarity be-
tween v(A) + θ and each of the words Xi ∈ V in a
predefined and fixed vocabulary V , using their word
embeddings v(Xi). We then select the top most similar
words {Xi}ni=1 as the noisy related terms of A.
Let us denote the set of documents retrieved using a
query A by D(A). If we use a sufficiently large number
of related terms Xi to A, we will be able to retrieve
D(A) exactly using

D′(A) =

n⋃
i=1

D(Xi). (1)

However, in practice we are limited to using a trun-
cated list of n related terms because of computational
efficiency and to limit the number of queries sent to
the search engine. Therefore, in practice D′(A) will
not be exactly equal to D(A). Nonetheless, we assume
the equality to hold in (1), and later in the theoretical
proofs given in the supplementary material discuss the
approximation error. To model the effect of ranking,
we consider only the top-ζ ranked documents as D(Xi)
and set ζ = 100 in our experiments.

2.2. Obfuscation via Distractor Terms
Searching using noisy related terms Xi alone of a user
query A, does not guarantee the obfuscity. The probabil-
ity of predicting the original user query increases with
the number of related terms used. Therefore, we require
further mechanisms to ensure that it will be difficult for
the search engine to predict A from the queries it has
seen. For this purpose, we select a set of unrelated terms
{Yj}nj=1, which we refer to as the distractor terms.
Several techniques can be used to find the distractor
terms for a given query A. For example, we can ran-
domly select terms from the vocabulary V as the distrac-
tor terms. However, such randomly selected distractor
terms are unlikely to be coherent, and could be easily
singled-out from the related terms by the search engine.
If we know the semantic category of A (e.g. A is a per-
son or a location etc.), then we can limit the distractor
terms to the same semantic category as A. This will
guarantee that both related terms as well as distractor
terms are semantically related in the sense that they
both represent the same category. Therefore, it will be
difficult for the search engine to discriminate between
related terms and distractor terms. Information about the

Figure 2: Selecting distractor terms for a given query
A. We first compute the noise (θ) added vector A′ for
A, and then search for terms Yj that are located inside a
cone that forms an angle ω with A′. This would ensure
that distractor terms are sufficiently similar to the noise
component, therefore difficult to distinguish from A.

semantic categories of terms can be obtained through
different ways such as Wikipedia category pages, tax-
onomies such as the WordNet (Miller, 1995) or by
named entity recognition (NER) tools. Moreover, we
consider distractor terms Yj that have similar average
frequency as the original query A and the noisy related
terms Xi so that it will be difficult to differentiate be-
tween distractor terms and noisy related terms based on
frequency information.

We propose a method to find distractor terms Yj for
each query A using pre-trained word embeddings as
illustrated in Figure 2. Let us consider a set of candi-
date terms C from which we must select the distractor
terms. For example, C could be a randomly selected
subset from the vocabulary of the corpus used to train
word embeddings. First, we select a random hyperplane
(represented by the normal vector h ∈ Rd to the hyper-
plane) in the embedding space that passes through the
point corresponding to A. Next, we split C into two mu-
tually exclusive sets C+ = {x : x ∈ C,x⊤h ≥ 0} and
C− = {x : x ∈ C,x⊤h < 0} depending on which side
of the hyperplane the word is located. Let us define Cmax

and Cmin to be respectively the larger and smaller of the
two sets C+ and C− (i.e. Cmax = argmaxS∈{C+,C−} |C|
and Cmin = argminS∈{C+,C−} |C|) Next, we remove
the top 10% of the similar words in Cmax to the origi-
nal query A. We then use this reduced Cmax as C (i.e.
C ← Cmax) and repeat this process until we are left with
the desired number of distractor terms in C. Intuitively,
we are partitioning the candidate set into two groups in
each iteration considering some attribute (dimension) of
the word embedding of the query (possibly represent-
ing some latent meaning of the query), and removing
similar terms in that subspace.

6203

2.3. Reconstructing Search Results
Once we have identified a set of noisy related terms,
{Xi}ni=1, and a set of distractor terms, {Yj}nj=1, we
issue those terms as queries to the search engine and
retrieve the relevant search results for each individual
term. We issue related terms and distractor terms in a
random sequence, and ignore the results returned by the
search engine for the distractor terms. Finally, we can
reconstruct the search results for A using (1).

3. Obfuscity vs. Reconstructability
Our proposed query decomposition method strikes a
fine balance between two factors (a) the difficulty for
the search engine to guess the original user query
A, from the set of terms that it receives Q(A) =
{X1, X2, . . . , Xn, Y1, Y2, . . . , Ym}, and (b) the diffi-
culty to reconstruct the search results, D(A), for the
original user query, A, using the search results for the
noisy related terms following (1). We refer to (a) as
the obfuscity, and (b) as the reconstructability of the
proposed query decomposition process.

