
Proceedings of the 13th Conference on Language Resources and Evaluation (LREC 2022), pages 6093–6103
Marseille, 20-25 June 2022

© European Language Resources Association (ELRA), licensed under CC-BY-NC-4.0

6093

GrASP: A Library for Extracting and Exploring
Human-Interpretable Textual Patterns

Piyawat Lertvittayakumjorn1, Leshem Choshen2, Eyal Shnarch2, Francesca Toni1
1Department of Computing, Imperial College London, United Kingdom

2IBM Research
pl1515@imperial.ac.uk, {leshem.choshen, eyals}@il.ibm.com, ft@imperial.ac.uk

Abstract
Data exploration is an important step of every data science and machine learning project, including those involving textual data.
We provide a novel language tool, in the form of a publicly available Python library for extracting patterns from textual data. The
library integrates a first public implementation of the existing GrASP algorithm. It allows users to extract patterns using a
number of general-purpose built-in linguistic attributes (such as hypernyms, part-of-speech tags, and syntactic dependency tags),
as envisaged for the original algorithm, as well as domain-specific custom attributes which can be incorporated into the library
by implementing two functions. The library is equipped with a web-based interface empowering human users to conveniently
explore data via the extracted patterns, using complementary pattern-centric and example-centric views: the former includes a
reading in natural language and statistics of each extracted pattern; the latter shows applications of each extracted pattern to
training examples. We demonstrate the usefulness of the library in classification (spam detection and argument mining), model
analysis (machine translation), and artifact discovery in datasets (SNLI and 20Newsgroups).

Keywords: pattern extraction, textual data exploration, resource tool, grasp, python library, model debugging, model
analysis, data analysis

1. Introduction

Pattern-based analysis is a promising approach for ex-
ploring textual data in many tasks, such as authorship
classification (Houvardas and Stamatatos, 2006), rela-
tion extraction (Hearst, 1992; Peng et al., 2014) and
argument mining (Madnani et al., 2012). Patterns un-
cover prominent characteristics of the data which lead to
interesting insights, helping humans proceed to the next
steps (e.g., data pre-processing, setting model hyper-
parameters). In this paper, we implement and publicly
release a Python library named GrASP after a super-
vised algorithm which learns expressive patterns (in the
form of sequences of conjunctions of attributes) char-
acterizing linguistic phenomena (Shnarch et al., 2017).
Apart from the usefulness of the web resource, this is the
first public implementation of GrASP. To illustrate the
richness of GrASP patterns, examples 1–3 in Table 1 are
all SMS spam messages from the dataset by Almeida et
al. (2011). While there is little word overlap between
them, their commonality is apparent, even if hard to
name. The GrASP algorithm can reveal an underlying
structure which generalizes these three realizations of
spams within a single pattern: a positive-sentiment word
(represented by SENTIMENT:pos), closely followed
by a determiner (represented by POS:det, where POS
stands for ‘part of speech’), and then by a proper noun
(represented by POS:propn).

The input for the algorithm amounts to two sets of texts:
in one (the positive set) the target phenomenon appears
in all examples (e.g., all are spam messages), and in
the other (the negative set) it does not. GrASP looks
for commonalities prominent within the texts of one
set but not shared across the sets. To be able to rec-

ognize common aspects of texts, beyond their surface
form realizations, all input tokens are augmented with
a variety of linguistic attributes such as part-of-speech
tags, named entity information, or pertinence to a lexi-
con (e.g., of sentiment words). Attributes are selected
to maximize a score (by default their information gain
about the label). Then, they are combined by a greedy
algorithm to generate patterns which are most indicative
either to the positive or the negative set.
Since the patterns are a combination of readable at-
tributes, they are human interpretable. So, they can be
used to provide insights about the data and contribute
to explainability. For instance, example 1 in Table 1
is identified as a spam message because it contains the
phrase awarded a SiPix. Patterns can also be used for
classification (e.g., if the pattern mentioned above is
matched in a message, we can classify it as spam).
The contribution of this paper is threefold:

• We release GrASP, a Python library for extracting
interpretable patterns from text. Although the algo-
rithm of GrASP was initially proposed in 2017, we
are the first to make its implementation publicly
available.1 The library provides additional exten-
sions, allowing users to customize the algorithm to
their specific needs (see §2).

• We provide a novel web-based GUI which displays
GrASP patterns and their matches in a dataset. This
exploration tool allows users to conveniently ex-
plore the patterns and the data with both pattern-
centric views and example-centric views and gain

1The library is available at https://github.com/
plkumjorn/GrASP

https://github.com/plkumjorn/GrASP
https://github.com/plkumjorn/GrASP


6094

Use case No. Sentences Matched Pattern

SMS
Spam

1
2
3

You are awarded a SiPix Digital Camera...
...to WIN a FREE Bluetooth Headset...
...for Free ! Call The Mobile Update...

[[SENTIMENT:pos], [POS:det], [POS:propn]]
(A positive-sentiment word, closely followed by

a determiner, and then by a proper noun)

Topic-
Dependent
Argument

Mining

4
5
6

Evidence suggests that TOPIC is...
Poll in 2002 found that 58% of...
...data indicate that TOPIC reduces...

