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Abstract
This paper introduces an algorithm to convert Universal Dependencies (UD) treebanks to Combinatory Categorial Grammar
(CCG) treebanks. As CCG encodes almost all grammatical information into the lexicon, obtaining a high-quality CCG derivation
from a dependency tree is a challenging task. Our algorithm relies on hand-crafted rules to assign categories to constituents,
and a non-statistical parser to derive full CCG parses given the assigned categories. To evaluate our converted treebanks, we
perform lexical, sentential, and syntactic rule coverage analysis, as well as CCG parsing experiments. Finally, we discuss how
our method handles complex constructions, and propose possible future extensions.
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1. Introduction
Combinatory Categorial Grammar (Steedman, 2000)
is a lexicalized grammar formalism that can capture
both syntactic and semantic information, while allowing
fast and efficient parsing. Derived syntactic structures
and semantic representations can be used for various
downstream tasks without task-specific training data,
such as question answering (Clark et al., 2004), re-
lation extraction (Krishnamurthy and Mitchell, 2012),
and recognizing textual entailment (Martı́nez-Gómez et
al., 2017). The English CCGbank (Hockenmaier and
Steedman, 2007), one of the first available treebanks
for CCG, plays an important role in the development of
many wide-coverage CCG parsers for English. Having
a similar resource for other languages and domains ac-
celerates NLP research, in particular on resource-scarce
languages/domains where one cannot rely on massive
training data needed for training large neural network
models (Peters et al., 2018; Devlin et al., 2019). Multi-
lingual CCG resources also contribute to cross-linguistic
research on syntactic/semantic theories and multilingual
CCG parsing.
Since manual annotation is expensive, conversion from
a source treebank is a preferable approach. Besides En-
glish, independent works have been done in the past to
create CCG treebanks for several languages from source
treebanks of different grammar formalisms, such as for
German (Hockenmaier, 2006), Italian (Bos et al., 2009),
Chinese (Tse and Curran, 2010), Japanese (Uematsu et
al., 2013), and Hindi (Ambati et al., 2018). Such works
often involve conversion rules that are specific to the
languages and treebanks being converted, making the
process difficult to adapt and generalize to others.
In this paper, we propose a method to create a mul-
tilingual collection of CCG treebanks by converting
from dependency treebanks. To minimize the need for
language-specific conversion rules, we select the Uni-
versal Dependencies (Nivre et al., 2016) as our source

treebanks. UD, as of v2.9, contains over 200 treebanks
in 122 languages that follow cross-linguistically consis-
tent annotation guidelines.1 Our goal is to develop a
universal set of hand-crafted rules that can be applied to
a wide range of languages in UD, while sacrificing as
little as possible the conversion quality and coverage of
each converted treebank. Converted CCG treebanks can
be used directly to train multilingual CCG parsers as we
demonstrate in the experiments, while one can also use
our resource as a starting point to further improve the
quality of each treebank by adding language-specific
conversion rules. Our work thus opens up a new re-
search direction for the development of CCG resources,
parsers, and semantic analysis that uses them.
A high-level overview of our conversion process is illus-
trated in Figure 1. Our algorithm consists of two phases,
each corresponding to a single pass through a whole
treebank in UD:
Phase 1:

1. Binarize dependency trees based on a pre-defined
obliqueness hierarchy to match the binary struc-
tures of CCG derivations.

2. Apply hand-crafted rules that assign CCG cate-
gories to noun phrases, modifiers, function words,
and punctuation marks.

3. Apply CCG’s combinatory rules to infer the cate-
gories of unassigned constituents.

Phase 2:
1. Gather votes from assigned categories in Phase 1 to

decide the most common word order of a treebank.
2. Based on the most common word order, reassign

CCG categories to predicates.
3. Apply a non-statistical CCG parser to generate can-

didate parses given currently assigned categories.
4. Filter out parses that do not match our binarized

1https://universaldependencies.org/.

https://universaldependencies.org/
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Figure 1: Overview of our proposed approach for converting a UD tree to its equivalent CCG derivation.

Forward Application (>) X/Y Y ⇒ X
Backward Application (<) Y X\Y ⇒ X
Forward Composition (>B) X/Y Y/Z ⇒ X/Z
Backward Composition (<B) Y\Z X\Y ⇒ X\Z
Forward Crossed Composition (>BX) X/Y Y\Z ⇒ X\Z
Backward Crossed Composition (<BX) Y/Z X\Y ⇒ X/Z
Forward Type-raising (>T) X ⇒ T/(T\X)
Backward Type-raising (<T) X ⇒ T\(T/X)

Table 1: Basic CCG combinatory rules.

trees and hand-crafted rules in Phase 1.
Section 3 discusses each of the steps above in more
detail. Overall, Phase 1 identifies and assigns initial
categories to constituents, while Phase 2 corrects and
finalizes obtained CCG parses.
We evaluate the effectiveness of our algorithm by per-
forming coverage analysis and parsing experiments on
the converted treebanks. Analysis results on a subset of
21 treebanks of different 21 languages, as well as discus-
sion on the strengths and limitations of our algorithm,
are presented in Section 5.

