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Abstract
As far back as Aristotle, problems and solutions have been recognised as a core pattern of thought, and in particular of the
scientific method. In this work, we present the novel task of problem-solving recognition in scientific text. Previous work on
problem-solving either is not computational, is not adapted to scientific text, or has been narrow in scope. This work provides a
new annotation scheme of problem-solving tailored to the scientific domain. We validate the scheme with an annotation study,
and model the task using state-of-the-art baselines such as a Neural Relational Topic Model. The agreement study indicates
that our annotation is reliable, and results from modelling show that problem-solving expressions in text can be recognised to a
high degree of accuracy.
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1. Introduction
In the field of cognitive psychology, problem-solving
is formally defined as: “cognitive processing directed
at achieving a goal for which the problem solver does
not initially know a solution method” (Reisberg and
Mayer, 2013). Many of us perform it on a daily basis,
whether it be deciding on the best route home, what
meal to cook for dinner, or even how to structure our
day. It is generally regarded as the most important
cognitive activity in everyday and professional contexts
(Jonassen, 2000).

According to Jordan (1980), this activity carries over
from everyday activities, to any text produced. In par-
ticular, there is a close connection to scientific writ-
ing because the nature of the research process can be
viewed as a problem-solving activity (Popper, 1999;
Strübing, 2007). Therefore, problem-solving plays a
significant role in the understanding of academic texts
from the scientific domain, and many descriptions re-
lating to problems and solutions can be found in scien-
tific texts. Consider the following extract, taken from
Benotti and Denis (2011).

Semantic annotation and rule authoring have long been
known as bottlenecks for developing conversational
systems for new domains.

In this paper, we present a novel algorithm for gener-
ating virtual instructors from automatically annotated
human-human corpora.

In the above extract, the first sentence details a prob-
lem. The authors then introduce an algorithm which is
able to use automatically annotated texts and thus solve
the problem of expensive manual anntotation.

In this work, we set out to automatically identify
such problems and their corresponding solutions in

scientific documents. Capturing knowledge of such
problem-solving expressions would provide a deep in-
sight into text understanding, but problem-solving is a
non-trivial subjective task. For these kinds of tasks,
particularly if they are newly defined, there is general
consensus that careful human annotation is necessary.

We developed a scheme of problem-solving, tai-
lored to the scientific domain. The particular scheme
we use is an adaptation of that by Hoey (1983;
2001). We also developed a finer annotation of prob-
lems that gives insight into which aspect of the prob-
lem might be seen as the source (or the more im-
mediate manifestation) of the problem. This would
result in the earlier problem annotated as follows:

Semantic annotation and rule authoring have long been
known as bottlenecks for developing conversational
systems for new domains.

How would a human recognise that there is a prob-
lem in the above sentence? Consider the word “bot-
tlenecks” (shown in yellow here), which is a lexical
signal for a problematic situation. Also notice that the
red string is marking the artefact that would need to
be changed in order to solve the problem, whereas the
green string expresses some conditions related to the
problem. If we found a solution which provides an
artefact closely related to the red string, it should have
higher probability of solving the problem than some
less related potential solution. Therefore, such a subdi-
vision of problem strings should help linking problems
with their correct solutions, and our suggested solution
will take advantage of this fact. The rest of this paper
introduces the new task of problem-solving, our anno-
tation scheme and agreement study, and an automatic
baseline method for finding and linking problem and
solution descriptions in text.
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2. Background and related work
Van Dijk (1980) states that all texts have a macrostruc-
ture: a semantic characterisation of discourse structures
on a global level, representing the entirety of the text.
In general scientific discourse, Van Dijk (1980) assigns
the macrostructure of INTRODUCTION, PROBLEM, SO-
LUTION, and CONCLUSION. This is a problem-solving
macrostructure and there are many other theorists who
agree (Hutchins, 1977; Grimes, 1975).