[[ARGUMENTATIVE], [POS:verb],
[LEMMA:that, POS:adp]]

(An argumentative word, closely followed by a verb,
and then by the word “that” which is also a preposition)

Machine
Translation

model analysis

7
8
9

choose Windows > Channels
select Control > Test Movie
select Modify > Transform > Skew

[[HYPERNYM:choose], [DEP:dobj], [LEMMA:>]]
(A type of choose (verb), closely followed by a word

with the dependency type dobj, and then by >)

Table 1: Examples of GrASP patterns capturing the common structure in a variety of surface forms – the sentences
matched. Matched words are in bold. A description of each pattern is provided below it, in parentheses.

1 from grasp import GrASP
2 # Step 1: Create the GrASP model
3 grasp_model = GrASP(num_patterns = 200,

gaps_allowed = 2, alphabet_size = 200,
include_standard = [’TEXT’, ’POS’, ’NER’,
’SENTIMENT’])

4 # Step 2: Fit it to the training data
5 grasp_model.fit_transform(pos_exs, neg_exs)
6 # Step 3: Export the results
7 grasp_model.to_csv(’results.csv’)
8 grasp_model.to_json(’results.json’)

Listing 1: Basic usage of GrASP

insights (see §3).

• We exemplify the usefulness of the provided library
in three use cases: (i) classification (see §4), (ii)
model analysis (see §5), and (iii) dataset artifacts
unveiling (see §6). These use cases cover several
applications including spam classification, argu-
ment mining, topic classification, natural language
inference, and machine translation.

2. GrASP Library for Pattern Extraction
Listing 1 shows the basic usage of GrASP for extract-
ing patterns from training data, i.e., two lists of texts
containing positive examples (pos exs) and negative
examples (neg exs). In the first step, the user specifies
hyperparameters such as the desired number of patterns
and the set of linguistic attributes for augmenting input
tokens. The following general-purpose attributes are
built-in: the token text itself (in lower case), its lemma,
wordnet hypernyms, part-of-speech tags, named-entity,
syntactic dependency, and sentiment tags.2

After that, the user trains the GrASP model and exports
the results to a csv file or a json file. Both file types
summarize all the extracted patterns and their relevant

2We use spacy for tokenization and tagging, nltk and lesk
(Lesk, 1986) for word sense disambiguation and finding hy-
pernyms, and a sentiment lexicon by Hu and Liu (2004). For
hypernyms, we consider only three levels above the token of
interest in order to avoid terms that are too abstract to compre-
hend (e.g., psychological feature, group action, entity).

statistics, while the json file also contains the configura-
tion, the alphabet, and the training examples annotated
with the patterns matched.
Note that in our version of GrASP, we add several
parameters which are not found in the original algo-
rithm. While the original GrASP uses information gain
as the criterion to rank and select patterns, Shnarch et
al. (2020) preferred Fβ (where β ≤ 1) as a criterion,
emphasizing precision over recall. Hence, we allow
the users to implement their own criteria, tailored to
their use cases. Other new parameters for customizing
GrASP include the number of gaps allowed between
the matched tokens (which overrides the window size
parameter) and the minimum coverage for a pattern to
be selected.

2.1. Extending GrASP Capabilities
Besides the basic usage, we provide the following new
useful features.

Translating patterns into natural language ex-
planations. It could be difficult for lay users to
read and understand linguistic attributes in pat-
terns. Therefore, using templates, we provide
a function pattern2text for translating a pat-
tern (e.g., [[HYPERNYM:communication.n.02],
[POS:NUM]] with a window size of 4) into an English
explanation (e.g., “A type of communication (n), closely
followed by a number”). This feature removes the bar-
rier to an audience without linguistic knowledge to com-
prehend the resulting patterns. We believe that it is very
important in providing explainability for all, not just for
NLP or machine learning experts.

Using custom attributes. In addition to the built-in
attributes, users may require custom attributes, to better
fit the patterns to their domain. For instance, given
biomedical texts, attributes indicating whether a token
refers to a kind of biomedical substance (e.g., protein,
drug, enzyme) could be useful for relation extraction
from texts. Our library allows users to create custom
attributes by using the CustomAttribute class and
implementing two functions. One extracts the attributes
from an input text, and the other explains the attributes

https://spacy.io/
https://www.nltk.org/


6095

for the translation feature. We provide an example of
custom attributes in the README file of our library’s
GitHub repository.

Removing redundant patterns. We provide a func-
tion to remove specific patterns subsumed by more gen-
eral ones. For instance, all [[TEXT:.], [POS:NUM]]
matches are also matches of [[POS:NUM]]. Hence, this
function removes the former (specific) pattern. A flag
further allows to condition removal on the fact that the
score of the removed pattern must be lower than the
score of the remaining one.

Vectorizing texts using patterns. Given an input text
t and n GrASP patterns, we provide a function to create
a ternary vector of length n indicating which of the
patterns are matched in t and whether they are positive
or negative. This vector can be used as features of t for
downstream tasks.

3. The Web-Based Exploration Tool
We provide a web-based exploration tool implemented
using Flask.3 Taking as input the json file exported
by the GrASP library, this tool provides four types of
reports: two are pattern-centric and the other two are
example-centric. Figures 1–4 show (parts of) these re-
ports for the spam classification example. Additionally,
all reports for all the use cases mentioned in this paper
are available online for further examination.4

I. Pattern-centric level 1. (Figure 1) This report lists
all the patterns together with the configuration of GrASP
used for extracting them and the statistics about the
training data. For each pattern (row), its statistics on
the training data are reported, including the number
of positive and negative examples matched, coverage,
the metric score, precision, recall, and F1. Users can
click a header to sort the table based on the column
values. Moreover, users can click the header of the
pattern column to translate the patterns into their natural
language meanings (as shown in Figure 1). Once users
click a pattern in the table, they will be redirected to that
pattern’s level 2 report.

