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Abstract
Cross-linguistic phonetic analysis has long been limited by data scarcity and insufficient computational resources. In the past
few years, the availability of large-scale cross-linguistic spoken corpora has increased dramatically, but the data still require
considerable computational power and processing for downstream phonetic analysis. To facilitate large-scale cross-linguistic
phonetic research in the field, we release the VoxCommunis Corpus, which contains acoustic models, pronunciation lexicons,
and word- and phone-level alignments, derived from the publicly available Mozilla Common Voice Corpus (Ardila et al.,
2020). The current release includes data from 36 languages. The corpus also contains acoustic-phonetic measurements,
which currently consist of formant frequencies (F1–F4) from all vowel quartiles. Major advantages of this corpus for
phonetic analysis include the number of available languages, the large amount of speech per language, as well as the fact
that most language datasets have dozens to hundreds of contributing speakers. We demonstrate the utility of this corpus
for downstream phonetic research in a descriptive analysis of language-specific vowel systems, as well as an analysis of
“uniformity” in vowel realization across languages. The VoxCommunis Corpus is free to download and use under a CC0
license at https://osf.io/t957v/wiki/home/.
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1. Introduction
For a thorough understanding of cross-linguistic pho-
netic variation and systematicity, big data from a di-
verse set of languages is necessary. In 2009, it was
noted that despite the advances made in speech tech-
nology and computational power, there had been “sur-
prisingly little change in style and scale of [phonetic]
research” from 1966 onwards (Liberman, 2009). Since
even that period, considerable advances have been
made for increased processing power of large-scale
phonetic corpora, but largely within a single “high-
resource” language such as English, in which relevant
data for automatic speech processing approaches al-
ready exist.
Until recently, the movement towards large-scale,
cross-linguistic phonetic research has been somewhat
limited. Previous large-scale cross-linguistic phonetic
studies have mostly been meta-analyses that rely on
a standardized phonetic measure and a plethora of
published cross-linguistic research (Whalen and Levitt
(1995) for vowel f0, Becker-Kristal (2010) for vowel
F1 and F2, Chodroff et al. (2019) for stop VOT).
Prior to 2020, existing multilingual speech corpora
contained maximally twenty-some languages (Harper,
2011; Schultz et al., 2013), or insufficient data for
most phonetic analyses (Ladefoged and Maddieson,
2007). More recently, Salesky et al. (2020) presented
the VoxClamantis Corpus for large-scale phonetic ty-
pology that provided phonetic data for over 500 lan-
guages, based on recordings and transcripts from the
CMU Wilderness Corpus (Black, 2019). Only in the
past few years (e.g., from 2019) have these massively
multilingual corpora been made publicly available (see
Section 2 for an overview). In addition, the tools nec-

essary to process such data for phonetic analysis have
been considerably improved and expanded in utility
and coverage.
In the present paper, we introduce the VoxCommunis
Corpus for large-scale cross-linguistic phonetic anal-
ysis based on the Mozilla Common Voice Corpus1

(Ardila et al., 2020). The Mozilla Common Voice cor-
pus is a publicly available, multilingual speech corpus
that contains spoken utterances collected via the inter-
net on both web and phone platforms. Version 7.0 (re-
leased July 2021) has data for approximately 75 lan-
guages. Each language contains anywhere from around
50 MB to over 100 GB of audio data, and anywhere
from three to over a hundred speakers. A subset of ut-
terances is additionally “validated” by users, indicating
that at least two users have confirmed that the reading
of a specific utterance is faithful to the corresponding
written text. The corpus is freely available for down-
load and academic use. It is also community-driven
with active maintenance and updates, meaning that the
size of the corpus is regularly increasing.
This corpus can facilitate research in language-specific
phonetics and phonetic typology, which can in turn im-
prove speech technologies. As spoken language tech-
nologies are becoming increasingly common, their ef-
fectiveness and coverage over diverse language vari-
eties have become more and more important. Good au-
tomatic speech recognition (ASR) systems and text-to-
speech (TTS) systems rely on accurate knowledge and
implementation of phonetics and phonology–the stud-
ies of the production and perception of speech sounds

1https://commonvoice.mozilla.org/en/
datasets

https://osf.io/t957v/wiki/home/
https://commonvoice.mozilla.org/en/datasets
https://commonvoice.mozilla.org/en/datasets
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and how they are organized. Improved understanding
of the universals and variation in phonetic realization
can inform the development of such speech technology,
particularly for low-resource languages.