3.1. Obfuscity
We define obfuscity, α, as the ease to guess the user
query A, from the terms issued to the search engine and
compute it as follows:

α = 1− 1

|Q(A)|
∑

q∈Q(A)

sim(v(A), v(q)) (2)

Specifically, we measure the average cosine similarity
between the word embedding, v(A), for the original
user query A, and the word embeddings v(q) for each
of q ∈ Q(A) search terms. If the similarity is higher,
then it becomes easier for the search engine to guess
A from the search terms. The difference between this
average similarity and 1 (i.e. the maximum value for
the average similarity) is considered as a measure of
obfuscity we can guarantee through the proposed query
decomposition process. Even if we are not exactly send-
ing A to the search engine as a keyword, the search
engine will be able to figure out A from Q(A). By us-
ing word embeddings to measure the similarity between
the original query A and the keywordsQ(A) sent to the
search engine, we are able to consider not only exact
matches but semantically similar keywords, which can
be seen as a soft match between words. The definition
of obfuscity given by (2) is based on this intuition.

3.2. Reconstructability
We reconstruct the search results for A using the search
results for the queries {Xi}ni=1 following (1). We define
reconstructability, ρ as a measure of the accuracy of this
reconstruction process and is defined as follows:

ρ =
|D(A) ∩ D′(A)|
|D(A)|

(3)

A document retrieved and ranked at top-ζ by only a
single noisy related term might not be relevant to the

original user query A. A more robust reconstruction
procedure would be to consider a document as relevant
if it has been retrieved by at least l different noisy related
terms. If a user query A can be represented by a set of
documents where, each document is retrieved by at least
l < n different noisy related terms, then we say A to
be l-reconstructable. In fact, the reconstruction process
defined in (1) corresponds to the special case where
l = 1. Increasing the value of l would decrease the
number of relevant documents retrieved for the original
user query A, but it is likely to increase the relevance of
the retrieval process. In the supplementary material, we
prove that the trade-off relationship (18) holds between
ρ and α.

Theorem 1. Given a query A, represented by d-
dimensional embedding, v(A), let us obfuscate it with n
distractor terms and use all (i.e. n = l) distractor terms
to reconstruct the search results for A. The obfuscity α
and the reconstructability ρ is in the inverse (trade-off)
relationship given by (18), where c and Z are query
independent constants.

log ρ =
cl

2d
(c+ 2(1− α) ||v(A)||2)− logZ (4)

3.3. Extension to Multi-word Expressions
The anonymisation method and its theoretical analysis
described in the paper so far can be easily generalised
to handle multi-word queries. Specifically, in the case
of multi-word queries we must embed not only uni-
grams but phrasal n-grams. Directly modelling n-gram
co-occurrences is challenging for higher-order n-grams
because of data sparseness issues (Turney and Pantel,
2010). Compositional approaches (Cordeiro et al., 2016;
Hashimoto and Tsuruoka, 2016; Poliak et al., 2017; Yu
and Dredze, 2015) have been proposed to overcome this
problem, where unigram, subword, or character level
embeddings are iteratively combined to create repre-
sentations for longer phrasal queries. These methods
can compute length-invariant vector representations for
n-grams, which can then be used in the same manner as
described in Section 2.1 for finding noisy-related terms
and in Section 2.3 for finding distractor terms.

3.4. Effect of Ranking
If the number of documents containing q, |D(q)|, is less
than ζ for all q ∈ Q(A), we will be able to retrieve all
documents containing the related and distractor terms.
However, when this condition does not hold for one
or more terms in Q(A), the reconstruction process is
not guaranteed to perfectly reconstruct D(A), depend-
ing on the accuracy of the ranking method used in the
search engine. Note that due to the relatedness between
the terms {Xi}ni=1, even though a particular relevant
document d ∈ D(A) is not retrieved by a term Xi due
to the truncation by ranking, it could still be retrieved
by a different Xj (j ̸= i) term. Moreover, in prac-
tice, the number of relevant documents for a query is
significantly smaller than ζ and modern search engines

6204

have accurate ranking models that return relevant results
among top-ζ, thus mitigating this risk of truncation.
In addition to reconstructing the search results for the
original query from the search results for its related
terms, we must also determine the ranked order of those
search results in real-world settings, where potentially
a large number of relevant results do exist for a given
user query and simply determining only the match set is
inadequate. In the case of static ranking scores such as
PageRank, which are independent of the query, we can
use them to induce a total ordering in the reconstructed
search results set. Although dynamic rank scores might
be available for the set of search results retrieved for
each related term, it is not obvious how to compare rank
scores for search results obtained for different queries.
We do not consider the problem of ranking the recon-
structed search results in this paper.