II. Pattern-centric level 2. (Figure 2) This report can
be generated for each pattern individually. In addition to
the pattern’s statistics, it shows the positive and negative
examples matched by this pattern, with the correspond-
ing tokens highlighted. Users can click the link icon
at the end of each example to go to its example-centric
level 2 report (see below).

III. Example-centric level 1. (Figure 3) This report
lists all positive and negative training examples (with
pagination). For each example, words matched by only
positive pattern(s) and only negative pattern(s) are high-
lighted in green and red, respectively, while words
matched by both types of patterns are in purple. By
clicking a highlighted word, users can see the list of

3flask.palletsprojects.com/en/1.1.x/
4https://plkumjorn.github.io/GrASP

patterns matching this word. Clicking the link icon of
an example directs to its example-centric level 2 report.

IV. Example-centric level 2. (Figure 4) This report
can be generated for each training example, showing all
the positive and negative patterns matching it. Clicking
a pattern links to its pattern-centric level 2 report.
Overall, these reports provide a convenient way for
quickly exploring the data via the lens of the common
patterns found in it. Also, we can use this exploration
tool to display results from other pattern extraction al-
gorithms, in addition to GrASP, provided that their re-
sults are organized into the specific json format required
by this tool (as described in the README file of our
GrASP GitHub repository). Next, we will show how
insights can be gained from this exploration tool with
outputs from the GrASP algorithm.

4. Use Case: Classification
Apart from the spam classification example discussed
throughout the paper, we present another classifica-
tion use case of our tools targeting the corpus of topic-
dependent argument mining (Shnarch et al., 2018). Gen-
erally, argument mining aims to identify and extract
the structure of inference and reasoning expressed as
arguments in texts (Lawrence and Reed, 2020). The
dataset used here in particular focuses on identifying, in
text, evidence for claims. It includes 4,065 training and
1,720 test pairs of topics and sentences, each labeled
with whether the sentence is a piece of valid evidence
for the topic.
We augment each token with the built-in attributes as
well as a custom binary attribute indicating whether a
token was found in a lexicon of argumentative words.
We use information gain to select patterns, set the num-
ber of patterns to 100, and allow up to 2 gaps in each
pattern. Next, we train and examine the patterns with
the pattern-centric reports.
We find that the most indicative pattern is the word
that in its preposition meaning (as opposed to other
meanings of that word, e.g., a determiner, as in this
sentence). This is a very nice outcome since GrASP
automatically revealed what experts have found – “that”
is an indicator of argumentative content and can be used
as an effective source of weak supervision (Levy et al.,
2017). Other informative patterns are about studies:
presenting them (e.g., [[POS:NUM],[LEMMA:study]]
which matches phrases like one study, Two major
studies, A 1999 meta study, and a 25 year longitudinal
study), declaring their findings (e.g., examples 4–6 in
Table 1), and reporting their experimental results (e.g.,
[[POS:ADP],[POS:VERB],[HYPERNYM:risk]]
which covers expressions such as in reducing the risk,
more than tripled the risk, and as controlling the risks).
These patterns, too, have rediscovered what is known in
the domain – texts describing studies are a good source
for evidence (Rinott et al., 2015; Ein-Dor et al., 2020).
The exploration tool enables having a human in the loop
by making it easy to compare patterns (e.g., by their

flask.palletsprojects.com/en/1.1.x/
https://plkumjorn.github.io/GrASP


6096

Figure 1: A part of the pattern-centric level 1 report listing the patterns and their metrics with respect to the training
data, the configuration of GrASP, and the training set statistics.

Figure 2: A part of the pattern-centric level 2 report listing positive and negative matches by a specific pattern.

recall-precision trade off), examine their realizations in
the positive and negative sets, check pattern combina-
tion (e.g., click on a purple word in the example-centric
report to see all patterns that matched it), and evaluate
the contribution of adding custom attributes (such as the
lexicon of argumentative words). After that, users can
improve on their own the list of patterns by filtering, cor-
recting, and merging patterns. The selected patterns can
then contribute to the downstream pipeline (e.g., by us-

ing the most precise/high-coverage patterns to improve
precision/recall). Alternatively, the patterns can be used
to obtain weak supervision, combined with labeled data,
to improve performance as in (Shnarch et al., 2018). Fi-
nally, similar to (Sen et al., 2020), the human-readable
patterns matching an example can provide explainability
for the model decision for it.



6097

Figure 3: The example-centric level 1 report listing all positive and negative examples in the training data. Words
matched by at least one pattern are highlighted.

Figure 4: A part of the example-centric level 2 report showing positive and negative patterns matching an example.