2. Background
2.1. Combinatory Categorial Grammar
CCG is a strongly lexicalized grammar formalism, in
which words are assigned syntactic categories that gov-
ern how they interact with other constituents. There are
two types of categories: atomic categories, such as S
(for sentences) or NP (for noun phrases), and complex
categories, which are in the form of X/Y or X\Y , with
X and Y being categories themselves. X/Y (or X\Y )
takes an argument Y to the right (or left), and yields
a result X . In this case, X/Y is also called a functor
category, and Y is called an argument category. For ex-
ample, an intransitive verb in English typically receives
category S\NP , which means it takes a noun phrase
argument to its left and returns a sentence as a result.
CCG also contains a set of rules that defines how cat-
egories can combine with each other. Table 1 shows a
list of basic combinatory rules used in CCG. In addi-
tion, non-combinatory rules such as unary and binary

type-changing rules are often included (e.g. S\NP ⇒
NP\NP ), as they have been shown to alleviate the
problem of category proliferation during treebank con-
version (Hockenmaier and Steedman, 2002).

2.2. Universal Dependencies
UD is a project to create cross-linguistically consistent
dependency annotation guidelines. As of v2.9, there
are 217 treebanks in 122 languages. One main differ-
ence between UD and other dependency grammars is
its treatment of function words. To achieve better paral-
lelism among annotations of different languages, func-
tion words are treated as dependents of content words
(Nivre et al., 2016). UD is being actively developed,
with adjustments to dependency definitions and new
features such as Enhanced Dependencies (Nivre et al.,
2020). The current version of UD consists of 37 univer-
sal dependency relations, 17 universal part-of-speech
(POS) tags, and 24 universal features.

2.3. Related Work
The English CCGbank (Hockenmaier and Steedman,
2007) is one of the pioneering works to create a tree-
bank for CCG, by converting from the Penn Treebank
(Marcus et al., 1993). From then on, there have been
multiple works to create CCG treebanks for German
(Hockenmaier, 2006), Italian (Bos et al., 2009), Chinese
(Tse and Curran, 2010), Japanese (Uematsu et al., 2013),
and Hindi (Ambati et al., 2018). For works that involve
converting from a dependency treebank, a common ap-
proach is to first convert to constituency trees, binarize
the constituency trees, then apply conversion rules to the
binarized trees. Due to a large number of cross-serial
dependencies in the Hindi dependency treebank, Am-
bati et al. (2018) diverge from this approach by first
extracting a CCG lexicon from the dependency tree-
bank, then using a non-statistical CCG parser to attain
CCG derivations. In general, all previous works involve
conversion methods that are specific to the languages
and treebanks being converted, making it difficult to
generalize to others. Moreover, source treebanks for
German, Italian, and Japanese also contain additional
information regarding phrase structures (German), or
predicate-argument structures (Italian, Japanese), which
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Figure 2: (a) is a standard CCG representation, with
a dependency tree shown on top. (b) is an equivalent
constituent structure.

help alleviate certain ambiguities, such as argument-
adjunct distinction. This distinction, or lack thereof, is
a big obstacle when converting UD treebanks to CCG
derivations.
Recently, Yoshikawa et al. (2019) propose a neural
network-based model to automatically convert depen-
dency trees to CCG derivations for parser domain adap-
tation. However, their method requires an existing CCG
parser for fine-tuning, which is not available for most
languages in UD. Evang and Bos (2016) propose an
annotation projection approach to induce CCG via par-
allel corpora; however, the relatively small number of
parallel corpora available compared to UD limits its
range of applicability. Reddy et al. (2017) introduce an
interface that converts UD dependency trees to logical
forms. Compared to their work, our conversion to CCG
allows more flexibility in the types of semantic repre-
sentations that could be derived, such as first-order logic
neo-Davidsonian representations (Bos et al., 2004), or
higher-order logic representations (Mineshima et al.,
2015), while also retains the syntactic information en-
coded in UD. Additionally, we also perform larger-scale
experiments and analysis on more languages. Our bina-
rization method takes inspiration from their work.

3. The Conversion Process
A simple, typical CCG derivation is illustrated in Fig-
ure 2. To obtain a unique and complete derivation from
a dependency tree, we need to:

1. Identify constituents of the dependency tree,
2. Identify the category of each constituent,
3. Identify the combinatory rules to be applied.

The constituent structure of a CCG derivation can be
represented in the form of a binary tree (Figure 2(b)).
Since dependency trees are structurally different, a bina-
rization step is required. As the binarized trees also rep-
resent the constituent structures of the sentences being
converted, thus answering requirement (1), an oblique-
ness hierarchy is necessary to impose a correct traversal
order during binarization of the dependency trees. The
details of this step are explained in Section 3.1.1.
To meet requirement (2), we design hand-crafted rules
(Section 3.1.2) that assign categories to noun phrases,
modifiers, function words, and punctuation marks.
Unassigned constituents are later inferred using CCG’s

I finally did it

nsubj

advmod

root

obj

finally I did it

advmod

nsubj

root

obj

I finally did it

finally I did it

(a)

(b)

(i)

(ii)

nsubj

advmod
obj

nsubj

obj

advmod

Figure 3: (a) and (b) show two sentences with a slight
difference in word order. Without position information,
both (a) and (b) would be binarized into (i) according to
the obliqueness hierarchy (obj > advmod > nsubj).
However, (i) leads to an invalid combination for (b),
as “finally” cannot combine with “did it” due to being
non-adjacent. (ii) shows the correct binarization for (b)
when the condition for words’ positions is applied, as it
puts nsubj before advmod in the traversal order.

application rules in Phase 1 (Section 3.1), or through the
results of non-statistical parsing in Phase 2 (Section 3.2).
Finally, the parser also gives us a set of most probable
combinatory rules applicable to our trees, which we can
use to satisfy requirement (3).