2. Related Work
Aside from Common Voice, several multilingual
speech corpora have been developed and some may
also prove useful for downstream phonetic analysis. As
mentioned in Section 1, the IARPA BABEL and Glob-
alPhone corpora were some of the first large, multilin-
gual spoken corpora in research and have been pop-
ularly used for ASR system development. In 2011,
the IARPA BABEL corpus was released with tran-
scribed conversational telephone speech in 21 diverse
languages (Harper, 2011) . In 2013, the GlobalPhone
corpus was released with over 400 hours of read speech
audio across 20 languages and around 100 speakers per
language (Schultz et al., 2013). These corpora, how-
ever, are neither public nor open source.
More recently, several multilingual spoken corpora
have been released that are publicly available, though
may still have some minor copyright restrictions.
These include the CMU Wilderness Corpus and deriva-
tive VoxClamantis Corpus, VoxPopuli, multilingual
TEDx, and multilingual LibriSpeech.
Most similar in approach to the present corpus here is
the VoxClamantis Corpus, derived from the massively
multilingual CMU Wilderness Corpus. The CMU
Wilderness corpus is a collection of audio recordings
in nearly 700 languages of the New Testament, with
around 20 hours of speech per language (Black, 2019).
Building off of this corpus, the VoxClamantis dataset
contains an initial pass of utterance- and phoneme-level
alignments of the readings, along with a preliminary set
of vowel formants and sibilant fricative spectral prop-
erties (Salesky et al., 2020). This Bible corpus is the
largest spoken corpus in terms of range of language
variation, including some severely low-resource lan-
guages. While having a wide language coverage, each
language reading has very few speakers, most of whom
are male. This presents a limitation for phonetic analy-
sis as there can be confounds between speaker and lan-
guage variation. In addition, some copyright restric-
tions limit the accessibility of the audio.2

The VoxPopuli Corpus contains 400,000 hours of un-
labeled speech data spanning 23 languages taken from
European parliament recordings (Wang et al., 2021).
Around 17,000 hours of speech are transcribed, which
provides a springboard for much of the processing de-
scribed here. Finally, the multilingual TEDx and mul-
tilingual LibriSpeech corpora contain over 700 and
36,000 hours of speech respectively, from 8 European
languages (Salesky et al., 2021; Pratap et al., 2020).
Relative to the Wilderness and Common Voice corpora,

2Though it is accessible through the bible.is website, each
language dataset must be downloaded individually.

these corpora have less language coverage; neverthe-
less, they are publicly available, mostly transcribed,
and therefore will likely be very useful for future pho-
netic analysis.

3. Methodology
The primary goal of our data processing was to ob-
tain word- and phone-level forced alignments for each
recording to facilitate acoustic-phonetic measurement.
Our processing targeted language datasets for which
grapheme-to-phoneme toolkits were available, had less
than 300 hours of validated data (due to space and pro-
cessing power limitations), and focused only on the
“validated” utterances of each dataset. Through this
process, we developed language-specific pronunciation
lexicons and acoustic models in addition to alignments.
These resources may have independent utility for pho-
netic research, such as language-specific forced align-
ment of new speech data or improved pronunciation
lexicon development.