5. Use Case: Model Analysis

In this use case, we show how GrASP library can assist
the process of analyzing an NLP model, and specifi-
cally, finding its strength and weaknesses. While for
some tasks, such as Parsing (Nilsson and Nivre, 2008)
or Grammatical Error Correction (Choshen et al., 2020),
exploring model’s decisions naturally supports its anal-

ysis (e.g., which types of grammatical errors the model
does not cover well), in many tasks this is not the case.
We take Machine Translation (MT) as an example where
characterizing model performance poses a challenge
(Stanovsky et al., 2019; Renduchintala and Williams,
2021). We demonstrate how GrASP library can be used
to identify both challenging and easy inputs for a given



6098

MT model. An example of the practical usage of such
analysis is found in translation systems which combine
automatic MT and human translation. If we can iden-
tify that some types of inputs are translated well by the
model, then we can refer them to the MT and manually
translate only the rest. This will lower the system costs
and aid in focusing human effort in the difficult transla-
tion cases and revision (Hutchins, 2001; Taravella and
Villeneuve, 2013).
We use the WMT19 English-German Quality Estima-
tion data (Fonseca et al., 2019) which consists of the
automatic translation of 13K sentences by a specific
model. Each translated sentence was judged by humans
and was assigned with a translation quality score. We
sort all sentences by this quality score and take the top
25% (inputs on which the model performed best) as
the positive set for GrASP, and the bottom 25% as the
negative set. We train GrASP with the default hyperpa-
rameters and output 100 patterns.5

First, we focus on indicative patterns in the positive set,
i.e., the easiest inputs for the model. There are 60 highly
precise patterns (precision ≥ 80%), each with recall
ranging from 5% up to 35%. Among those, we find
various patterns which indicate that instruction texts are
easy to translate. These patterns include the sign >, the
lemmas click and select, the hypernym of choose (which
matches both choose and select). For an example of
such pattern and its matches, see lines 7–9 in Table 1.
Furthermore, by examining these instruction patterns,
we did notice that the dataset is composed of two spe-
cific domains (Reviews and IT), unlike several other
machine translation datasets that consist of general do-
main data, such as news and Wikipedia (Barrault et al.,
2020; Specia et al., 2020). This accidentally exemplifies
the power of the exploration tool to teach us about the
data we use.
Revealing which inputs are easy for the translation
model is important, but so is the opposite. Various stud-
ies have analyzed what challenges translation models to
aid their improvement (Macketanz et al., 2018; Choshen
and Abend, 2019). Hence, we observe the negative-set
patterns, i.e., the most challenging inputs. GrASP finds
much less such patterns, suggesting that the challenging
inputs are more diverse and harder to classify. Still, 16
patterns with precision larger than 60% are found.
Of specific interest to us are patterns that match inputs
that are known in the literature to be challenging. We
report two such examples. Gralinski et al. (2019) high-
light the lemma be as an especially hard case. Indeed,
GrASP dedicates a special pattern for this lemma. An-
other known difficult input is that of structural ambiguity
(Avramidis et al., 2019). For example, new blog entry,
where the translation model needs to decide which is
new, the blog entry or the blog itself. GrASP finds
the pattern [[POS:ADJ], [POS:NOUN], [POS:NOUN]]

5The full list of GrASP hyperparameters for each use case
in this paper can be found in the pattern-centric level 1 report
of the use case on our live demo website.

which captures these cases.
Overall, this use case shows that the library is beneficial
for analyzing models by extracting known hurdles and
identifying easy cases. Other uses for analysis may
include different tasks or comparing models to each
other.

6. Use Case: Dataset Artifacts
Artifacts in text classification datasets are tokens or
phrases which are irrelevant, but frequently appear in
examples of some of the classes. Hence, the trained
models could rely on spurious correlations caused by
these artifacts to make predictions. This is usually un-
desirable since it prevents the models from generalizing
well out of the training distribution. In this use case, we
leverage GrASP to help humans detect such artifacts in
training datasets.

SNLI. Natural language inference is a task aiming to
predict whether a hypothesis statement is true (entail-
ment), false (contradiction), or undetermined (neither)
given a premise statement. Using the pointwise mutual
information (PMI), Gururangan et al. (2018) discovered
annotation artifacts in many hypotheses of the Stanford
Natural Language Inference (SNLI) dataset (Bowman
et al., 2015). These artifacts make the fasttext classi-
fier (Joulin et al., 2017) classify examples correctly for
67.0% without even looking at the premises (while the
majority class baseline is only 34.3%).
We applied GrASP (with the number of patterns and
the alphabet size of 200, using information gain as the
selection criteria) to a subset of hypotheses in SNLI,
i.e., 10K sentences from each of the entailment (posi-
tive) and contradiction (negative) classes. Then we kept
only patterns with precision ≥ 75%. Among the final
set of patterns, we found artifacts reported by Guru-
rangan et al. (2018) yet with additional contexts and
beyond. While PMI found that outside and outdoors
are important words for the entailment class, GrASP
discovered the pattern [[POS:NOUN], [LEMMA:be],
[HYPERNYM:outside]] with the precision of 97%
for the entailment class. This pattern covers both out-
side and outdoors (thanks to the HYPERNYM attribute)
and further reveals their semantic role in the sentences.
Another similar pattern, this time for the contradiction
class, is [[HYPERNYM:person], [HYPERNYM:be],
[POS:VERB], [LEMMA:in,POS:ADP]] (matching,
e.g., man/women/girl/hiker/Firefighters is/are lying/-
bored/swimming/reading in as shown in the pattern-
centric level 2 report). It shows that many con-
tradicting hypotheses were crafted by indicating
the actions (verbs) a human took and their loca-
tions (following the word in). Besides, the pattern
[[HYPERNYM:nutriment,POS:NOUN]], grouping
lunch, pizza, dessert, picnic, etc. into one cat-
egory, helps us quickly grasp the artifact theme.
Interestingly, we also found from the pattern
[[SENTIMENT:neg,POS:VERB]] that verbs with
negative sentiments such as attack, stole, lost and fell



6099

fairly correlate with the contradiction class (with 75.7%
precision). All in all, a strength of GrASP is the ability
to group words based on their semantics or functions.
Together with the ordered representation of patterns, it
provides better understanding of the artifacts.