4. Experiments
4.1. Effect of Noise and Distractor Terms
To evaluate the proposed method we create a dataset
where we select 50 popular queries from Wikipedia
query logs and associate them with the relevant
Wikipedia articles. We use the December 2015 dump of
English Wikipedia for this purpose and build a keyword-
based inverted search index. We use 300 dimensional
pretrained GloVe (Pennington et al., 2014) embeddings
trained from a 42 billion token Web crawled corpus.3

Figure 3 and show the obfuscity and the natural (base e)
log-reconstructability to values for the 50 queries in our
dataset at different levels of noise. Specifically, we add
Gaussian noise with zero-mean and standard deviations
of 0.6 and 1.0 respectively to stimulate medium and high
levels of noise, whereas the no-noise case corresponds
to not perturbing the word embeddings. Trend with dis-
tractor terms are shown in Figure 5. Distractor terms
that have similar average frequency to the original query
and the noisy relevant terms are randomly selected from
Wikipedia articles that belong to the same Wikipedia
category tag as the article for the original query.
We see a negative correlation between obfuscity and
reconstructability in all plots as predicted by (18). Addi-
tion of noise affects the selection of related terms but not
the selection of distractor terms. However, related terms
influence both obfuscity as well as reconstructability.
Because Gaussian noise is added to the word embedding
of the original query, and the nearest neighbours to this
noise added embedding are selected as the related terms,
this process would help us to increase obfuscity. On
the other hand, the search results obtained using noisy
related terms will be less relevant to the original user
query. Therefore, reconstructing the search results for
the original user query using the search results for the
noisy related terms will become more difficult, resulting
in decreasing the reconstructability. The overall effect

3https://nlp.stanford.edu/projects/
glove/

of increasing obfuscity and decreasing reconstructabil-
ity is shown by the increased negative gradient of the
line of best fit in the figures.

4.2. Robustness against Attacks
An important aspect of a query obfuscation method is
its robustness against attacks. Given that the proposed
method sends two groups of terms (relevant and dis-
tractor) to a search engine, a natural line of attack is to
cluster the received terms to filter out distractor terms
and then guess the user query from the relevant terms.
We call such attacks as clustering attacks. As a concrete
example, we simulate a clustering attacker who applies
k-means clustering to the received terms. The similarity
between terms for the purpose of clustering is computed
using the cosine similarity between the corresponding
word embeddings. Any clustering algorithm can be used
for this purpose. We use k-means clustering because
of its simplicity. Next, the attacker must identify a sin-
gle cluster that is likely to contain the relevant terms.
For this purpose, we measure the coherence, µ(C), of a
cluster C given by (5).

µ(C) = 2

|C|(|C| − 1)

∑
u,v∈C,u̸=v

sim(u, v) (5)

Here, u, v ∈ C are two distinct terms in C. Because a
cluster containing relevant terms will be more coherent
than a cluster containing distractor terms, the attacker
selects the cluster with the highest coherence as the
relevant cluster. Finally, we find the term from the
entire vocabulary that is closest to the centroid of the
cluster as the guess Â of the original user query A. We
define hit rate to be the proportion of the queries that we
disclose via the clustering attack. Figure 4 shows the hit
rates for the clustering attacks under different numbers
of distractor terms.
From Figure 4 left we see that the hit rate is high when
we do not use any distractor terms. In this case, the set
of candidate terms consists purely of related terms Xi.
We see that if we cluster all the related terms into one
cluster (k = 1) we can easily pick the original query A
by measuring the similarity to the centroid of the cluster.
The hit rate drops when we add noise to the word embed-
dings, but even with the highest level of noise, we see
that it is possible to discover the original query in 19%
of the time. However, the hit rate drops significantly
for all levels of noise when we add distractor terms as
shown in the middle and right plots in Figure 4.
Hit rate is maximum when we set k = 2, which is an
ideal choice for the number of clusters considering the
fact that we have two groups of terms (related terms
and distractors) among the candidates. Increasing k also
increases the possibility of further splitting the related
terms into multiple clusters thereby decreasing the prob-
ability of discovering the original query from a single
cluster. We see that hit rates under no or medium levels
of noise drops when we increase the number of distrac-
tor terms from 20 to 40, but the effect on high-level

https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/

6205

Figure 3: Relationship between obfuscity and reconstructability under different levels of added noise and no distrac-
tor terms (left: no-noise, middle: medium-level of noise, and right: high-level of noise). Base reconstructability
scores for no noise and no distractor terms are super imposed in black boxes.

Figure 4: Hit rates for the k-means clustering attacks for increasing number of clusters (k) and distractor terms.
(left: no distractors, middle: 20 distractors, and right: 40 distractors). In each figure, we show results for three levels
of added noise.

noise added candidates is less prominent. This result
suggests that we could increase the number of distractor
terms while keeping the level of noise to a minimum.
We show the terms discovered by clustering attacks for
two example queries, Hitler (Table 1) and mass mur-
der (Table 2) using a relatively small (< 10) distractor
terms. We see terms that are related to the original
queries can be accurately identified from the word em-
beddings. Moreover, by adding a high-level of noise to
the embeddings, we can generate distractor terms that
are sufficiently further from the original queries. Conse-
quently, we see that both obfuscity and reconstructabil-
ity are relatively high for these examples. Interestingly,
the clustering attack is unable to discover the original
queries, irrespective of the number of clusters produced.