One of the most well documented problem-solving
structures was established by Winter (1968). Winter
analysed thousands of examples of technical texts, and
noted that these texts can largely be described in terms
of a four-part pattern consisting of SITUATION, PROB-
LEM, SOLUTION, and EVALUATION. The crucial re-
finement here when compared to Van Dijk is the re-
placement of CONCLUSION with EVALUATION; Win-
ter realised that the SOLUTION needs to be evaluated
before being accepted. Hoey (1983) further improved
the pattern by using RESPONSE in place of SOLUTION.
Hoey’s definition of RESPONSE is any way to deal with
an issue. This has a better semantic fit to scientific
texts, where a RESPONSE cannot become a SOLUTION
unless it has a positive EVALUATION. The pattern used
by Hoey is therefore the variant of the problem-solving
pattern upon which we have chosen to base our ap-
proach.

Computationally, there are few works that address
the identification of problems and solutions directly.
Heffernan and Teufel (2018) introduced models for de-
tecting the presence of problems or solutions at the sen-
tence level, and explored various features for this task
such as modality, subcategorisation, and word embed-
dings. They managed to identify problems and solu-
tions with accuracies of 82.3% and 79.7% respectively.

Sasaki et al. (2019) then extended this work by mod-
elling problems and solutions using a transformer de-
coder (Liu et al., 2018). The transformer decoder prob-
lem recogniser achieved a higher accuracy result than
Heffernan and Teufel (↑ 0.05), but their solution recog-
niser was numerically lower (↓ 0.05).

Problem-solving has also been treated in the frame-
work of discourse theories such as Rhetorical Struc-
ture Theory (Mann and Thompson, 1988). Rhetorical
Structure Theory (RST) is a theory which aims at de-
scribing both the micro- and macro-structures of text by
assigning relations between text spans. In this theory,
most text spans share a relationship where one text span
has a specific role in relation to the other. One such re-
lation in RST is the solutionhood relation, which cap-
tures both a PROBLEM and its related SOLUTION in
text. There have been many attempts at automating the
learning of RST relations using discourse parsing (Her-
nault et al., 2010; Feng and Hirst, 2014; Ji and Eisen-
stein, 2014; Braud et al., 2017; Mabona et al., 2019),
which are all benchmarked on the RST Discourse Tree-
bank dataset (RST-DT) (Carlson et al., 2003).

Beyond these works, most prior research on com-
putational problem-solving has not gone beyond the
usage of keyword analysis and some simple contex-
tual examination of the problem-solving pattern. Flow-
erdew (2008) presents a corpus-based analysis of lexio-
grammatical patterns for PROBLEM and SOLUTION
clauses using articles from professional and student re-
ports. A large part of the study involved looking for
keywords which signalled a PROBLEM or SOLUTION
statement.

Scott (2001) also looked at signals of PROBLEM
and SOLUTION in the Guardian newspaper. One of
the goals of the work was to find signals of problem-
solving patterns by automatic methods. Scott started
with simple signals such as “problem” and “problems”
and then used Mutual Information within a 10-word
window of these keywords to see if other indicative
words appeared. Another aim in that work was to de-
termine if the signals used for problem-solving pat-
terns shape the text on a macro or micro level (i.e., do
the problem-solving patterns encompass and shape the
whole text or just account for a small sub-part of the
text). He discovered that the latter was the case, where
the signals used for problem-solving patterns only play
a role at a local level of discourse.

Instead of a keyword-based approach, Charles
(2011) used discourse markers to examine how
problem-solution patterns are signalled in theses from
the domains of politics and materials science. In par-
ticular, he examined how the combination of “how-
ever” and “thus” can be used in conjunction to signal
a problem-solution pattern. It was hypothesised that
“however” would signal a PROBLEM, which should be
followed by “thus” signalling a SOLUTION. Charles in-
deed found that these two discourse markers signal a
problem-solving pattern in 80% of cases in the corpus.

In comparison to approaches which directly address
problems and solutions, the task of problem-solving
shares a close connection with other popular NLP
tasks. In Argument Mining, two key tasks involve the
identification of arguments such as premise and conclu-
sion, and determining the relations between these argu-
ments (Lawrence and Reed, 2020; Cabrio and Villata,
2018). This has certain parallels to finding arguments
of problems and solutions, and determining whether
the relationship between the solution and problem is
that of solved, or not solved.

In the task of Cause-Effect Analysis, the text is anal-
ysed to determine which sentences contain cause-effect
patterns (Mueller and Huettemann, 2018; Mueller and
Abdullaev, 2019), and when describing a problematic
situation is it commonplace to describe how the prob-
lem manifested (the effect), and the reason the problem
arose (the cause).