20Newsgroups (Lang, 1995) is another dataset con-
taining artifacts. Here, we aim to not only identify the
artifacts but also partially remove them to make the
classifier generalize better. Particularly, we focus on dis-
tinguishing the Christianity class from the two related
classes, Atheism and Religion (miscellaneous). The
goal is to improve generalization of a model trained on
the 20Newsgroups dataset and tested on the Religion
dataset (Ribeiro et al., 2016).
To detect the artifacts, we applied GrASP using Chris-
tianity as the positive class and the other two classes
as the negative class. Generally, if the positive and the
negative examples are not balanced, GrASP’s precision
might be biased towards the majority class. Hence,
we downsampled the larger class (non-Christianity) to
reach the same size as the smaller class. We then kept
only patterns with at least 75% precision, resulting in
133 patterns.
After that, as the patterns are human-interpretable, we
manually checked them using the web exploration tool
and flagged patterns that are semantically irrelevant to
the classification task (i.e., likely to be artifacts). The
pattern-centric view level 1 shows all the patterns to be
annotated. When being unsure what a pattern covers,
we used the pattern-centric view level 2 to see matched
examples before making a decision. For example, one
can see that the pattern [[HYPERNYM:sacrament]]
covers liturgy, baptism, confession, and Eucharist,
and accepting this pattern helps us annotate words or
phrases in bulk. Overall, 40 out of 133 patterns were
marked irrelevant. These include patterns for irrele-
vant names and surnames (e.g., [[LEMMA:keith]],
[[LEMMA:mozumder]]), for generic words (e.g.,
[[LEMMA:cheers]], [[LEMMA:recent]]), and for
punctuation (e.g., [[LEMMA:>], [LEMMA:#]]).
With the artifact patterns identified, there could be sev-
eral ways to address this problem and enhance model
generalizability. Since the main objective of this paper
is to demonstrate the applications of GrASP, we opted
for simplicity and removed all the training examples
that matched at least one artifact pattern. Then we used
this filtered dataset to train a 1D Convolutional Neu-
ral Network (Kim, 2014) with 300-dimensional GloVe
embeddings (Pennington et al., 2014). We compared
this model with another model trained on a sample of
the original dataset matching the filtered dataset in the
number of positive and negative examples (to disregard
the effect of the dataset size). For each model, we ran
the train and test process five times and averaged the
results, reported in Table 2.
We can see that, both models perform almost equally
well on the in-domain test set (from 20Newsgroups).
However, the model trained on the filtered dataset per-

Setting Accuracy Macro F1
Test dataset: 20Newsgroups

Sampled 0.810 ± 0.03 0.818 ± 0.03
Filtered 0.800 ± 0.01 0.804 ± 0.01

Test dataset: Religion (Out-of-distribution)
Sampled 0.674 ± 0.03 0.682 ± 0.03
Filtered 0.725 ± 0.06 0.739 ± 0.05

Table 2: The results of the data artifacts (20Newsgroups)
use case (average of five repetitions ± SD).

forms better on the out-of-distribution test set (about 5%
and 6% absolute difference for the accuracy and macro
F1, respectively). This demonstrates that GrASP can
help humans identify artifacts in training data which
is a prerequisite step for building a more generalizable
classification model.

7. Related Work
Textual Data Exploration Tools. While there is need
for data exploration and interpretable patterns, not many
tools exist. Most of the data exploration tools for text
analyze the given data only at the word level (Heimerl
et al., 2014; Zainol et al., 2018) or the n-gram level
(Davies, 2012; Benoit et al., 2018). Even though there
exist tools extracting complicated patterns (like regular
expressions) (Bartoli et al., 2016; Locascio et al., 2016),
the extracted patterns are not generalizable, i.e., having
limited capability to match tokens based on their linguis-
tic attributes. To the best of our knowledge, apart from
our work, there is no other publicly available tool to ex-
tract and display recurring generalizable patterns from
text. Somewhat related to ours, there are pattern-based
search engines over data, even ones with web interfaces
(Shlain et al., 2020; Resnik and Elkiss, 2005). However,
such resources require an expert to come up with the
patterns herself in order to query data. Unlike our li-
brary, those patterns are not learned by the resources as
a helping mechanism for the data exploration. In other
cases, patterns are not supplied by an expert. They are
however, based on preexisting rules to extract specific
information from the data, rather than to understand the
data and what patterns occur in it (Valenzuela-Escarcega
et al., 2020; Valenzuela-Escarcega et al., 2015).
Despite the fact that there are other algorithms except
GrASP to learn patterns, such as (Sen et al., 2020),
we could not find their tools or implementations pub-
licly released. It is noteworthy that the outputs of such
algorithms could be formatted and plugged into our
web-based exploration tool as well.

Debugging Tools for NLP. Although GrASP was de-
vised for textual pattern extraction and exploration in
general, it can be applied to debug NLP models and
datasets as shown in sections 5 and 6, respectively.
Since debugging is a crucial and widely studied topic
(Lertvittayakumjorn and Toni, 2021), there are several
tools available to help humans debug NLP models and



6100

datasets. Some of them are similar to our use cases.
For example, Gralinski et al. (2019) propose GEval,
which highlights features in inputs, outputs, or expected
outputs that often make the model struggle. This helps
users notice the model weaknesses. However, GEval
does not consider the order of features in text, so it
requires users’ effort to form patterns from feature com-
binations. Wu et al. (2019) propose Errudite, which
extracts attributes from input instances and allows ex-
pert users to write a rule with the attributes so as to
query and group model errors, enabling further model
behavior analysis. Concerning dataset artifact discovery,
existing works usually focus on word-level artifacts (Gu-
rurangan et al., 2018; Gardner et al., 2021). Meanwhile,
when it comes to more complex artifacts, humans are
required to notice or hypothesize those artifacts with or
without supporting tools (McCoy et al., 2019; Han et al.,
2020). GrASP, in contrast, learns and provides patterns
which might be artifacts to humans, so they only need to
check those patterns with the aid of our web-based ex-
ploration tool, leading to more efficiency in the artifact
discovery process for complicated patterns.