5. Trade-off between Reconstructability
and the Hit Rate in Clustering Attacks

If the terms sent to the search engine are related to the
original query, we will be able to accurately reconstruct
the search results. However, this increases the risk of
an adversary correctly guessing the query. Hit rate was
defined as the fraction of the user queries correctly pre-
dicted by the clustering attack and is a measure of the
robustness of the proposed method. Therefore, a nat-
ural question is what is the relationship between the
reconstructability and the hit rate.

Query Hitler

noise high-level
related terms nazi, führer, gun, wehrmacht,

guns, nra, pistol, bullets
obfuscity 0.867
reconstructability 0.831

Clustering Attack Revealed Query
k=1 motagomery
k=2 albany, george
k=3 smith, albany
k=4 smith, fresno
k=5 rifle, albany

Table 1: Terms revealed by the clustering attacks for the
query Hitler. Clustering attack with different number of
clusters (k) does not reveal the original query.

To study this relationship, we randomly select 109 user-
queries and add Gaussian noise with zero-mean and
standard deviations 0 (no noise), 0.6, 1.0, 1.4 and 1.8. In
each case, we vary the number of distractor terms 0-120
and apply k-means clustering attacks with k = 1, 2, 3, 4
and 5.4 To conduct a conservative evaluation, we con-
sider the terms in the vocabulary closest to the respective
centroids in all clusters and not only the most coherent

4In total, for a fixed k-value and the number of distractor
terms, we have 545 clustering attacks.

6206

Figure 5: Relationship between obfuscity and reconstructability under different levels of added noise and with 20
distractor terms (left: no-noise, middle: medium-level of noise, and right: high-level of noise). Base reconstructabil-
ity scores for no noise and no distractor terms are super imposed in black boxes.

Figure 6: Hit-rate shown against reconstructability for k-means attacks with 0 (left), 60 (middle) and 120 (right)
distractor terms.

Query mass murder

noise high-level
related terms terrorism, killed, wrath, full-

grown
obfuscity 0.789
reconstructability 0.747

Clustering Attack Revealed Query
k=1 richmond
k=2 fremont, death
k=4 pasadena, words
k=4 pasadena, words
k=5 pasadena, anderson

Table 2: Terms revealed by the clustering attacks for
the query mass murder. We see that the query nor its
two tokens are revealed by the clustering attacks with
different k values.

one as in Section 4.2. If the original query matches any
of those k terms, we consider it to be a hit (e.g. to be
revealing the original query). We randomly sample data
points from even intervals of reconstructability values
and plot in Figure 6.

We see a positive relationship between the recon-
structability and the hit rate in all figures. This indicates
a trade-off between the reconstructability and the hit
rate, which shows that if we try to increase the recon-
structability by selecting more relevant keywords to the

original user-query, then it simultaneously increases the
risk of the search engine discovering the query via a clus-
tering attack. We see that when we increase the number
of distractor terms the hit rate drops for the same value
of reconstructability. This result shows that in order to
overcome the trade off between the reconstructability
and the hit rate we can simply increase the number of
distractor terms, thereby making the query obfuscation
method more robust against clustering attacks. More-
over, the drop due to distractor terms is more prominent
for the k = 1 attacks when we have distractor terms
compared to that when we do not have distractor terms.
This is because both related and distractor terms will be
contained in this single cluster from which it is difficult
to guess the original user-query.

Overall, the hit rate drops in the order k = 5, k = 3
and k = 2 when we increase the number of distractor
terms. This result suggests that if one wants to increase
the hit rate, then an effective strategy is to increase the
number of clusters because we consider it to be a hit if
the user-query is found via any of the clusters. However,
in practice, we will need to further select one term from
all the clusters. Nevertheless, we can consider the hit
rate obtained in this manner to be a more conservative
estimate, whereas in reality it will be less and therefore
be more robust against attacks. We conduct a human
evaluation of the distractor terms in Appendix B, which
interestingly shows that the the distractor terms found

6207

by the proposed method make it hard even for humans
to predict the original query.