Sentiment mining is another task with connections
to problem-solving, which is concerned with identify-
ing the polarity of a piece of text, with wide applica-
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tions across both academia (Li et al., 2017; Liu, 2017)
and industry (Asur and Huberman, 2010; Valdivia et
al., 2017). In particular, words with negative and pos-
itive polarity can be seen as characteristics of problem
and solution descriptions respectively. For example,
“poor” and “excellent” are words which have tradition-
ally been good indicators of polarity status in many
studies (Turney, 2002; Mullen and Collier, 2004).

3. Annotating problem-solving in science
In this section, we define our annotation scheme for
problem-solving in scientific text. It is based on the
theoretic problem-solving model introduced by Hoey
(1983), but tailored to the scientific domain. Our
scheme is composed of the three main elements:

1. Problems.

2. Solutions.

3. Problem-solution links.

We will now define each element in turn, and also pro-
vide motivation and examples of how each element is
expressed in text.

3.1. Definition of problem
In Hoey’s model, a problem is simply defined as: “an
issue which requires attention”. However, in scientific
discourse, both the meaning of “problem” and how it is
expressed can vary greatly. In our scheme, a problem
is defined as:

1. A problematic state in science; or

2. A research question or unexplained phenomena;
or

3. An artefact that does not fulfil its stated specifica-
tion.

where an artefact, as defined here, is any tool created by
the author to solve some problem, and covers descrip-
tions or namings of methods, frameworks, algorithms,
or pseudocode.

The first category of problems above treats problem-
atic states in science. Such utterances can encompass
a wide range of expressions describing an event with
negative sentiment. Consider the following examples.

(A) We have to take even more factors into ac-
count, but it is difficult to maintain such heuris-
tic rules. (W03-1024, S-20)1

(B) Polysemy contributes heavily to poor preci-
sion. (W00-0102, S-4)

1Each example in this work comes from our corpus’ train
and development set, described in section 4. Examples in run-
ning text are identified with an uppercase letter, and end with
the paper’s ACL Anthology ID and corresponding sentence
number containing the example e.g. (W09-0403, S-1).

The examples above describe some problematic state,
be it a difficulty in doing something desired (ex. A) or
a low value in an evaluation metric that should ideally
be high (ex. B).

The second category of problems concerns research
questions or unexplained phenomena. These are con-
sidered problems as they imply a state of uncertainty
from the viewpoint of the author, and therefore fall un-
der a problematic situation. Ex. C is an instance of
research question, and ex. D is an instance of an unex-
plained phenomena.

(C) But do word-based vectors also work well for
genre detection? (E99-1019, S-5)

(D) However, a language independent phoneme
set has not been explored yet experimentally.
(P05-1064, S-21)

In general, lack of knowledge is always viewed as a
problem in the scientific endeavour. The last type of
problem concerns bad situations of a particular kind
where something is missing. This is often expressed
as a need, requirement or lack of something.

(E) Second, those recognizers require large bodies
of training data. (W06-3325, S-12)

Subdividing problems. Although knowledge of a
problem by itself provides valuable information, we
aimed to provide a deeper level of problem understand-
ing, such as identifying the immediate source of the
problem. We provide one such explanatory division of
problem descriptions in science.

In our scheme, a problem description is subdivided
into four elements: SIGNAL, COMPLEMENT, ROOT,
and CONDITION. These four elements are defined as
follows:

• SIGNAL: a short phrase indicating a problematic
situation.

• ROOT: a phrase describing how the problem man-
ifests itself.

• COMPLEMENT: artefact, object, or process af-
fected by the problem; or further description of
the problem signal.

• CONDITION: conditions related to the problem.