3.1. Grapheme-to-Phoneme Conversion
A major bottleneck in cross-linguistic phonetic re-
search is the conversion of orthographic transcripts
to their corresponding phonetic (or phonemic) forms.
This process is known as grapheme-to-phoneme (G2P)
conversion, and can be accomplished in a variety of
manners and with a variety of assumptions regard-
ing the transcription granularity.3 We relied on two
linguist-designed, rule-based G2P systems for this con-
version: Epitran and the XPF Corpus. These sys-
tems have been developed for many languages with a
“transparent” orthography, in which the orthographic
representation is systematically related to its phonemic
form.
Epitran is a publicly available G2P toolkit that supports
conversion for around 60 languages (Mortensen et al.,
2018). Its architecture consists of finite state trans-
ducers, all manipulated via a Python interface. The
Cross-linguistic Phonological Frequencies (XPF) Cor-
pus is a resource of phonemic lexicons or grammars
for over 200 spoken languages with a web interface for
rule-based G2P conversion (Cohen Priva et al., 2021).4

The output of these systems is a pronunciation lexicon
for each language dataset with mappings between each
word form and its corresponding phonemic transcrip-
tion.
Based on the intersection of languages between Com-
mon Voice, Epitran, and the XPF Corpus, we could
produce pronunciation lexicons for approximately 40
language datasets. Four of these were removed due to

3The G2P systems employed here appear to be using
broad phonetic transcriptions that best correspond to se-
quences of phonemes or surface phonological segments. In
the present paper, we refer to these sound segments as
phonemes.

4https://cohenpr-xpf.github.io/XPF/
Convert-to-IPA.html

https://cohenpr-xpf.github.io/XPF/Convert-to-IPA.html
https://cohenpr-xpf.github.io/XPF/Convert-to-IPA.html
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poor G2P quality or processing issues in the acoustic
model development. These were two Chinese language
datasets, Persian, and Arabic.5 In the resulting cor-
pus, 18 language datasets were processed using Epi-
tran and 18 using the XPF Corpus. Among the lan-
guages processed using Epitran, Hindi and Tamil were
processed using dual G2P models to process the pre-
dominant Indic-based script and secondary English ro-
manized script.6 We manually updated several entries
across most datasets, especially where foreign charac-
ters or loanwords were included in the input.

3.2. Acoustic Model Training

The acoustic models were developed using the gener-
ated pronunciation lexicons and the Montreal Forced
Aligner (MFA). Among other applications, MFA pro-
vides a user-friendly wrapper to the Kaldi ASR toolkit
(Povey et al., 2011) for acoustic model training and
alignment (McAuliffe et al., 2017).
For each language with a pronunciation lexicon, we
trained an acoustic model using default settings from
MFA version 2.0.09b. This training used a GMM-
HMM based system with various levels of speaker and
channel adaptation. MFCCs were extracted from 25
ms windows with a 10 ms frame shift and then nor-
malized using cepstral mean and variance normaliza-
tion. The acoustic models were then constructed us-
ing 40 iterations of monophone training and alignment
with a maximum 1000 Gaussians. These were fol-
lowed by 35 iterations of LDA+MLLT and two rounds
of speaker-adapted training (SAT) with fMLLR, each
with a maximum 2500 leaves and 15000 Gaussians.7

As each recording was annotated with a speaker iden-
tification code, this information was used to inform
acoustic model training.
All audio files were available in 16-bit MP3 format,
single channel, with a 32 kHz sampling rate.8 Pre-
processing steps included converting MP3 to WAV for-
mat and creating Praat TextGrids populated with utter-
ances. Each recording is a standard sentence-length ut-
terance. The word- and phone-level forced alignments
were extracted directly from the final acoustic model
for each language. The alignments are released as Praat
TextGrids.

5Although we processed Russian, it is important to note
that Epitran may not be reliable in its G2P output for Russian.

6The English words in these two lexicons were mapped to
English phonology, although the audio often revealed that the
pronunciations were more faithful to Hindi or Tamil phonol-
ogy.

7For more detail on the default recipe, see https:
//montreal-forced-aligner.readthedocs.
io/en/latest/user_guide/configuration/
acoustic_modeling.html.