6. Related Work
One of the early incidents of query logs leaking private
information in the public domain is the AOL’s release of
query log data in 2006.5 Following this incident various
methods have been proposed to obfuscate user queries
such as token-based hashing (Kumar et al., 2007) and
query-log bundling (Jones et al., 2008). However, in
these approaches obfuscation happens only at the Web
search engine’s side without any intervention by the
users, and the users must trust the good intentions of the
search engine with respect to the user privacy. Moreover,
(Kumar et al., 2007) showed that hashing alone does not
guarantee user privacy.
Accessing Web search engines via an anonymised proxy
server such as the onion routing (Goldschlang et al.,
1999), TOR (Dingledine et al., 2004), Dissent (Corrigan-
Gibbs and Ford, 2010) or RAC (Mokhtar et al., 2013) is
a popular strategy employed by common users. The goal
is to prevent the search engine link the queries issues by
a user to his or her user profile. Anonymised search en-
gines such as duckduckgo, Qwant, Swisscows provide
privacy-oriented alternatives to Web users where the
IP addresses, search profiles, location information etc.
related to the users are kept anonymised. On the other
hand, the query obfuscation method we propose in this
paper can be used in conjunction with other anonymi-
sation techniques in existing private-browsing browser
plug-ins/add-ons and search portals to further increase
the level of privacy.
Obfuscation-based private web search (Balsa et al.,
2012) includes dummy keywords to prevent search en-
gines from guessing users’ query intent. Several browser
add-ons that automatically append unrelated fake terms
have been developed such as TrackMetNot (Howe and
Nissenbaum, 2009), OptimiseGoogle, Google Privacy,
Private Web Search tool (Saint-Jean et al., 2007) and
GooPIR (Domingo-Ferrer et al., 2009). Although this
approach is similar to our proposal to append user
queries with distractor terms, those prior proposals have
relied on pre-compiled ontologies (Petit et al., 2014)
such as the WordNet or queries issued by other users
shared via a peer network. Such approaches have scal-
ability issues because most named entities that appear
in search queries do not appear in the WordNet and it is
unlikely that users would openly share their keywords
to be used by their peers. Recently, outside IR, obfus-
cation has been applied successfully for anonymising
users in social media platforms (Masood et al., 2018;
Papadopoulos et al., 2013).
The goal in Private Information Retrieval (Yekhanin,
2010) is to retrieve data from a database without re-
vealing the query but only some encrypted or obfus-
cated version of it (Ostrovsky and Skeith, 2007; Chor

5https://tinyurl.com/y9qx9ufz

et al., 1997). For example, in hompmophic encryption-
based methods the user (client) submits encrypted key-
words and the search engine (server) performs a blinded
lookup and returns the results again in an encrypted
form, which can then be decrypted by the user. Embel-
lishing queries with decoy terms further protects the pri-
vacy of the users. PIR has been applied in recommender
systems (Gupta et al., 2016) and public data (Wang et
al., 2017). However, unlike our proposed method, PIR
methods assume search engines to accommodate the
client side encryption methods, which is a critical limi-
tation because modern commercial Web search engines
do not allow this.

7. Conclusion
We proposed a method to obfuscate queries sent to a
Web search engine by decomposing the query into a
set of related terms and a set of distractor terms. We
then reconstruct the search results for the original query
using the search results we obtain for the related terms,
discarding the search results for the distractor terms.
We theoretically studied the relationship between the
obfuscity and the reconstructability obtained using the
proposed method under different noise levels. We em-
pirically showed that the proposed query obfuscation
method is robust against a k-means clustering attack.
Moreover, a human evaluation task, implemented as a
query prediction game, showed that it is even difficult
for humans to predict the original query from the obfus-
cation produced by the proposed method. Even though
the original query issued by the user can be obfuscated
using the proposed method, if one or more of its related
terms can be accurately discovered, it could still reveal
the information intent of the user. Therefore, we identify
methods that would guarantee the obfuscation of not
only the original user query, but also any of its related
terms as an important future research direction.

Acknowledgements
This project is supported by JSPS KAKENHI Grant
Numbers JP18H05291 and JP20A402.

8. Bibliographical References
Arora, S., Li, Y., Liang, Y., Ma, T., and Risteski, A.

(2016). A latent variable model approach to pmi-
based word embeddings. Transactions of the Associ-
ation for Computational Linguistics, 4:385–399.

Arora, S., Liang, Y., and Ma, T. (2017). A simple but
tough-to-beat baseline for sentence embeddings. In
Proc. of ICLR.

Balsa, E., Troncoso, C., and Diaz, C. (2012). Ob-pws:
Obfuscation-based private web search. 2012 IEEE
Symposium on Security and Privacy, May.

Bollegala, D., Yoshida, Y., and Kawarabayashi, K.-i.
(2018). Using k-way Co-occurrences for Learning
Word Embeddings. In Proc. of AAAI, pages 5037–
5044.

https://tinyurl.com/y9qx9ufz

6208

Carpineto, C. and Romano, G. (2012). A survey of
automatic query expansion in information retrieval.
Journal of ACL Computing Surveys, 44(1):1 – 50.

Chor, B., Gilboa, N., and Naor, M. (1997). Private
information retrieval by keywords. Technical report,
Department of Computer Science, Technion, Israel
Institute of Technology.

Cordeiro, S., Ramisch, C., Idiart, M., and Villavicencio,
A. (2016). Predicting the compositionality of nomi-
nal compounds: Giving word embeddings a hard time.
In Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1986–1997, Berlin, Germany,
August. Association for Computational Linguistics.