Preprocessing: We ignore most dependency subtypes,
such as obl:tmod, as these labels are not used con-
sistently across treebanks of different languages. We
also remove quotation marks from UD trees, following
Hockenmaier and Steedman (2007).

3.1. Phase 1
3.1.1. Binarization
We binarize dependency trees using a modified version
of the binarization method proposed by Reddy et al.
(2017). The method traverses the dependency trees
recursively from top to bottom, and builds binarized
trees by gradually adding subtrees in the order it tra-
verses. Since a binarized tree decides which constituents
combine with each other, their method depends on an
obliqueness hierarchy to traverse in an order that can
lead to syntactically sound combinations. An oblique-
ness hierarchy is an ordering of grammatical relations
based on their obliqueness; the hierarchy they use is
similar to that defined in grammar formalisms such as
Head-driven Phrase Structure Grammar (HPSG, (Pol-
lard and Sag, 1994)). However, their method is designed
to extract logical forms, and thus does not take into ac-
count the position of each constituent in a sentence. This
can lead to invalid CCG combinations, as combinatory
rules in CCG are only applied to string-adjacent entities.
We adapt Reddy et al. (2017)’s method to our task by
adding a position-based condition: (1) for dependents of
the same distance to the head, traverse in the order of the
obliqueness hierarchy; (2) for dependents of different



5223

distances to the head, traverse closer dependents first.
Here, “distance” is measured by the number of siblings
between a dependent and its head (Figure 3).

3.1.2. Category Assignment Rules
This section describes our hand-crafted rules for cate-
gory assignment. Similar to previous works on CCG
induction (Bisk and Hockenmaier, 2012), we assume
two atomic categories S and NP for our target gram-
mar. Categories are assigned to internal nodes of the
binarized trees obtained in the previous steps. Due to
the varied word-order tendencies of different languages,
we set the default slash direction of complex categories
to “|”, which can either take value “/” or “\”. This
value is either decided through heuristic rules based on
relative positions of functors and arguments, or through
majority voting in Phase 2. The rules below do not
depend on one another, and can be applied in any order.

Root: We determine the category of a whole sentence
through the root of the dependency tree. A sentence
is assigned category NP if:

• The root has one of the following UPOS tags:
NOUN, NUM, PRON, PROPN, SYM,

• The root does not have any nominal subject,
clausal subject, or expletive children.

The sentence is assigned category S|NP if:
• The root does not have one of the following POS

tags: NOUN, NUM, PRON, PROPN, SYM,

• The root does not have any nominal subject,
clausal subject, or expletive children.

Otherwise, the sentence is assigned category S.

Punctuation: We follow Hockenmaier and Steedman
(2007) and set the category of each punctuation mark
to be the punctuation mark itself. Exceptions include
dashes, parentheses, and variants of open and closing
brackets in different languages (e.g., “【】” in Japanese,
“《》” in Japanese, Chinese, and Korean). These punc-
tuation marks are treated like normal constituents and
carry standard CCG categories.

Adnominal clause: An adnominal clause (acl) mod-
ifies a nominal, and thus generally has category
NP |NP . If an adnominal clause is not marked by
any markers (mark), we apply a type-changing rule
to change its original category to NP |NP (Figure 4).
The original category of an adnominal clause exclud-
ing markers is set to S if it has a clausal or a nominal
subject, and S|NP otherwise.

Relative clause: A relative clause is tagged as a sub-
type of an adnominal clause in UD (acl:relcl), but
it requires a separate rule to produce a correct CCG
derivation:

• The relative pronoun (identified through fea-
ture PronType=Rel) is assigned category
(NP |NP )|(S|NP ), as it takes a sentence missing
a subject or an object as an argument, and yields a
nominal modifier.

I saw him working

acl

NP S|NP

NP\NP

NP

the  fact that I like

acl

NP

NP\NP

NP

coffee
S

< <

(NP\NP)/S
>

mark

Figure 4: On the left is an example of a unary type-
changing rule for acl. The slash direction of NP |NP
is by default “|”, but can be inferred to be “\” based
on the adjective clause’s relative position to its head.
On the right is an example of an adnominal clause with
a marker “that”, which absorbs category S of “I like
coffee” and changes it to NP |NP .

He  says

ccomp

(S|NP)/S

S|NP

S

that  he  likes  teaMy  job    is

ccomp

(S|NP)/(S|NP)

S|NP

S|NP

to  write  papers

> >

She       looks

xcomp

(S|NP)/(S|NP)

S|NP

S|NP

great

>

She  becomes

xcomp

(S|NP)/NP

S|NP

NP

a  doctor

>

Figure 5: Examples of our rules for ccomp/xcomp.