8The compressed MP3 format of the original files may be
a limitation for fine-grained acoustic analysis.

3.3. Formant Extraction
Formants are concentrations of high acoustic energy in
the frequency spectrum, and reflect resonant frequen-
cies in the vocal tract. Because of their relationship
to the shape of the oral cavity (articulation) and cor-
responding perceptual quality (perception), these mea-
sures are commonly extracted for a wide variety of pho-
netic analyses. The first formant (F1) strongly corre-
lates with tongue height and the second formant (F2)
with tongue backness (Ladefoged and Johnson, 2014).
These two dimensions are highly diagnostic for most
vowel contrasts (see for example Figures 1 and 2). F3
frequently correlates with lip rounding, rhoticity, and
nasality, and F4 can reflect high front vowel contrasts
and aspects of voice quality (House and Stevens, 1956;
Lindblom and Sundberg, 1971; Ladefoged et al., 1978;
Eek and Meister, 1994).
The first four formant values were extracted from each
aligned vowel quartile using the Linear Predictive Cod-
ing (Burg method) algorithm implemented in Praat
(Boersma and Weenink, 2019). For each formant, val-
ues at 10 ms before and after the midpoint were also
extracted, for increased accuracy in analysis (see Sec-
tion 5.1). All formant values were extracted under
both “high” and “low” frequency settings. Specifically,
the tracker searched for five formants with a ceiling of
5500 Hz in the “high” setting, and a ceiling of 5000 Hz
in the “low” setting. These are the recommended ceil-
ings for typical female and male speech, respectively.
Since only a small portion of the corpus had gender la-
bels, we performed a simple classification algorithm to
assign each speaker in the entire corpus to either the
high or low setting. Using a subset of 1200 gender-
labeled speakers across 11 languages, we fit two bivari-
ate Gaussians: one distribution over average F1 and F2
values at the high formant tracking setting for speak-
ers labeled as “female”, and one distribution over aver-
age F1 and F2 values at the low formant tracking set-
ting for speakers labeled as “male”. Each speaker was
classified as matching either the high or low setting de-
pending on which of the two trained distributions their
average (F1, F2) values were closer to. Distance was
quantified using the Mahalanobis metric. We release
both “high” and “low” sets of extracted formants over
all speakers and utterances, but employ this heuristic
for the case study data in Section 5.

4. Data
Table 1 lists the Common Voice language datasets that
we used and processed in this work, along with several
of their characteristics. Quantity of data in terms of
hours of audio and number of speakers is based on the
validated subset from Common Voice.9 Table 1 further
shows language-related descriptions of each dataset.
Vowel and consonant inventory sizes were determined

9Ardila et al. (2020) refer to a validated utterance as one
that has a majority of upvotes from crowdsourced listeners
who verified that the text transcription matched the audio.

https://montreal-forced-aligner.readthedocs.io/en/latest/user_guide/configuration/acoustic_modeling.html
https://montreal-forced-aligner.readthedocs.io/en/latest/user_guide/configuration/acoustic_modeling.html
https://montreal-forced-aligner.readthedocs.io/en/latest/user_guide/configuration/acoustic_modeling.html
https://montreal-forced-aligner.readthedocs.io/en/latest/user_guide/configuration/acoustic_modeling.html
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Language Hours Speakers Utts G2P # V # C ISO 639-3 Genus Family