8. Conclusion and Outlook
We presented GrASP – a Python library for extracting
patterns from textual data together with the novel web-
based tool for exploring the resulting patterns and the
input examples. Also, we demonstrated the usefulness
of both via three use cases in NLP research (classifi-
cation, machine translation model analysis, and data
artifacts identification). Apart from these, GrASP has
potential to be applied to several other problems such
as explainable text classification (where patterns pro-
vide explanations) (Efstathiadis et al., 2022; Ribeiro et
al., 2018), human-AI model co-creation (with patterns
enabling communication) (Yang et al., 2019), and inter-
preting deep learning models (e.g., by studying patterns
that the models’ neurons capture as reflected by their ac-
tivation scores) (Lertvittayakumjorn et al., 2020; Albini
et al., 2020). Furthermore, the GrASP algorithm and the
provided exploration tool are language-agnostic, so, as
future work, it would be interesting to apply GrASP to a
language besides English. To do so, users need to create
custom attributes that augment input tokens with lin-
guistic features of the target language. More generally,
GrASP is applicable to other types of sequence data be-
yond text as long as we can extract suitable attributes for
them (Agrawal and Srikant, 1995). Lastly, it is possible
and interesting to extend our library with the functional-
ities of GrASPlite (Shnarch et al., 2020) — extracting
patterns in an unsupervised way when we have a sin-
gle list of texts rather than two lists (i.e., positive and
negative classes) of texts.

9. Acknowledgements
The first author wishes to thank the support from Anan-
damahidol Foundation, Thailand. The last author was

partially supported by funding from the European Re-
search Council (ERC) under the European Union’s Hori-
zon 2020 research and innovation programme (grant
agreement No. 101020934, ADIX, Argumentation-
based Deep Interactive eXplanations).

10. Bibliographical References
Agrawal, R. and Srikant, R. (1995). Mining sequential

patterns. In Proceedings of the Eleventh International
Conference on Data Engineering, pages 3–14.

Albini, E., Lertvittayakumjorn, P., Rago, A., and Toni,
F. (2020). Dax: Deep argumentative explanation for
neural networks. arXiv preprint arXiv:2012.05766.

Almeida, T. A., Hidalgo, J. M. G., and Yamakami, A.
(2011). Contributions to the study of sms spam fil-
tering: new collection and results. In Proceedings of
the 11th ACM symposium on Document engineering,
pages 259–262.

Avramidis, E., Macketanz, V., Strohriegel, U., and
Uszkoreit, H. (2019). Linguistic evaluation of
German-English machine translation using a test
suite. In Proceedings of the Fourth Conference on
Machine Translation (Volume 2: Shared Task Papers,
Day 1), pages 445–454, Florence, Italy, August. As-
sociation for Computational Linguistics.

Barrault, L., Biesialska, M., Bojar, O., Costa-jussà,
M. R., Federmann, C., Graham, Y., Grundkiewicz,
R., Haddow, B., Huck, M., Joanis, E., Kocmi, T.,
Koehn, P., Lo, C.-k., Ljubešić, N., Monz, C., Mor-
ishita, M., Nagata, M., Nakazawa, T., Pal, S., Post,
M., and Zampieri, M. (2020). Findings of the 2020
conference on machine translation (WMT20). In Pro-
ceedings of the Fifth Conference on Machine Trans-
lation, pages 1–55, Online, November. Association
for Computational Linguistics.

Bartoli, A., Lorenzo, A. D., Medvet, E., and Tarlao,
F. (2016). Inference of regular expressions for text
extraction from examples. IEEE Transactions on
Knowledge and Data Engineering, 28(5):1217–1230,
May.

Benoit, K., Watanabe, K., Wang, H., Nulty, P., Obeng,
A., Müller, S., and Matsuo, A. (2018). quanteda: An
r package for the quantitative analysis of textual data.
Journal of Open Source Software, 3(30):774.

Bowman, S. R., Angeli, G., Potts, C., and Manning,
C. D. (2015). A large annotated corpus for learn-
ing natural language inference. In Proceedings of
the 2015 Conference on Empirical Methods in Nat-
ural Language Processing, pages 632–642, Lisbon,
Portugal, September. Association for Computational
Linguistics.

Choshen, L. and Abend, O. (2019). Automatically
extracting challenge sets for non-local phenomena
in neural machine translation. In Proceedings of
the 23rd Conference on Computational Natural Lan-
guage Learning (CoNLL), pages 291–303, Hong
Kong, China, November. Association for Computa-
tional Linguistics.



6101

Choshen, L., Nikolaev, D., Berzak, Y., and Abend, O.
(2020). Classifying syntactic errors in learner lan-
guage. In Proceedings of the 24th Conference on
Computational Natural Language Learning, pages
97–107, Online, November. Association for Compu-
tational Linguistics.

Davies, M. (2012). Word and phrase. www.
wordandphrase.info. Accessed: 2022-01-06.