• If a relative clause does not have a relative pronoun,
its original category is set to S|NP , and is type-
changed to NP |NP .

• In the case of an interrogative pronoun, the con-
stituent consisting of the interrogative pronoun and
its head is assigned category (NP |NP )|(S|NP ).

Relative clauses require additional handling in Phase 2
of the algorithm, which we describe in Section 3.2.

Adverbial clause: Similarly, an adverbial clause
advcl usually has category (S|NP )|(S|NP ), as
it modifies a verb or a predicate. If an adverbial
clause does not have any markers (mark), we apply
a type-changing rule to change its original category
to (S|NP )|(S|NP ). We set the original category of
an adverbial clause excluding markers to S if it has a
clausal or a nominal subject, and S|NP otherwise. An
adverbial clause can also appear in sentential modifier
locations, in which case its category would be S|S.

Clausal complement: We assign category S to a
clausal complement (ccomp) if it has a subject, and cat-
egory S|NP if it does not. An open clausal complement
(xcomp) is assigned category NP if its head element has
one of the following UPOS tags: NOUN, NUM, PRON,
PROPN, SYM. Otherwise, it is also assigned category
S|NP (Figure 5).

Clausal subject: We only apply rules for a clausal
subject (csubj) if it has another subject within. In this
case, if a clausal subject is marked by a marker (mark),
it is assigned category S. Otherwise, it is assigned cate-
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Figure 6: Examples of our rule applied to csubj.
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S S\S

S
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Figure 7: Analysis (a) shows an example of our
rule for parataxis. Analysis (b) illustrates the correct
coordination-like derivation for side-by-side sentences,
while analysis (c) shows our compromise.

gory NP (Figure 6). In other cases, clausal subjects are
treated like normal core arguments, and their categories
are inferred through the category inference step.

Parataxis: The UD guidelines detail five different
constructions where parataxis can appear: side-by-side
sentences, reported speech, news article bylines, inter-
jected clauses, and tag questions. Unfortunately, this
makes it difficult to define a common rule for all the
constructions. For example, side-by-side (“run-on”) sen-
tences and reported speech have different CCG analyses,
but they are hard to distinguish just by their dependency
structures. We decide to treat the dependent constituent
as a modifier to the head constituent (Figure 7).

Noun phrase: Category NP is assigned to tokens
that have one of the UPOS tags: NOUN, NUM, PRON,
PROPN, SYM, or non-noun tokens with accompanying
determiners that act as nominal subjects or objects, if
they do not modify any other constituents. Otherwise,
their categories are inferred through the category infer-
ence step.

Vocative/dislocated/discourse/overridden disfluency
elements: Since these elements are optional to the
grammar and meaning of a sentence, we treat them as
modifiers to their head. As a result, they carry category
X|X , where X is the category of their head.

3.1.3. Category Inference
Our rules described in Section 3.1.2 assign categories
to only a subset of constituents. As a result, there are

I work on Sunday

case

obl

NP((S\NP)\(S\NP))/NP
>

(S\NP)\(S\NP)

S\NP

<
S\NP

NP

<
S

nsubj

root

私 は 説明 し

NP\NP
<

S\NPNP

<
S

ます

NP

case

nsubj aux

aux

root

"I explain"

I TOPIC explain do POLITE

Figure 8: Examples of situations where categories for
case markers may differ. On the left, case marker “on”
has a category of the form X|Y , while on the right, case
marker “は” (topic marker) has a category of the form
X|X to preserve the category of its head “私” (“I”).

bound to be unassigned categories. In these situations,
we follow CCG’s forward and backward application
rules to infer the missing categories from existing ones.
To make category inference possible, we need to identify
how constituents should be combined, and thus identify
the functor/argument role of each constituent.
Our rules for identifying functors and arguments are
designed around the relationship between heads, argu-
ments, and modifiers. Specifically:

1. We set the head of a head-argument relation
(nsubj, csubj, obj, iobj, xcomp, ccomp,
expl) as a functor, and its dependent as an argu-
ment.

2. We set the head of a head-modifier relation (the rest
of the UD relations, with the exception of conj,
cc, and punct) as an argument, and its dependent
as a functor.

In general, a functor category in case (1) has the
form X|Y , where X and Y are usually different cat-
egories. This means that it takes one category as in-
put and outputs a different category. Transitive verbs
((S\NP )/NP ) are one example. In case (2), a functor
category usually has the form X|X , meaning it inputs
and outputs the same category. Nominal modifiers or
multi-word expressions (NP |NP ) are typical cases.
Given a CCG combination with the same result and
argument category, we can easily infer the functor cate-
gory. One exception to rule (2) is case markers (case).
A case marker can have the form X|Y if its head is a
modifier to another constituent, and the form X|X if its
head is an argument to another constituent (Figure 8).
The category inference step is run top-down, and is
repeated until no more categories can be inferred. There
are two situations where additional logic is required:

Punctuation: As mentioned in Section 3.1.2, dashes,
parentheses, and other brackets follow the same CCG
combinatory rules as normal constituents. Other punc-
tuation marks follow a separate rule (e.g. , X ⇒ X),
similar to the English CCGbank.
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Coordination: We use the following non-
combinatory rules for coordination, also similar
to the English CCGbank. The order of the categories on
the left hand side does not matter.

conj X ⇒ X[conj]

, X ⇒ X[conj]

X[conj] X ⇒ X

3.2. Phase 2
3.2.1. Word Order Majority Voting
In Phase 1, we can deduce the slash direction in each
category through relative positions between functors
and arguments. However, it is not guaranteed that all
cases are covered, as shown in the example of “read”
and “I read” in Figure 1. To handle these situations, we
keep track of the frequency of each category assigned
in Phase 1, and apply majority voting to determine the
most common word order of a treebank. For example, in
Japanese GSDLUW, category (S\NP )\NP for transi-
tive verbs is assigned 6.9 times more frequently than the
next most popular category (S/NP )\NP after Phase
1, which can be explained by the SOV order of Japanese.
Word order majority voting is particularly useful when
we need to determine the categories of predicates in
the cases of long-distance dependency through extrac-
tion. In those cases, core arguments are often extracted
from their canonical positions; using majority voting
ensures the correct categories are assigned. We discuss
the detailed procedure in the next sections.

3.2.2. Category Reassignment for Predicates
Categories of certain predicates can be correctly deter-
mined through CCG’s application rules alone, such as
the category (S\NP )/NP of like in Figure 2. Our algo-
rithm relies on an assumption that basic clause structures
like Figure 2 are more common in UD treebanks than
other constructions where word order may be changed
(e.g., through extraction), and thus the categories of
predicates in these cases represent the most common
word order of a treebank. In this step, when we detect a
core argument of a predicate not appearing in its most
common position, we reassign an appropriate majority-
voted category to the predicate, overwriting its existing
category inferred in Phase 1.

3.2.3. Candidate Parse Generation
Given all the categories assigned in Phase 1 and re-
assigned in Phase 2 so far, we apply a non-statistical
parser to generate a set of candidate parses. We use a
custom implementation of NLTK’s CCG parser (Bird
and Loper, 2004), in which we add the forward crossed
composition rule that is missing from the official imple-
mentation. NLTK’s CCG parser generates parses only
from categories, without taking into account surface
words, and thus can be applied universally. Using a
parser allows us to efficiently explore possible parses,
while making sure that the final parse is valid.

Name      something         you        find   ...

(S\NP)/NP NP NP

NP
<

obj

root 

S/(S\NP)

(S\NP)/NP

S/NP

NP\NP

>B

>T

S\NP
>

acl:relcl

nsubj

Figure 9: Analysis of a sentence with a relative clause.

3.2.4. Candidate Parse Filtering
Since the parser is non-statistical, it generates a large
number of candidate parses, which need to be filtered.
We exclude all parses that do not match the binarized
trees and manually assigned categories described in
Phase 1, and give preference to the parse that uses the
smallest number of composition and type-raising rules.

4. Discussion
In this section, we discuss how our algorithm can be
used to handle certain cases of long-distance depen-
dency and its limitations. We provide additional exam-
ples in several languages in the Appendix.

4.1. Case Study: Relative Clauses
A relative clause typically misses a subject or an object
as an argument. In Phase 1, we assign the category of
a relative clause to be S|NP . The slash direction of
this category is determined based on which argument
is missing, and the canonical position of the missing
argument. In the example in Figure 9, we infer from
the dependency structure and the majority-voted word
order that:

• find is a predicate with two arguments, one of
which is missing,

• Since the predicate find already has a nominal sub-
ject, it is missing an object argument,

• Since in English, an object is commonly to the
right of its verb, we set the category of the relative
clause to S/NP .

The category of find is assigned (S\NP )/NP , which
is the most common category for a verbal predicate with
two arguments in English UD treebanks. Given these
categories, we apply the NLTK’s CCG parser to the
subtree that spans the relative clause you find to get the
desired derivation.

4.2. Case Study: Wh-questions
In some wh-questions in English UD treebanks, wh-
words are annotated as objects of the main predicates of
the wh-question. Similarly, for the example in Figure 10,
we can infer that:

• call is a predicate with three arguments (one sub-
jects and two objects),
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What        would         you             call             the    device ...

S/(S/NP)

NP ((S\NP)/NP)/NP

obj
root 

S/(S\NP)

NP/NP

S/NP
>B

>T

S
>

(S/NP)/(S/NP) NP NP
>

NP
>

(S\NP)/NP

>
S/NP

obj

aux

nsubj det

Figure 10: Analysis of a wh-question.

• Since in English, objects are commonly to the right
of their verb (through majority voting), What is an
extracted element and not in its canonical position,

• As a result, the category of the phrase after What
should be S/NP to reflect that an argument to the
right is being extracted.

The category of call is assigned ((S\NP )/NP )/NP ,
which is the most common category for a verbal predi-
cate with three arguments in English. After applying the
NLTK’s CCG parser, we arrive at our final derivation.