Abkhaz 2 28 1166 XPF 2 55 abk Northwest Caucasian Northwest Caucasian
Armenian 1 22 767 XPF 6 30 hye Armenian Indo-European
Bashkir 247 835 200869 XPF 9 28 bak Turkic Turkic
Basque 91 842 63916 XPF 5 24 eus Basque Basque
Belarusian 91 3620 182840 XPF 5 36 bel Slavic Indo-European
Bulgarian 5 35 3459 XPF 6 21 bul Slavic Indo-European
Chuvash 5 82 3748 XPF 8 14 chv Turkic Turkic
Czech 49 475 41567 XPF 5 25 ces Slavic Indo-European
Dutch 93 1315 79153 Epi 17 23 nld Germanic Indo-European
Georgian 6 109 4562 XPF 5 27 kat Kartvelian Kartvelian
Greek 13 178 11609 XPF 5 18 ell Greek Indo-European
Guarani 0.53 32 432 XPF 12* 17 gug Tupi-Guaranı́ Tupian
Hausa 1 13 1535 Epi 5 23 hau West Chadic Afro-Asiatic
Hindi 8 168 6805 Epi 12 41 hin Indic Indo-European
Hungarian 16 116 12529 XPF 14 25 hun Ugric Uralic
Indonesian 23 273 20649 Epi 5 24 ind Malayo-Sumbawan Austronesian
Italian 288 6125 194504 Epi 7 20 ita Romance Indo-European
Kazakh 0.73 57 532 Epi 10 26 kaz Turkic Turkic
Kurmanji Kurdish 45 258 37019 Epi 9 29 kmr Iranian Indo-European
Kyrgyz 37 206 29107 Epi 8 20 kir Turkic Turkic
Maltese 8 149 6195 Epi 6 25 mlt Semitic Afro-Asiatic
Polish 129 498 105585 Epi 8 28 pol Slavic Indo-European
Portuguese 84 1638 71155 Epi 10 25 por Romance Indo-European
Punjabi 1 22 1124 Epi 10 33 pan Indic Indo-European
Romanian 11 192 10351 XPF 7 20 ron Romance Indo-European
Russian 148 1609 99513 Epi 6 22 rus Slavic Indo-European
Sorbian (Upper) 2 18 1381 XPF 8 30 hsb Slavic Indo-European
Swedish 35 594 32626 Epi 17 21 swe Germanic Indo-European
Tamil 198 521 115193 Epi 10 24 tam Southern Dravidian Dravidian
Tatar 28 187 27416 XPF 10 23 tat Turkic Turkic
Thai 133 4537 107728 Epi 19 21 tha Kam-Tai Tai-Kadai
Turkish 30 850 29606 XPF 8 20 tur Turkic Turkic
Ukrainian 56 580 41056 XPF 6 32 ukr Slavic Indo-European
Uyghur 41 281 24970 Epi 8 29 uig Turkic Turkic
Uzbek 0.24 5 161 Epi 6 25 uzb Turkic Turkic
Vietnamese 3 76 2927 XPF 9 26 vie Viet-Muong Austro-Asiatic

Table 1: This release of VoxCommunis includes datasets from 36 languages with hours of speech ranging from
0.24 to 288. Half of these languages were processed with Epitran (“Epi”), and half were processed with XPF G2P
methods. Vowel and consonant inventory sizes, ISO 639-3 codes, genus, and family descriptions of each language
are included as well. *While Guarani has 12 phonemic vowels, the nasal contrast was not transcribed in the output
of the XPF G2P, so our data only reflects 6 vowels.

by the mappings and rules files from Epitran and the
language description pages from XPF.
As an example of the descriptive utility of the corpus
for phonetic research, we present two sample vowel
charts of the F1 × F2 space: one from Chuvash with
an inventory of eight vowels (Figure 1) and one from
Indonesian (Figure 2) with an inventory of five vow-
els. The Chuvash dataset contains five hours of speech
from 82 speakers, and the Indonesian dataset contains
23 hours of speech from 273 speakers.

5. Case Study
The data in VoxCommunis can be a testbed for many
research questions that concern phonetic and phono-
logical theory. We focus here on cross-linguistic
constraints on the phonetics–phonology interface, and
specifically a uniformity constraint on phonetic realiza-
tion. Phonetic realization refers to the mapping from

a sound segment’s phonological features to the corre-
sponding phonetic targets.