In order to illustrate how these four elements are re-
alised in running text, Table 1 provides examples of
various problem types broken up into SIGNAL, ROOT,
COMPLEMENT, and CONDITION. Note that for each
problem type, the role played by CONDITION does not
change.
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Problem type Signal Root Complement

1 X is lacking/missing
from Y

Signal of the lack Agent, object, or action ex-
periencing the lack

Object or quality that is
lacking or missing

2 X has a bad property Signal of the bad
property

Agent, object, or action pos-
sessing the bad property

Additional description of
signal

3 X cannot obtain objec-
tive

Signal of the inability
to attain

Agent which cannot attain
objective

Objective which cannot
be attained

4 X is a bad fit for objec-
tive

Signal of the bad fit Agent, object, or action
which is a bad fit

Additional description of
signal

5 X performs action
badly

Signal of badly per-
formed action

Agent performing the action Action performed

6 X leads to a problem-
atic situation

Signal of problem-
atic situation

Agent, object, or root which
induces the problematic sit-
uation

Object which is made
problematic

7 Research question Signal of problem or
uncertainty

The research question Additional description of
signal

(a) Examples of problem types and the corresponding roles played by SIGNAL, ROOT, and COMPLEMENT.

Signal Root Complement Condition

1 In contrast, formally syntax-based grammars often lack explicit linguistic constraints .

(W08-0403, S-14)

2 Out-of-vocabulary (OOV) terms are particularly problematic . (W10-4008, S-12)

3 However, the traditional N-gram language model can not capture long-distance word relations .

(P12-1023, S-32)

4 As a result, the common word strategy may not be appropriate for the problem we study here .

(P98-1098, S-15)

5 These algorithms tend to approximate the state space excessively . (W08-0120, S-9)

6 Using entity names severely pollutes the embeddings of words . (D15-1031, S-14)

7 To give a specific example, it is not clear yet when L1 structures lead to interference and when

they do not . (W13-2606, S-11)

(b) Annotated instances for each example problem type above.

Table 1: Problem types and examples of usage.

These four elements are structured together into a
PROBLEM STATEMENT. We define a problem state-
ment to be present if there is a SIGNAL; additionally
a problem statement can contain at most one of each of
the following: a ROOT, a COMPLEMENT, and a CON-
DITION. We will from now on represent these four el-
ements by colours: yellow for SIGNAL, red for ROOT,
blue for COMPLEMENT, and green for CONDITION.

3.2. Definition of solution
A SOLUTION, according to Hoey, is comprised of two
elements: a RESPONSE and an accompanying posi-

tive EVALUATION. However, Hoey’s definition of RE-
SPONSE is very general: some reaction to a problem
which aims at overcoming a problematic situation. To
provide more specificity to science, we expand Hoey’s
definition of RESPONSE to also include: a description
and/or naming of an artefact contributed by an au-
thor in response to a problem. We consider artefacts
a RESPONSE element as there must have been a prob-
lematic situation which motivated the authors to create
such an artefact (e.g. a negative property of a previ-
ously published method or a lack of research). In our
scheme, a SOLUTION using this expanded definition of
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RESPONSE is defined as:

1. A description of a reaction to a problem aimed at
overcoming a problematic situation which is as-
sociated with a positive evaluation [Hoey’s defini-
tion]; or

2. A description and/or naming of an artefact con-
tributed by an author in response to a problem2.

Consider the following example of SOLUTION below,
highlighted in purple.

(F) In this paper, we propose a Bayesian approach
called TopicSpam for deceptive review detec-
tion. (P13-2039, S-27)

3.3. Definition of problem-solution link
A problem-solution link represents a solution-hood re-
lationship between a problem statement and a solution.
In the scheme designed by Hoey (1983), this link is
implicitly defined when a RESPONSE to a problem is
assigned a positive EVALUATION. However, for com-
putational purposes a more precise definition is needed.
For example, it is unclear how to link when a SOLU-
TION solves more than one PROBLEM or if the RE-
SPONSE is positively evaluated but does not fully solve
the PROBLEM as it is described. Therefore, as with the
definitions for PROBLEM and SOLUTION, we have had
to adapt the definition for the link between problems
and solutions. We define a problem-solution link as:

A binary link between any pair of solution and
problem statements, where the solution either en-
tirely or partially solves the problematic situation
arising from the problem statement, or provides a
workaround.

Consider the following example of a link between
problem and solution, where the link is represented as

LI
N

K signal text .