4.3. Limitations
Our procedure described in Phase 2 is most effective
when there is a sign of a missing argument (e.g, in rela-
tive clauses), or when an extracted argument is explic-
itly tagged in the dependency tree (e.g., in wh-questions,
sentences with topicalization). In other cases such as
tough movement, where there is no explicit dependency
between the subject of the main verb and the object of
the embedded verb, our method cannot yet be reliably
applied. In addition, the use of majority voting is more
suitable for languages with a dominant word order. Un-
like the Penn Treebank, there are no traces in UD to
identify the canonical position of an extracted or elided
element. Languages with a considerable level of word
order freedom such as Dutch or German will require
more information than what UD currently provides.
We conjecture that predicate-argument structures are
essential to handle both of these problems. In future
work, we plan to investigate the viability of using addi-
tional data sources, such as the Enhanced UD (Nivre et
al., 2020), the Universal Proposition Bank (Akbik et al.,
2015), or integrating language-specific rules to further
improve our conversion.
Additionally, dependency trees with the orphan rela-
tion are currently not converted. In UD, orphan is
usually used in elliptical constructions where a pred-
icate is elided. In English, for example, orphan is
used to to handle gapping and stripping; however, these
constructions cannot be analyzed with standard CCG
combinatory rules (Steedman, 2000).
Finally, dependency trees with crossing arcs present a
challenge for binarization. Certain treebanks, such as
Ancient Greek and Latin treebanks, have a high number

of sentences with crossing dependencies, which lead to
significantly lower conversion rates. These sentences
are also not being converted by our algorithm, and will
be another focus of our future work.

5. Evaluation
For the following experiments, treebanks with their sur-
face stripped off, or with more than 20% of their sen-
tences containing dependency label dep or UPOS tag X,
are excluded, as we depend on the surface for our punc-
tuation rules, and treebanks having too many dep or
X suggest an underlying problem with their annotation
quality.2 In addition, we also exclude treebanks without
a proper train/test split, as it is necessary for our
evaluation. Treebanks of languages tagged as having
“No dominant order” on The World Atlas of Language
Structures (WALS, (Dryer, 2013)) are also excluded.
To assess the conversion quality, we conduct lexical,
sentential, and syntactic rule coverage analyses on the
converted treebanks, which are commonly used metrics
for evaluating induced grammars (Hockenmaier and
Steedman, 2007; Tse and Curran, 2010; Uematsu et al.,
2013). CCG parsing experiments are also performed on
treebanks with more than 10,000 complete derivations
in the training set. For languages that have more than
one such treebank, we choose the largest treebank avail-
able. Figure 11 summarizes our conversion and parsing
results on 21 treebanks of 21 languages. Complete
conversion statistics on 101 treebanks of 59 languages
tested are reported in Table 2 of the Appendix.

5.1. Conversion Rate and Coverage
Conversion rate: A conversion rate of a treebank
measures the percentage of its sentences that are fully
converted to CCG derivations. We observe better than
80% conversion rates for 62 treebanks (out of 101) of
35 languages (out of 59). Most conversion errors can
be attributed to cross-serial dependencies, dependency
relation dep, and UPOS tag X. The abundance of dep
and X suggests lower annotation quality of some tree-
banks in UD, but it also means that conversion rates can
be further increased by improving the source treebanks.

Lexical coverage: We treat the converted train set
of each treebank as the gold standard, and the dev and
test sets as unseen data. Lexical coverage measures
how well the gold lexicon covers the categories in un-
seen data. Standard treatment of rare words is applied;
tokens that appear less than five times are replaced by
“$UNK$”. Unassigned categories are not included in
the analysis. We achieve over 90% lexical coverage on
79 treebanks of 48 languages (Table 2, Appendix).

Sentential coverage: Sentential coverage measures
the percentage of sentences in unseen data that can be
fully assigned with categories from the gold lexicon.

2In UD, dep and X are only used when it is impossible to
assign a more precise label, or when there are problems with
the conversion/parsing software.



5227

0
20
40
60
80

100

co
nv

er
sio

n
ra

te
 (%

)

conversion
rate

0
20
40
60
80

100
co

ve
ra

ge
(%

) lexical cov.
sentential cov.
rule cov.

Cata
lan

ClcC
hin

ese
Czec

h
En

glis
h

Est
on

ian
Fin

nis
h

Fre
nch

Ice
lan

dic
Ita

lian
Ko

rea
n

Lat
in

Lat
via

n

Norw
eg

ian

OldE
ast

Sla
vic

OldF
ren

ch

Pe
rsi

an
Po

lish

Rom
an

ian

Russ
ian

Sp
an

ish

Tu
rki

sh
0

20
40
60
80

100

pa
rs

in
g

pe
rfo

rm
an

ce
 (%

)

unlabelled f1
labelled f1
supertagging
acc.

Figure 11: Conversion statistics and CCG parsing results on 21 treebanks of 21 languages, sorted by alphabetical
order. Detailed numbers are reported in Table 3 of the Appendix.

We use fully converted sentences in the dev and test
sets for sentential coverage analysis. The majority of
our converted treebanks achieve between 55% and 70%
coverage. In reality, we observe that most sentences
in the dev and test sets contain only a small num-
ber of tokens not covered by the gold lexicon. This
explains the high lexical coverage but average sentential
coverage, and also suggests that sentential coverage can
greatly benefit from minor manual correction.