Evidence from cross-linguistic, cross-dialectal, and
cross-speaker variation implies a range of permissible
phonetic realizations for each segment. Phonetic uni-
formity builds on a line of previous and related prin-
ciples posited in the literature that emphasize reuse
of phonetic targets that correspond to a phonological
primitive (Maddieson, 1995; Keating, 2003; Ménard
et al., 2008a; Guy and Hinskens, 2016; Chodroff and
Wilson, 2017; Fruehwald, 2017). In essence, unifor-
mity enforces economy and similarity. Similar princi-
ples to uniformity can be found in gestural economy,
which requires reuse of individual gestures across mul-
tiple speech sounds (Lindblom, 1983; Lindblom and
Maddieson, 1988; Maddieson, 1995), and the Maximal
Use of Available Controls (MUAC) principle, which
requires reuse of perceptuomotor controls in the real-
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Figure 1: Chuvash vowels in F1×F2 space (Hz). Each
point corresponds to a speaker-specific pair of means
and is coded for the formant extraction setting. Labels
are centered on the grand means for each category, and
ellipses correspond to ± one standard deviation from
the mean across speakers.

ization of a distinctive feature (Schwartz et al., 2012;
Ménard et al., 2008a).
Chodroff and Wilson (2022) extended this notion of
uniformity and considered three potential types of uni-
formity: pattern uniformity, target uniformity, and con-
trast uniformity to account for the ways in which the
specification of phonetic targets may be constrained
across talkers and languages. With our data, we ex-
plore the influence of target uniformity on the pho-
netic realization of vowels. Target uniformity requires
that the mapping from a distinctive feature value to
its corresponding phonetic target be uniform for all
phonological surface segments specified with the fea-
ture value. We focus here on the realization of vowel
height and backness features, with the corresponding
phonetic targets approximated using the acoustic mea-
sures of vowel F1 and F2.
Though languages will likely differ considerably in the
overall phonetic realization of a given distinctive fea-
ture, such as vowel height, the set of segments that
share the featural segmentation should be strongly cor-
related with one another and be uniform in realiza-
tion. Assuming there is underlying identity in phonetic
realization, we should observe strong correlations of
vowel F1 for vowel segments that are specified with the
same height feature. Correspondingly, we should also
observe strong correlations of vowel F2 for segments
specified with the same backness feature.
Indeed, previous studies have found some support for
these predictions. Vowel F1 is highly correlated be-
tween vowels with shared phonological height across

Figure 2: Indonesian vowels in F1×F2 space (Hz).
Each point corresponds to a speaker-specific pair of
means and is coded for the formant extraction setting.
Labels are centered on the grand means for each cate-
gory, and ellipses correspond to ± one standard devia-
tion from the mean across speakers.
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Figure 3: Correlation of mean F1 between [i] and [u]
across 30 languages with the best-fit regression line.
Each point represents a setting- and language-specific
pair of F1 means.

speakers within a language (e.g., English: Watt (2000),
French: Ménard et al. (2008a), Portuguese: Oushiro
(2019), six unique languages: Schwartz and Ménard
(2019)). Similar to the present study, Salesky et al.
(2020) also examined the predictions of uniformity in
vowel F1 and F2 across languages in pairwise correla-
tions over approximately 10 to 40 languages. The cor-
relations of mean F1 were generally strongest between
vowels with a shared height, and correspondingly, for
mean F2, correlations were generally strongest be-
tween vowels with a shared backness feature. The pat-
terns, however, were not perfect, and along the F1 di-
mension, the correlations were moderate to strong for



5291

basque

basque bulgarian

bulgarian

chuvash

chuvash

guarani

guarani

hausa

hausa

hindi

hindi

italian

italian

kazakh

kazakh

kyrgyz

kyrgyz

portuguese

portuguese

punjabi

punjabi

romanian

romanian

russian

russian

sorbian

sorbian

tamil

tamil

tatar

thai

thai turkish

turkish

uyghur

uyghur

uzbek

uzbek

vietnamese

vietnamese

r = 0.74, p < 0.001

400

450

500

550

400 450 500 550
mean [e] F1 (Hz)

m
ea

n 
[o

] F
1 

(H
z)

setting
high
low

Figure 4: Correlation of mean F1 between [e] and [o]
across 22 languages with the best-fit regression line.
Each point represents a setting- and language-specific
pair of F1 means.

many vowel pairings regardless of their phonological
specification. To demonstrate the utility of this cor-
pus for large-scale cross-linguistic phonetic analysis,
we look here to replicate these previous findings.