(G) 1. Thus, other ways of deciding when to stop

AL are LI
N

K needed . 2. In this paper, we pro-

pose an intrinsic stopping-criterion for com-
mittee-based AL of named entity recognizers.
(W09-1118, [S-26, S-27])

In the above example, the problem stated is that there
is a need for a way to decide when to stop AL (Ac-
tive Learning). In the following sentence, the authors
introduce exactly such a solution which is a stopping-
criterion for AL. Since this solves the need, the prob-
lem must be linked to the solution.

2Note that the requirement of an explicitly stated evalua-
tion is lifted here as an author presenting a published artefact
implies it has been evaluated positively to pass peer review.

4. Data collection
The basis for our data set was a collection of over 17k
academic papers extracted from the ACL Anthology
Reference Corpus (Bird et al., 2008).

Given the large search space involved in research pa-
pers, we only treat the labelling of problems and solu-
tions within a predefined context window3. In order
to improve the recall of problems or solutions in such
context windows, we filtered out any contexts from pa-
pers which did not have a high likelihood of problem
and solution present. This was established using exist-
ing classifiers capable of recognising the presence of
a problem or solution (Heffernan and Teufel, 2018),
and filtering out contexts which did not have at least
one problem and solution identified. From the resulting
contexts, we randomly sampled a data set consisting of
1000 contexts (6,000 sentences) with a 80/10/10 split
for training, development, and test sets.

Human agreement study. The human agreement
study consisted of three annotators, comprising one of
the authors and two external annotators. In order to
train the external annotators, we created an instruc-
tion set which can act as a stand-alone document, i.e.,
it contains all the information needed to complete the
task4. Following training, each annotator was given a
copy of the development set (previously unseen). The
annotators then marked each extract from the develop-
ment set independently and without discussion.
The results from annotation show good agreement
amongst the annotators. The kappa value for prob-
lem marking was κ=0.87 (N=6512; n=8; k=3)5, solu-
tions were κ=0.99 (N=2599; n=3; k=2), and problem-
solution linking was κ=0.66 (N=279; n=3; k=2). For
both problem and solution marking, such kappas can be
considered to represent “good agreement” using Krip-
pendorff’s strict scale (Krippendorff, 1980).

Following the annotation experiment, the test set was
annotated jointly by the two external annotators. The
resulting dataset and full annotation instructions are
publicly available6. Dataset statistics are shown in Ta-
ble 2.

5. Method
In order to determine the tractability of modelling
problem-solving, we implement a series of baselines
ranging from heuristics to state-of-the-art deep learning
models. We split the task of problem-solving into two

3A context window of 6 sentences was chosen based on
manual exploration of the training set.

4In consideration of ethics regarding the dataset collection
process and conditions, we applied for and received ethics
approval from our institution.

5N,n, and k correspond to number of items to annotate,
number of categories and number of annotators, respectively.

6https://github.com/kevinheffernan/
problem-solving-in-scientific-text/blob/
main/dataset.tar.gz

https://github.com/kevinheffernan/problem-solving-in-scientific-text/blob/main/dataset.tar.gz
https://github.com/kevinheffernan/problem-solving-in-scientific-text/blob/main/dataset.tar.gz
https://github.com/kevinheffernan/problem-solving-in-scientific-text/blob/main/dataset.tar.gz
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Number annotated

Words 166,409
Sentences 6,000

Signal 3,072
Root 2,156
Complement 1,653
Condition 971

Solution 1,018

Problem-solution pairs 3,472

Table 2: Dataset statistics.

main tasks: problem and solution marking, and prob-
lem and solution linking. We present the methods for
each below, including hyperparmeter tuning.

Problem and solution marking. We formulate the
marking of problems and solutions as a sequence
labelling task, similar to named entity recognition
(NER). We therefore encode problems and solutions
using the IOB2 encoding scheme (commonly referred
to as BIO) (Tjong Kim Sang and Veenstra, 1999), and
compare three different methods which have shown to
perform well on NER benchmarks. The first two are
deep learning models: the Biaffine model by Yu et
al. (2020), which is the current state-of-the-art, and a
BiLSTM-CRF model (Reimers and Gurevych, 2017a).
We used an existing code repository for both the Bi-
affine7 and BiLSTM-CRF8 models. For a simple base-
line, we chose a 1st order HMM9 as a bi-gram HMM
has shown to be effective on NER-related tasks (Zhao,
2004).