Syntactic rule coverage: Syntactic rule coverage on
unseen data is measured by calculating the percentage of
CCG rule instantiations in dev and test sets that exist
in the train set. We are able to achieve near-perfect
coverage for all languages.

Parsing performance: We use an off-the-shelf CCG
parser depccg (Yoshikawa et al., 2017) on 21 treebanks
with more than 10,000 sentences in the training set. We
run the training script for 20 epochs on each treebank,
keeping all other default hyper-parameter settings. No
pre-trained language model is used. Parsing perfor-
mance is evaluated on the test split of each treebank.
While a standard evaluation metric for CCG parsing
is based on the recovery of dependencies in predicate-
argument structures, such information is not trivial to ob-
tain from UD. As a result, we choose a more traditional
metric, PARSEVAL (Black et al., 1991). We achieve
over 80% unlabelled PARSEVAL F1 and supertagging
accuracy on most tested treebanks, suggesting the learn-
ability of our induced grammars, as well as the viability
of obtaining a good CCG parser for many languages
from the converted treebanks.

5.2. Manual Evaluation
We randomly sampled and manually checked 100 sen-
tences from each test set of the obtained English-
EWT, Japanese-GSDLUW, and Vietnamese-VTB tree-
banks, languages that we have expert speakers of.

English: We found 6 cases (out of 25) of incorrect bi-
narization of coordination structures. These are caused
by UD assigning a single label conj to all types of coor-
dination. We speculate that introducing a separate label
for each type (coordination between verb phrases/noun
phrases/sentences/etc.) would lead to better results.

Another group of binarization errors involves yes-no
questions (5 cases) and embedded questions (one case).
Since in UD, auxiliary verbs, such as did in did you
do it?, are dependents of the main verb, our algorithm
fails to binarize did you as a constituent. We believe
these situations are best handled as an English-specific
problem, thus necessitating a specific binarization rule
for English. Finally, we found one error involving a
sentence with inversion, caused by the lack of a proper
category assignment rule for this phenomenon.

Japanese: There are two main areas where our in-
duced grammar diverges from previous work (Uematsu
et al., 2013). First, we assign S\NP to sentences with-
out overt subjects, while Uematsu et al. (2013) accept
them as S. Second, we assign (S\NP )\(S\NP ) to
auxiliary verbs (e.g,ます,た, etc.), while they assign
S\S. We consider these to be simply variations in our
grammars. Lastly, we noticed some annotation artifacts
related to markers (mark; e.g.,て,から, etc.)3 that led
to several cases with non-standard derivations.

Vietnamese: We found 4 cases (out of 16) of incorrect
binarization of coordination structures (similar to En-
glish), and 10 cases of incorrect categories assigned due
to annotation errors (e.g., copulas tagged as conjunc-
tions, head noun phrases in zero copula constructions
tagged as compound nouns, etc.). These cases reaffirm
that the quality of our obtained derivations is strongly
tied to the quality of the source treebanks.

6. Conclusion
We introduced a rule-based algorithm to create CCG
treebanks from UD. We believe the CCG derivations
obtained from our algorithm can serve as a starting point
for CCG treebank development and parsing research in
many languages, from which further improvements can
be made by applying additional language-specific rules
or manual fine-tuning to the converted treebanks.

7. Acknowledgements
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3Markers are typically used to mark subordinate clauses,
but in Japanese they are used in many different constructions.
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Bekki, D. (2015). Higher-order logical inference
with compositional semantics. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 2055–2061, Lisbon, Por-
tugal, September. Association for Computational Lin-
guistics.

Nivre, J., de Marneffe, M.-C., Ginter, F., Goldberg, Y.,
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A. Appendix

Treebank
Conversion Rate Statistics Coverage (dev) Coverage (test)