Corrigan-Gibbs, H. and Ford, B. (2010). Dissent: ac-
countable anonymous group messaging. In Proc. of
CCS.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
(2019). BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding. In Proc.
of NAACL-HLT.

Dingledine, R., Mathewson, N., and Syversion, P.
(2004). Tor: The second generation onion router.
In Proc. of the Usenix Security Symposium.

Domingo-Ferrer, J., Solanas, A., and Castella-Roca,
J. (2009). h(k)-private information retrieval from
privacy uncooperative queryable databases. In Proc.
of Online Information Review, volume 33, pages 720–
744.

Gervais, A., Shokri, R., Singla, A., Capkun, S., and
Lenders, V. (2014). Quantifying web-search privacy.
Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security - CCS

’14.
Goldschlang, D., Reed, M., and Syverson, P. (1999).

Onion routing. Communications of the ACM, 42(2).
Gupta, T., Crooks, N., Mulhern, W., Setty, S., Alvisi,

L., and Walfish, M. (2016). Scalable and private me-
dia consumption with popcorn. In 13th {USENIX}
Symposium on Networked Systems Design and Imple-
mentation ({NSDI} 16), pages 91–107.

Hashimoto, K. and Tsuruoka, Y. (2016). Adaptive joint
learning of compositional and non-compositional
phrase embeddings. In Proc. of ACL, pages 205–215.

He, C., Wang, C., Zhong, Y.-X., and Li, R.-f. (2008).
A survey on learning to rank. In Proc. of the 7th Intl.
Conf. on Machine Learning and Cybernetics, pages
1734 – 1739.

Howe, D. C. and Nissenbaum, H. (2009). Trackmenot:
Resisting surveillance in web search. Lessons from
the Identity Train: Anonymity, Privacy and Identity
in a Networked Society.

Jones, R., Kumar, R., Pang, B., and Tomkins, A. (2008).
Vanity fair: Privacy in querylog bundles. In Proc. of
CIKM, pages 853–862.

Kumar, R., Novak, J., Pang, B., and Tomkins, A. (2007).
On anonymizing query logs via token-based hashing.
In Proceedings of the 16th International Conference

on World Wide Web, WWW ’07, pages 629–638, New
York, NY, USA. ACM.

Masood, R., Vatsalan, D., Ikram, M., and Kaafar,
M. A. (2018). Incognito: A method for obfuscat-
ing web data. In Proceedings of the 2018 World Wide
Web Conference, pages 267–276. International World
Wide Web Conferences Steering Committee.

Mikolov, T., Chen, K., and Dean, J. (2013). Efficient
estimation of word representation in vector space.
In Proc. of International Conference on Learning
Representations.

Miller, G. A. (1995). Wordnet: A lexical database for
english. Communications of the ACM, 38(11):39 –
41, November.

Mokhtar, S. B., Berthou, G., Diarra, A., Quéma, V.,
and Shoker, A. (2013). Rac: A freerider-resilient
scalable, anonymous communication protocol. In
Proc. of ICDCS.

Ostrovsky, R. and Skeith, W. I. (2007). A survey of
single-database pir: techniques and applications. In
Proc. of Public Key Cryptography (PKC), volume
4450, pages 393–411.

Papadopoulos, P., Papadogiannakis, A., Polychronakis,
M., Zarras, A., Holz, T., and Markatos, E. P. (2013).
K-subscription: Privacy-preserving microblogging
browsing through obfuscation. In Proceedings of the
29th Annual Computer Security Applications Confer-
ence, pages 49–58. ACM.

Pasca, M. (2007). Organizing and searching the world
wide web of facts-step two: Harnessing the wisdom
of the crowds. In WWW 2007, pages 101–110.

Pasca, M. (2014). Queries as a source of lexicalized
commonsense knowledge. In Proc. of EMNLP, pages
1081–1091.

Pennington, J., Socher, R., and Manning, C. D. (2014).
Glove: global vectors for word representation. In
Proc. of EMNLP, pages 1532–1543.

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M.,
Clark, C., Lee, K., and Zettlemoyer, L. (2018).
Deep contextualized word representations. In Proc.
of NAACL-HLT.

Petit, A., Ben Mokhtar, S., Brunie, L., and Kosch, H.
(2014). Towards efficient and accurate privacy pre-
serving web search. Proceedings of the 9th Workshop
on Middleware for Next Generation Internet Comput-
ing - MW4NG ’14.

Poliak, A., Rastogi, P., Martin, M. P., and Durme, B. V.
(2017). Efficient, compositional, order-sensitive n-
gram embeddings. In Proc. of EACL.

Richardson, M. (2008). Learning about the world
through long term query logs. ACM Transactions
on the Web, 2(4).

Sadikov, E., Madhavan, J., Wang, L., and Halevy, A.
(2010). Clustering query refinements by user intent.
In WWW 2010, pages 841–850.