We use a joint learning approach to problem and
solution marking. This is akin to multi-task learning
(Ruder, 2017), where it has been observed that learn-
ing multiple tasks at the same time can improve perfor-
mance i.e., the learning of one task can help the perfor-
mance of another task (Ruder et al., 2019; Sanh et al.,
2019).

Problem and solution linking. We now move to the
second task of linking problems and solutions. Problem
and solution linking is formalised as a binary classifica-
tion task, where a problem and solution pair are given,
and a decision is made by the system as to whether or
not they are linked. For this binary classification task,
we compare two deep learning models, two classical
machine learning models, and a most frequent category
baseline.

For the classical machine learning models, we opted
for Naı̈ve Bayes and a Support Vector Machine. For

7https://github.com/juntaoy/
biaffine-ner

8https://github.com/UKPLab/
emnlp2017-bilstm-cnn-crf

9https://www.nltk.org/_modules/nltk/
tag/hmm.html

both classifiers, we used an implementation from the
WEKA machine learning library (Hall et al., 2009).

Moving to the neural models, the first is a Neural
Relational Topic Model (NRTM) proposed by Bai et
al. (2018). This model jointly trains a neural topic
model, combined with a feedforward multilayer net-
work (MLP). The neural topic model is implemented as
a variational autoencoder (VAE) (Kingma and Welling,
2014) which learns a topic representation for each doc-
ument. Therefore, this model should in theory be able
to match problems and solutions which have a sim-
ilar topic distribution. As the NRTM is essentially
a topic model jointly trained with a multi-layer per-
ceptron (MLP) on top, it is interesting to determine
whether or not the joint training with the topic infor-
mation is able to provide a performance boost over the
standalone MLP. Therefore, our second neural model
is a standalone MLP.

To implement the NRTM we used an existing code
implementation10, and for the MLP we used our own
implementation in Tensorflow consisting of three hid-
den layers with ReLU (rectified linear unit) activations.
The ReLU was chosen as it has been widely success-
ful across many different applications (Ramachandran
et al., 2017).

For each model, we compare two features: bag-of-
words and Sentence-BERT (Reimers and Gurevych,
2019). For Sentence-BERT (SBERT), we used a pre-
trained model11 which achieved the highest perfor-
mance on the STS Benchmark12 (Cer et al., 2017).

Hyperparameter tuning. For each model (except
Naı̈ve Bayes, the HMM, and most-frequent baselines),
we conducted a hyperparameter search using manual
tuning on our development set13. Full details of all hy-
perparameters used for each model, along with their
respective average runtimes and hardware used can be
found in the Appendix.

Reimers and Gurevych (2017b) showed that score
distributions for neural models can vary greatly de-
pending on the seed value for a random generator.
Therefore, all results from neural models are averaged
over 50 different random seeds, and are accompanied
by their standard deviation. Additionally, for all re-
ported scores, a correct prediction must match the gold
standard exactly (e.g. element boundary and label per-
fectly matches).

In order to measure significance between models,
we used the two-tailed permutation test (Noreen, 1989;
Dror et al., 2018). All code used in our experiments is

10https://github.com/zbchern/
Neural-Relational-Topic-Models

11https://github.com/UKPLab/
sentence-transformers/blob/master/docs/
pretrained-models

12stsb-roberta-large
13Highest f1-measure was the selection criterion.

https://github.com/juntaoy/biaffine-ner
https://github.com/juntaoy/biaffine-ner
https://github.com/UKPLab/emnlp2017-bilstm-cnn-crf
https://github.com/UKPLab/emnlp2017-bilstm-cnn-crf
https://www.nltk.org/_modules/nltk/tag/hmm.html
https://www.nltk.org/_modules/nltk/tag/hmm.html
https://github.com/zbchern/Neural-Relational-Topic-Models
https://github.com/zbchern/Neural-Relational-Topic-Models
https://github.com/UKPLab/sentence-transformers/blob/master/docs/pretrained-models
https://github.com/UKPLab/sentence-transformers/blob/master/docs/pretrained-models
https://github.com/UKPLab/sentence-transformers/blob/master/docs/pretrained-models
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Element Biaffine BiLSTM-CRF Baseline