Efstathiadis, I. S., Paulino-Passos, G., and Toni, F.
(2022). Explainable patterns for distinction and pre-
diction of moral judgement on reddit. arXiv preprint
arXiv:2201.11155.

Ein-Dor, L., Shnarch, E., Dankin, L., Halfon, A., Szna-
jder, B., Gera, A., Alzate, C., Gleize, M., Choshen,
L., Hou, Y., Bilu, Y., Aharonov, R., and Slonim, N.
(2020). Corpus wide argument mining—a working
solution. Proceedings of the AAAI Conference on
Artificial Intelligence, 34(05):7683–7691, Apr.

Fonseca, E., Yankovskaya, L., Martins, A. F. T., Fishel,
M., and Federmann, C. (2019). Findings of the WMT
2019 shared tasks on quality estimation. In Proceed-
ings of the Fourth Conference on Machine Transla-
tion (Volume 3: Shared Task Papers, Day 2), pages
1–12, Florence, Italy, August. Association for Com-
putational Linguistics.

Gardner, M., Merrill, W., Dodge, J., Peters, M., Ross,
A., Singh, S., and Smith, N. A. (2021). Competency
problems: On finding and removing artifacts in lan-
guage data. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 1801–1813, Online and Punta Cana, Do-
minican Republic, November. Association for Com-
putational Linguistics.

Gralinski, F., Wróblewska, A., Stanislawek, T.,
Grabowski, K., and Górecki, T. (2019). Geval: Tool
for debugging nlp datasets and models. In ACL 2019.

Gururangan, S., Swayamdipta, S., Levy, O., Schwartz,
R., Bowman, S., and Smith, N. A. (2018). Annota-
tion artifacts in natural language inference data. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 2 (Short Papers), pages 107–112, New Or-
leans, Louisiana, June. Association for Computa-
tional Linguistics.

Han, X., Wallace, B. C., and Tsvetkov, Y. (2020). Ex-
plaining black box predictions and unveiling data
artifacts through influence functions. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 5553–5563, On-
line, July. Association for Computational Linguistics.

Hearst, M. A. (1992). Automatic acquisition of hy-
ponyms from large text corpora. In COLING 1992
Volume 2: The 15th International Conference on
Computational Linguistics.

Heimerl, F., Lohmann, S., Lange, S., and Ertl, T. (2014).
Word cloud explorer: Text analytics based on word

clouds. In 2014 47th Hawaii International Confer-
ence on System Sciences, pages 1833–1842. IEEE.

Houvardas, J. and Stamatatos, E. (2006). N-gram
feature selection for authorship identification. In
International conference on artificial intelligence:
Methodology, systems, and applications, pages 77–86.
Springer.

Hu, M. and Liu, B. (2004). Mining and summarizing
customer reviews. In Proceedings of the tenth ACM
SIGKDD international conference on Knowledge dis-
covery and data mining, pages 168–177.

Hutchins, J. (2001). Machine translation and human
translation: in competition or in complementation.
International Journal of Translation, 13(1-2):5–20.

Joulin, A., Grave, E., Bojanowski, P., and Mikolov, T.
(2017). Bag of tricks for efficient text classification.
In Proceedings of the 15th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics: Volume 2, Short Papers, pages 427–431,
Valencia, Spain, April. Association for Computa-
tional Linguistics.

Kim, Y. (2014). Convolutional neural networks for sen-
tence classification. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1746–1751, Doha, Qatar,
October. Association for Computational Linguistics.

Lang, K. (1995). Newsweeder: Learning to filter net-
news. In Proceedings of the Twelfth International
Conference on Machine Learning, pages 331–339.

Lawrence, J. and Reed, C. (2020). Argument mining: A
survey. Computational Linguistics, 45(4):765–818.

Lertvittayakumjorn, P. and Toni, F. (2021).
Explanation-Based Human Debugging of NLP
Models: A Survey. Transactions of the Association
for Computational Linguistics, 9:1508–1528, 12.

Lertvittayakumjorn, P., Specia, L., and Toni, F. (2020).
FIND: Human-in-the-Loop Debugging Deep Text
Classifiers. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 332–348, Online, November.
Association for Computational Linguistics.

Lesk, M. (1986). Automatic sense disambiguation us-
ing machine readable dictionaries: how to tell a pine
cone from an ice cream cone. In Proceedings of the
5th annual international conference on Systems doc-
umentation, pages 24–26.

Levy, R., Gretz, S., Sznajder, B., Hummel, S., Aharonov,
R., and Slonim, N. (2017). Unsupervised corpus–
wide claim detection. In Proceedings of the 4th Work-
shop on Argument Mining, pages 79–84, Copenhagen,
Denmark, September. Association for Computational
Linguistics.

Locascio, N., Narasimhan, K., DeLeon, E., Kushman,
N., and Barzilay, R. (2016). Neural generation of
regular expressions from natural language with mini-
mal domain knowledge. In Proceedings of the 2016
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1918–1923, Austin, Texas,

www.wordandphrase.info
www.wordandphrase.info


6102

November. Association for Computational Linguis-
tics.

Macketanz, V., Avramidis, E., Burchardt, A., and Uszko-
reit, H. (2018). Fine-grained evaluation of German-
English machine translation based on a test suite. In
Proceedings of the Third Conference on Machine
Translation: Shared Task Papers, pages 578–587,
Belgium, Brussels, October. Association for Compu-
tational Linguistics.