5.1. Methods
For the analysis, we employed the set of formants de-
scribed in Section 3.3 in which either the high or low
formant extraction setting was used for each speaker.
Focusing on F1 and F2, we used an average of three for-
mant points at and around the midpoint for each vowel:
the value estimated from the midpoint itself and the val-
ues 10 ms before and after the midpoint. We removed
vowels with an F1 or F2 beyond two standard devia-
tions from the vowel- and setting-specific means within
a language, and discarded vowels whose duration was
greater than 300 ms, under the assumption that these
were alignment or formant-tracking errors. In addition,
only vowel categories produced by at least five speak-
ers per high or low setting in a given language were re-
tained in the analysis. We further analyzed correlations
for vowel pairings shared by at least ten languages. As
there were 22 correlations in each formant analysis for
a total of 44 correlations, we adjusted the significance
level of α = 0.05 to α = 0.001 using a Bonferroni cor-
rection.

5.2. Results and Discussion
For each of the F1 and F2 analyses, six pairwise cor-
relations reached significance, as shown in Tables 2
and 3. For F1, three of the six significant correlations
were consistent with the predictions of target unifor-
mity. We replicate previous significant correlations be-
tween [i] and [u], as well as between [e] and [o] across
languages (see Figures 3 and 4). Similar to the present
analysis, Salesky et al. (2020) also found significant
correlations of mean F1 for [i]–[u], [e]–[o], and [e]–
[a] pairings across languages. Overall, many F1 corre-
lations were strong in magnitude even if they did not

reach significance (see also Salesky et al. (2020)).
For F2, four of the six significant correlations were
consistent with the predictions of target uniformity.
Though we did observe several significant correlations
that were consistent with the predictions of uniformity,
the pattern of correlations did not replicate very well
between the current VoxCommunis and previous Vox-
Clamantis analyses. The significant correlations of
mean F2 for [E]–[a], [i]–[O], and [i]–[a] found here did
not reach significance in the VoxClamantis analysis. In
fact in VoxClamantis, the correlation for [i]–[O] was op-
posite in direction (r = -0.63) and the correlation for
[i]–[a] was effectively non-existent (r = 0.06); the cor-
relation for [E]–[a] was simply weaker in magnitude
at r = 0.32. These discrepancies could be related to
a more idiosyncratic realization of F2 patterns across
languages, which would nevertheless be insightful for
phonetic theory.
Finally, many vowels were also moderately to strongly
correlated with [a] along both the F1 and F2 dimen-
sions. In this case, we speculate that the open vo-
cal tract of [a] could be very informative of speaker
anatomy, and the correlational strength could reflect
anatomical similarity in the productions. That is,
the same speaker contributed to the language-specific
mean for both [a] and a vowel with which it is cor-
related (e.g., [e] for F1). Important to note though,
is that anatomical similarity is unlikely to account for
all strong correlations. The correlational strengths vary
widely across vowel pairings, regardless of the fact that
each speaker contributed to each of the means.
Overall, the current analysis replicated many of the F1
findings of previous analyses, such as the VoxClaman-
tis analysis in Salesky et al. (2020), among others
(Ménard et al., 2008b; Schwartz and Ménard, 2019;
Oushiro, 2019; Watt, 2000). Though some F2 corre-
lations were consistent with the predictions of target
uniformity, so were several different ones in the Vox-
Clamantis analysis. Moreover, some of the significant
F2 correlations found here were entirely different in na-
ture (e.g., magnitude and even direction) in the Vox-
Clamantis analysis. There are several potential factors
that may have led to this discrepancy. First, the Vox-
Clamantis had converted formants into ERB units (log-
arithmic), whereas the present study assessed formant
variation in the hertz (linear) space. This could have an
outsized impact on the higher F2 values relative to the
lower F1 values. Second and not incompatibly with the
first point, these findings may simply reflect an over-
all more idiosyncratic realization of vowel F2 across
languages. It could be that target uniformity does not
apply consistently to vowel backness, or that the as-
sumed phonological and/or phonetic specifications is
ill-defined for vowel categories. At the phonological
level, we had assumed the existence of a vowel back-
ness feature, and at the phonetic level, we assumed that
F2 would be a reasonable approximation of the pho-
netic target corresponding to the vowel backness fea-
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V1 V2 Height # Lang r p