Signal 0.86 ± 0.01 0.83 ± 0.01 0.54
Root 0.66 ± 0.04 0.63 ± 0.03 0.13
Complement 0.59 ± 0.06 0.57 ± 0.03 0.10
Condition 0.60 ± 0.07 0.57 ± 0.03 0.11

Problem statement 0.46 ± 0.03 0.46 ± 0.02 0.07

Solution 0.89 ± 0.01 0.85 ± 0.02 0.12

Micro 0.77 ± 0.01 0.73 ± 0.01 0.29
Macro 0.72 ± 0.02 0.69 ± 0.02 0.20

(a) F-measures from jointly learning problems and solutions.

Element p-value

Signal 0.002
Root 0.033
Complement 0.099
Condition 0.060

Problem statement 0.369

Solution 0.001

Micro 0.001
Macro 0.008

(b) Two-tailed p-values between Biaffine
and BiLSTM-CRF.

Table 3: Problem and solution marking results.

Feature NB SVM MLP NRTM

Bow 0.56 0.56 0.53 ± 0.03 0.47 ± 0.09
SBERT 0.53 0.56 0.53 ± 0.04 -

Baseline 0.39

(a) Macro f-measures.

Baseline NB SVM MLP
NB 0.003 - - -

SVM 0.003 1.000 - -
MLP 0.001 0.010 0.005 -

NRTM 0.020 0.013 0.012 0.041

(b) Two-tailed p-values between models using
best respective feature.

Table 4: Linking results.

publicly available.14

6. Results
The results from problem and solution marking and
linking are shown in Tables 3 and 4. For problem and
solution marking, the Biaffine model outperformed the
BiLSTM-CRF on all measures, and significantly beat
the BiLSTM-CRF on most. SOLUTION was identi-
fied with the highest average f-measure, whilst the in-
dividual elements with the lowest average f-measure
were COMPLEMENT and CONDITION. The baseline
HMM shows reasonable performance on SIGNAL, but
is significantly outperformed by both neural models on
all measures (significance tables included in the Ap-
pendix).

The linking results indicate that Naı̈ve Bayes and the
SVM are the best performers on this task, significantly
beating all other models. The NRTM achieved the low-
est average score but has the highest variance, includ-
ing f-measures as high as 0.58 in its score distribution.
Therefore, the results from topic modelling are not as
reliable as those from other models.

The confusion matrix for the Naı̈ve Bayes model us-
ing bag-of-words features is shown in Table 5. It indi-
cates that the model can more accurately identify prob-
lems which are linked to solutions, rather than those

14https://github.com/kevinheffernan/
problem-solving-in-scientific-text/blob/
main/SupMat__Software.tgz

Predicted

Not linked Linked

G
ol

d Not linked 53 (45%) 64 (55%)
Linked 65 (33%) 131 (67%)

Table 5: Confusion matrix for Naı̈ve Bayes (bow).

which are not. For example, 67% of linked problem-
solution pairs were correctly identified, whilst only
45% of non-linked pairs were correctly labelled. A
similar trend was exhibited by the SVM where 44% of
non-linked and 65% of linked problem-solution pairs
were identified correctly.

7. Conclusion and future work
In this work, we have presented the novel task of
problem-solving recognition in text. We also intro-
duced a new annotated dataset for this task, and im-
plemented a series of baseline methods to test how
well the task can be automated. Inter-annotator statis-
tics show good agreement, and results from automation
indicate that the task can be tractably modelled, with
room for improvement. In future work, we plan to ex-
tend our current dataset to also include the subdivision
of SOLUTION expressions, in the same manner which
did for PROBLEM. We are also interested in how well
problem-solving can be modelled in other languages.
One such study is currently being undertaken, applying
our rubric to Japanese texts.

https://github.com/kevinheffernan/problem-solving-in-scientific-text/blob/main/SupMat__Software.tgz
https://github.com/kevinheffernan/problem-solving-in-scientific-text/blob/main/SupMat__Software.tgz
https://github.com/kevinheffernan/problem-solving-in-scientific-text/blob/main/SupMat__Software.tgz
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A. Hardware used for all experiments
1. Processor: Intel Core i7-6820HQ CPU @

2.70GHz × 8.