Saint-Jean, F., Johnson, A., Boneh, D., and Feigenbaum,
J. (2007). Private web search. In Proc. of ACM Work-
shop on Privacy in Electronic Society, pages 84–90.

6209

Santos, R. L. T., Macdonald, C., and Ounis, I. (2010).
Exploiting query reformulations for web search result
diversification. In WWW 2010, pages 881–890.

Turney, P. D. and Pantel, P. (2010). From frequency to
meaning: Vector space models of semantics. Journal
of Aritificial Intelligence Research, 37:141 – 188.

Wang, F., Yun, C., Goldwasser, S., Vaikuntanathan, V.,
and Zaharia, M. (2017). Splinter: Practical private
queries on public data. In 14th {USENIX} Sympo-
sium on Networked Systems Design and Implementa-
tion ({NSDI} 17), pages 299–313.

Yekhanin, S. (2010). Private information retrieval.
Commun. ACM, 53(4):68–73, April.

Yu, M. and Dredze, M. (2015). Learning composition
models for phrase embeddings. Transactions of the
Association for Computational Linguistics, 3:227–
242.

Appendix
A. Proof of Theorem 1

In this section, we derive the relationship between ob-
fuscity and reconstructability. Because obfuscity can be
increased arbitrarily by increasing the distractor terms,
in this analysis, we ignore distractor terms. This can
be seen as a lower-bound for the obfuscity that can be
obtained, without using any distractor terms. We first
discuss the case where we have only one related term
(i.e. n = l = 1) and then consider l > 1 reconstructabil-
ity case.

A.1. n = l = 1 case
Let us consider the case where n = 1. Here, for a given
query A, we have only a single related term X = X1.
In this case, l = 1, and we consider all documents
retrieved using X as relevant for A. We first note that
reconstructability, ρ, can be written as,

ρ =
|D(A) ∩ D′(A)|
|D(A)|

(6)

from the definition of reconstructability.
Because we have a single noisy related term X , we have
D′(A) = D(X). By substituting this in (6), we get

ρ =
|D(A) ∩ D(X)|
|D(A)|

. (7)

If we consider the co-occurrence context of two terms to
be the document in which they co-occur, and divide the
numerator and denominator in (7) by the total number
of documents indexed by the search engine, then (7) can
be written as a conditional probability as in (8).

ρ =
p(A,X)

p(A)
= p(X|A) (8)

Theorem 2.2 in (Arora et al., 2016) provides a useful
connection between the probability of a word (or the

joint probability of two words) and their word represen-
tations, which we summarise below.

log p(A,X) =
||v(A) + v(X)||22

2d
− 2 logZ ± ϵ (9)

log p(A) =
||v(A)||22

2d
− logZ ± ϵ (10)

Here, Z is the partition function and ϵ is the approxima-
tion error. (10) shows the relationship between the norm
of the embedding of a word and the frequency of that
word in a corpus, whereas (9) shows the relationship
between the norm of the addition of the embeddings
of two words and the co-occurrence frequency of those
two words in a corpus. Both these relations are proved
by Arora et al. (2016) and we would like to direct the
interested readers to the original paper for the detailed
proofs.
Next, by taking the logarithm of both sides in (8) we
obtain,

log ρ = log p(A,X)− log p(A)

=
||v(X)||22 + 2v(X)⊤v(A)

2d
− logZ (11)

Obfuscity for a single query term X can be computed
using the cosine similarity as follows:

α = 1− v(A)⊤v(X)

||v(A)||2 ||v(X)||2
(12)

By substituting (12) in (11) we get,

log ρ =
||v(X)||22

2d
+

(1− α) ||v(A)||2 ||v(X)||2
d

− logZ.

(13)

Because A is a given query, v(A) is a constant. More-
over, if we assume that different related terms Xi have
similar norms, (from (10) it follows that such related
terms must have similar frequencies of occurrence in the
corpus), then from (13) we see that there exists a linear
inverse relationship between log ρ and α. Because loga-
rithm function is monotonically increasing, (13) implies
an inverse relationship between ρ and α.

A.2. n = l > 1 case
Let us now extend the relationship given by (13) to the
case where we consider a document to be relevant if it
can be retrieved from all of the n related terms. In other
words, we have l = n reconstructability in this case.
Because each search result is retrieved by all l terms,
we have

D′(A) = ∩li=1D(Xi). (14)

Reconstructability can be computed in this case as fol-

6210

Figure 7: Winning rate vs. obfuscity for the first and second stages of the query prediction game

lows:

ρ =
p(A,X1, X2, . . . , Xk)

p(A)

= p(X1, X2, . . . , Xl|A)

≈
l∏

i=1

p(Xi|A) (15)

In (15) we have assumed that the related terms are mu-
tually independent given the query A.
Let us take the logarithm on both sides of (15), and use
(9) and (10) in the same manner as we did in Section A.1
to derive the relationship given by (16).