i u ✓ 31 0.83 <0.001
e o ✓ 22 0.74 <0.001
e a 19 0.64 <0.001
E O ✓ 14 0.64 <0.001
o a 22 0.53 <0.001
u o 28 0.46 <0.001

Table 2: Pearson correlations (r) of mean F1 in Hz be-
tween vowel categories. Only correlations that reached
significance after Bonferroni correction (α = 0.001) are
shown here. As formalized in the present analysis, pho-
netic uniformity predicts strong correlations of mean
F1 among vowels with a shared height specification,
which is indicated by the checkmark in the table.

V1 V2 Back # Lang r p

E a ✓ 11 0.77 <0.001
i O 13 0.74 <0.001
i A 12 0.67 <0.001
i a ✓ 24 0.67 <0.001
e a ✓ 19 0.58 <0.001
i E ✓ 18 0.57 <0.001

Table 3: Pearson correlations (r) of mean F2 in Hz be-
tween vowel categories. Only correlations that reached
significance after Bonferroni correction (α = 0.001) are
shown here. As formalized in the present analysis, pho-
netic uniformity predicts strong correlations of mean
F2 among vowels with a shared backness specification,
which is indicated by the checkmark in the table.

ture. These assumptions warrant additional research.

6. Conclusion
The VoxCommunis corpus aims to facilitate large-scale
phonetic analyses, with the peripheral goal of improv-
ing speech technologies for a broad range of languages.
We described our methods for processing 36 language
datasets from the Common Voice corpus, including
G2P conversion, acoustic model training, and vowel
formant feature extraction. We presented our data with
descriptive and quantitative measures, and highlighted
the utility of VoxCommunis in a cross-linguistic case
study of phonetic uniformity.
Future directions include expanding this resource in
several ways. Phonetic transcriptions for the same
phoneme can vary across languages depending on an
individual linguist’s or a particular resource’s prefer-
ence. Because of this ambiguity, G2P tools have the po-
tential to improve in quality (or accuracy) and in cover-
age. Employing other existing pronunciation lexicons
and G2P tools (e.g. WikiPron (Lee et al., 2020) and
Phonetisaurus (Novak et al., 2016)) on the Common
Voice corpus would be beneficial. Where overlap of
language coverage between G2P systems occurs, one

could also compare the quality of these methods.
Scientifically, future analyses could include testing
phonetic and phonological theories like Dispersion
Theory, which predicts that phonemes in a language’s
inventory are maximally “dispersed” across phonetic
space in order to preserve perceptual distinction (Lil-
jencrants and Lindblom, 1972). Additional research
on phonetic uniformity (i.e., as it applies to different
segment–target pairings) is also warranted. As Vox-
Communis is made freely available to our broader sci-
entific communities, it can inform additional typologi-
cal or even language-specific studies at other linguistic
levels (e.g., syntax, morphology, etc.). Phonetic insight
stemming from this corpus may inform and improve
automatic speech recognition, text-to-speech systems
and automatic speaker adaptation processes, especially
for languages with few linguistic resources.
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