2. RAM: 32 GB.

3. GPU: AMD Verde.
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B. Average runtimes
Runtimes are displayed in seconds for
each model averaged over 3 runs.

Model Avg. runtime

Biaffine 720.06
BiLSTM-CRF 412.00
HMM 3.90
MLP 14.33
NRTM 137.33
SVM 1082.50
NB 9.02
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C. Hyperparameter settings
Hyperparameter settings for each model used, and
bounds searched during hyperparameter tuning.

C.1. BiLSTM

BiLSTM units 100
BiLSTM layers 2
BiLSTM dropout 0.25
max gradient norm 1.0
char CNN filter widths [3, 4, 5]
filter size 30
char embedding size 30
Komninos embedding size 300
embedding dropout 0.5
optimiser Adam
learning rate 0.001

Table 6: Parameters for BiLSTM model.

C.2. NRTM

Num topics 30 [bounds: 10-50]
Topic embedding size 30 [bounds: 10-50]
Topic model layer units [500, 200, 100]
MLP layer units [1000, 250, 50, 8, 1]
SBERT embedding size 1024
optimiser Adam
learning rate 0.001

Table 7: Parameters for NRTM model.

C.3. Biaffine

FFNN hidden units 150
FFNN depth 2
FFNN dropout 0.2
BiLSTM units 200
BiLSTM layers 3
BiLSTM dropout 0.4
max gradient norm 5.0
char CNN filter widths [3, 4, 5]
filter size 50
char embedding size 8
FastText embedding size 300
BERT embedding size 1024
embedding dropout 0.5
optimiser Adam
learning rate 0.001

Table 8: Parameters for Biaffine model.

C.4. MLP

MLP layer units [500, 250, 50]
SBERT embedding size 1024
optimiser Nadam
learning rate 0.01

Table 9: Parameters for MLP model.

C.5. SVM

Kernel function PolyKernel
C 1 [bounds: 1-4]

Table 10: Parameters for SVM.
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D. Human annotator: additional
information

Annotators were myself and two other adults recruited
from close friends/family. Participants were offered to
and did the work voluntarily. Care was taken to ensure
their working conditions were comfortable and annota-
tors were allowed to work at their own pace/schedule.
Annotators were told the purpose of the annotation
study, and how their data would be used.

D.1. Rubric
For each problem-solving context window given to
you, please perform the following:

1. Read the last sentence and determine if there is a
solution(s).

2. For each solution found, mark it.

3. For each sentence in the context window (includ-
ing the last sentence) please perform the actions
below.

(a) Ask yourself, “Somewhere in this sentence,
is the author trying to convey a problem?”

If not, move onto the next sentence.

(b) Ask yourself, “How many problem state-
ments is the author trying to describe in this
sentence?”

Be on the lookout for a second or third
problem statement. Words such as “due
to”,“as” and “because” can sometimes signal
another problem statement.

(c) For each problem statement found, ask your-
self the following questions and annotate in
that order:

i. “Can you find a problem signal?” If
you cannot find a problem signal, then
according to our definition, there is no
problem statement so move on to the next
problem statement found. If a signal is
found, continue with the questions below.

ii. “Is there a complement?”. If so, mark it.

iii. “Is there a condition?”. If so, mark it.

iv. “Is there a root?”. If so, mark it.

(d) If there was a solution(s) found in the last
sentence, then, for each problem statement
found, determine if there exists a problem-
solution relationship between each problem
statement and each solution marked in the
last sentence. If there exists such a relation-
ship, mark it.
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E. Additional significance results
E.1. Two-tailed p-values between HMM and

Biaffine

Signal 0.001
Root 0.001
Complement 0.001
Condition 0.002
Problem statement 0.001
Solution 0.001
Micro 0.001
Macro 0.001

Table 11: Two-tailed p-values between
HMM and Biaffine.

E.2. Two-tailed p-values between HMM and
BiLSTM-CRF

Signal 0.001
Root 0.001
Complement 0.001
Condition 0.002
Problem statement 0.002
Solution 0.002
Micro 0.003
Macro 0.001

Table 12: Two-tailed p-values between
HMM and BiLSTM-CRF.
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