log ρ =
1

2d

l∑
i=1

||v(Xi)||22 +

1

d

l∑
i=1

v(A)⊤v(Xi)− logZ (16)

In the n = l case, obfuscity can be computed as follows:

α = 1− 1

l

l∑
i=1

v(A)⊤v(Xi)

||v(A)||2 ||v(Xi)||2
(17)

Let us further assume that all related terms
X1, X2, . . . , Xl occur approximately the same number
of times in the corpus. From (10) it then follows that
||v(Xi)||2 = c for i = 1, 2, . . . , l for some c ∈ R.
By plugging (17) in (16), and using the approximation
||v(Xi)||2 = c we arrive at the relationship between ρ,
α, and l given by (18).

log ρ =
cl

2d
(c+ 2(1− α) ||v(A)||2)− logZ (18)

A.3. General Case
In the general case of l-reconstructability, we will have
a subset of l ≤ n related terms retrieving each doc-
ument. Exact analysis of this case is hard, and the

reconstructability given by (18) must be considered as
a lower-bound for this general case because we will
still be able to reconstruct the search results using

(
n
l

)
subsets of l related terms selected from a set of n related
terms. Obfuscity can be arbitrarily increased without
affecting the reconstructability by simply increasing the
number of distractor terms. However, doing so would
increase the burden on the search engine and is not
recommended. In our experiments, we find that 20-
40 distractor terms to be adequate to provide a good
balance between obfuscity and efficiency.
The theoretical analysis presented in Section A depends
on the relationships given by (9) and (10) for joint and
marginal probabilities of unigram co-occurrences, origi-
nally proved by Arora et al. (2016). However, these re-
lationships were later extended to cover co-occurrences
of higher-order n-grams by Bollegala et al. (2018), who
showed that the squared sum of embeddings of con-
stituent unigrams in an n-gram phrase is proportional to
the logarithm of the joint probability of those unigrams.
On the other hand, Arora et al. (2017) showed that
the inverse frequency-weighted average of unigram em-
beddings to be a competitive alternative to word-order
sensitive supervised recurrent models for the purpose of
creating phrase embeddings. Therefore, the relationship
given in (18) still holds both theoretically and empir-
ically in the case of multi-word queries, enabling us
to extend the proposed method to multi-word phrasal
queries.

B. Human Evaluation
To empirically evaluate the difficulty, not only for a
search engine as done in previous sections, but even
also for human attackers to predict the original query
given the related and distractor terms, we devise a query
prediction game, where a group of human attackers are
required to predict the original query from the related
and distractor terms suggested by the proposed method.
A group of 63 graduate students (all native English

6211

speakers) participated in this experiment. The query
prediction game is conducted in two stages. In the first
stage, we randomly shuffle the related and distractor
term sets extracted by the proposed method for a hidden
query. Human attackers are unaware as to which of the
terms are related to the original user-query and which
are distractors. A human attacker has a single guess
to predict the user-query and wins only if the original
query is correctly predicted. If the human attacker fails
at this first step, then we remove all distractor terms
and display only the related terms to the human attacker.
This is expected to significantly simplify the prediction
task because now the candidate set is smaller, does not
contain distractor terms and the human attacker has
already had a shot at the prediction. The human attacker
then has a second chance to predict the original query
from the related set of terms. If the human attacker
correctly predicts the original query in the second stage,
we consider it to be a winning case. Otherwise, the
current round of the game is terminated and the next set
of terms are shown to the human attacker. Winning rate
is defined as the number of games won by the human
attackers, where the original user query was correctly
predicted.
Figure 7 shows the winning rates for the first and second
stages of the query prediction game against the obfuscity
of the queries. All queries selected for the prediction
game have reconstructability scores greater than 0.3,
which indicates that the search results for the original
query can be accurately reconstructed from the related
terms shown to the human attackers. From Figure 7, we
see that the winning rate for the first stage is lower than
that for the second stage, indicating that it is easier for
humans to guess the original query when the distractor
terms are removed. Moreover, we see a gradual neg-
ative correlation between hit rate and obfuscity. This
shows that more obfuscatory the terms are, it becomes
difficult even for the human attackers to predict the orig-
inal query, which is a desirable property for a query
obfuscation method.

	Introduction
	Query Obfuscation
	Finding Noisy-Related Terms
	Obfuscation via Distractor Terms
	Reconstructing Search Results

	Obfuscity vs. Reconstructability
	Obfuscity
	Reconstructability
	Extension to Multi-word Expressions
	Effect of Ranking

	Experiments
	Effect of Noise and Distractor Terms
	Robustness against Attacks

	Trade-off between Reconstructability and the Hit Rate in Clustering Attacks
	Related Work
	Conclusion
	Bibliographical References
	Proof of Theorem 1
	n = l = 1 case
	n = l > 1 case
	General Case

	Human Evaluation