Madnani, N., Heilman, M., Tetreault, J., and Chodorow,
M. (2012). Identifying high-level organizational ele-
ments in argumentative discourse. In Proceedings of
the 2012 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, pages 20–28, Montréal,
Canada, June. Association for Computational Lin-
guistics.

McCoy, T., Pavlick, E., and Linzen, T. (2019). Right for
the wrong reasons: Diagnosing syntactic heuristics
in natural language inference. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 3428–3448, Florence, Italy,
July. Association for Computational Linguistics.

Nilsson, J. and Nivre, J. (2008). Malteval: an evaluation
and visualization tool for dependency parsing. In
LREC. Citeseer.

Peng, Y., Torii, M., Wu, C. H., and Vijay-Shanker, K.
(2014). A generalizable nlp framework for fast devel-
opment of pattern-based biomedical relation extrac-
tion systems. BMC bioinformatics, 15(1):1–18.

Pennington, J., Socher, R., and Manning, C. (2014).
GloVe: Global vectors for word representation. In
Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 1532–1543, Doha, Qatar, October. Association
for Computational Linguistics.

Renduchintala, A. and Williams, A. (2021). Investigat-
ing failures of automatic translation in the case of
unambiguous gender. ArXiv, abs/2104.07838.

Resnik, P. and Elkiss, A. (2005). The linguist’s search
engine: An overview. In ACL.

Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). “why
should i trust you?”: Explaining the predictions of any
classifier. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining, KDD ’16, page 1135–1144, New
York, NY, USA. Association for Computing Machin-
ery.

Ribeiro, M. T., Singh, S., and Guestrin, C. (2018). An-
chors: High-precision model-agnostic explanations.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32.

Rinott, R., Dankin, L., Alzate Perez, C., Khapra, M. M.,
Aharoni, E., and Slonim, N. (2015). Show me your
evidence - an automatic method for context depen-
dent evidence detection. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 440–450, Lisbon, Portugal,

September. Association for Computational Linguis-
tics.

Sen, P., Danilevsky, M., Li, Y., Brahma, S., Boehm, M.,
Chiticariu, L., and Krishnamurthy, R. (2020). Learn-
ing explainable linguistic expressions with neural in-
ductive logic programming for sentence classification.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 4211–4221, Online, November. Association
for Computational Linguistics.

Shlain, M., Taub-Tabib, H., Sadde, S., and Goldberg, Y.
(2020). Syntactic search by example. In ACL.

Shnarch, E., Levy, R., Raykar, V., and Slonim, N.
(2017). GRASP: Rich patterns for argumentation
mining. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 1345–1350, Copenhagen, Denmark, Septem-
ber. Association for Computational Linguistics.

Shnarch, E., Alzate, C., Dankin, L., Gleize, M., Hou, Y.,
Choshen, L., Aharonov, R., and Slonim, N. (2018).
Will it blend? blending weak and strong labeled data
in a neural network for argumentation mining. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 599–605, Melbourne, Australia,
July. Association for Computational Linguistics.

Shnarch, E., Choshen, L., Moshkowich, G., Aharonov,
R., and Slonim, N. (2020). Unsupervised expressive
rules provide explainability and assist human experts
grasping new domains. In Findings of the Associa-
tion for Computational Linguistics: EMNLP 2020,
pages 2678–2697, Online, November. Association
for Computational Linguistics.

Specia, L., Blain, F., Fomicheva, M., Fonseca, E.,
Chaudhary, V., GuzmÃ¡n, F., and Martins, A. F. T.
(2020). Findings of the wmt 2020 shared task on
quality estimation. In Proceedings of the Fifth Con-
ference on Machine Translation, pages 743–764, On-
line, November. Association for Computational Lin-
guistics.

Stanovsky, G., Smith, N. A., and Zettlemoyer, L. (2019).
Evaluating gender bias in machine translation. In Pro-
ceedings of the 57th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 1679–1684,
Florence, Italy, July. Association for Computational
Linguistics.

Taravella, A. and Villeneuve, A. O. (2013). Acknowl-
edging the needs of computer-assisted translation
tools users: the human perspective in human-machine
translation. The Journal of Specialised Translation,
19(January):62–74.

Valenzuela-Escarcega, M. A., Hahn-Powell, G., Sur-
deanu, M., and Hicks, T. (2015). A domain-
independent rule-based framework for event extrac-
tion. In ACL.

Valenzuela-Escarcega, M. A., Hahn-Powell, G., and
Bell, D. (2020). Odinson: A fast rule-based informa-
tion extraction framework. In LREC.



6103

Wu, T., Ribeiro, M. T., Heer, J., and Weld, D. (2019).
Errudite: Scalable, reproducible, and testable error
analysis. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 747–763, Florence, Italy, July. Association for
Computational Linguistics.

Yang, Y., Kandogan, E., Li, Y., Sen, P., and Lasecki,
W. S. (2019). A study on interaction in human-in-
the-loop machine learning for text analytics. In IUI
Workshops.

Zainol, Z., Jaymes, M. T., and Nohuddin, P. N. (2018).
Visualurtext: a text analytics tool for unstructured tex-
tual data. In Journal of Physics: Conference Series,
volume 1018, page 012011. IOP Publishing.


	Introduction
	GrASP Library for Pattern Extraction
	Extending GrASP Capabilities

	The Web-Based Exploration Tool
	Use Case: Classification
	Use Case: Model Analysis
	Use Case: Dataset Artifacts
	Related Work
	Conclusion and Outlook
	Acknowledgements
	Bibliographical References