#Sent. %Converted %Cross. #Tok. #Cat. #Cat.>1 #Cat./Tok. #Rules #U. Rules %Lex. %Sent. %Rule %Lex. %Sent. %Rule
Ancient Greek 30999 46.72 48.69 27051 651 393 1.8 125738 1554
-PROIEL 17080 55.55 37.52 16531 506 314 1.71 80496 1093 89.12 57.88 92.66 90.49 68.39 99.35
-Perseus 13919 35.89 62.38 13733 419 256 1.48 45242 1002 90.72 40.68 90.35 92.40 54.79 93.08
Basque-BDT 8993 63.84 31.52 17899 423 261 1.74 65982 940 93.60 65.91 99.02 93.50 67.07 98.83
Bulgarian-BTB 11138 91.97 3.06 27463 393 253 1.6 130764 795 95.13 73.02 99.55 95.54 76.83 99.69
Buryat-BDT 927 88.13 8.20 3850 140 83 1.35 8218 305 82.19 39.38 71.61
Catalan-AnCora 16678 75.90 5.72 29539 805 483 2.08 368016 1698 92.12 60.80 99.76 92.41 65.95 99.65
Chinese 9994 78.96 1.13 25643 534 525 2.5 197074 1037
-GSD 4997 78.25 2.24 16754 527 323 1.9 97453 1028 90.67 44.10 99.43 90.26 46.77 99.53
-GSDSimp 4997 79.67 0.02 17001 529 329 1.9 99621 1028 90.64 44.64 99.44 90.31 46.58 99.54
Classical Chinese-Kyoto 58301 99.07 0.00 8418 298 213 3.99 238296 598 81.44 87.82 99.87 81.59 88.08 99.87
Coptic-Scriptorium 2010 71.39 13.63 2243 265 174 2.79 32841 419 85.71 52.94 99.05 84.54 52.96 99.23
Croatian-SET 9010 79.84 8.45 32536 678 431 1.71 146864 1367 93.98 56.37 99.52 93.61 58.86 99.48
Czech 125382 78.50 11.72 156917 2171 1325 2.49 1472203 5432
-CAC 24709 73.42 12.71 55079 1080 651 1.63 311171 2551 92.78 57.11 96.05 92.13 56.91 95.72
-FicTree 12760 82.30 11.40 25136 654 383 1.68 116131 1503 92.92 73.23 99.17 92.87 72.19 99.16
-PDT 87913 79.37 11.49 123050 1870 1131 2.1 1044901 4512 91.15 68.07 99.75 91.42 68.74 99.77
Danish-DDT 5512 67.54 21.35 13097 773 412 1.71 52719 1442 91.68 57.44 98.49 91.01 54.39 98.49
English 36783 90.10 4.00 33759 793 507 3.27 476868 1669
-Atis 5432 94.92 1.84 904 154 113 3.92 53933 299 76.33 38.40 91.25 82.73 44.96 92.25
-EWT 16621 90.99 3.35 21402 546 363 2.12 205488 1049 90.59 77.31 99.75 90.49 77.97 99.84
-GUM 7397 87.48 4.77 14323 401 246 1.96 104351 832 90.98 67.93 99.58 91.82 67.38 99.60
-LinES 5243 86.80 8.07 9679 415 256 2.19 73288 868 90.66 63.94 99.24 90.89 65.38 99.58
-ParTUT 2090 88.13 1.82 6910 286 191 1.75 39808 503 93.02 57.75 99.41 92.46 55.17 99.56
Estonian 36835 87.52 3.39 86223 1151 705 1.89 424593 2845
-EDT 30972 87.93 3.22 78915 1073 661 1.74 368749 2667 91.99 61.41 99.65 90.92 58.53 99.56
-EWT 5863 85.33 4.30 15172 475 288 1.7 55844 1075 91.47 62.64 98.86 91.01 55.88 98.19
Faroese-FarPaHC 1621 66.38 0.19 2765 398 229 2.48 21675 826 86.51 29.10 96.88 88.00 35.64 97.11
Finnish 33859 88.60 7.00 76833 857 550 1.83 291318 2198
-FTB 18723 90.07 7.70 42162 433 298 1.53 123936 1096 93.69 76.99 99.43 93.39 74.22 99.58
-TDT 15136 86.79 6.14 50580 745 454 1.51 167382 1766 93.44 65.86 99.53 92.94 64.14 99.49
French 25425 88.48 4.79 46404 880 532 2.2 470378 1833
-GSD 16341 90.42 4.35 41700 555 358 1.59 344372 1105 95.03 73.10 99.78 94.26 66.48 99.62
-ParTUT 1020 81.76 5.10 3632 234 139 1.65 19914 388 92.62 59.60 98.92 94.02 62.63 98.77
-ParisStories 1755 79.72 7.69 2302 379 180 2.2 19427 756 85.66 54.52 97.02
-Rhapsodie 3210 82.99 7.94 3706 355 178 2.14 28315 734 90.85 72.23 98.30 90.01 71.30 98.03
-Sequoia 3099 91.06 2.13 9124 339 213 1.85 58350 610 93.87 68.90 99.43 94.52 67.15 99.46
Galician-TreeGal 1000 72.80 11.20 4067 226 131 1.52 14831 428 95.29 59.86 98.57
Gothic-PROIEL 5401 72.43 17.57 6145 324 192 2.01 29655 643 90.56 67.76 97.84 92.31 75.07 98.45
Icelandic 50957 68.22 0.37 50489 1735 1062 2.46 585974 3975
-IcePaHC 44029 69.86 0.37 47398 1692 1000 2.28 518640 3852 85.49 53.27 99.43 87.90 53.71 99.39
-Modern 6928 57.82 0.38 6205 437 436 2.6 67334 920 93.33 82.88 99.37 92.98 77.10 99.39
Indonesian 6628 90.65 2.28 21189 572 343 2.09 132122 1161
-CSUI 1030 93.69 3.11 4650 245 155 2.03 27339 453 89.78 36.86 99.05
-GSD 5598 90.09 2.13 19098 512 297 1.83 104783 1048 92.30 58.13 99.50 92.18 59.76 99.56
Irish-IDT 4910 50.12 15.05 9267 402 235 1.69 42775 777 90.40 55.27 98.72 90.80 58.82 97.88
Italian 27768 88.51 2.16 40646 1037 636 2.72 530315 2018
-ISDT 14167 91.72 1.36 27459 640 397 1.71 248554 1229 93.90 69.03 99.65 94.43 70.55 99.66
-ParTUT 2090 89.19 2.01 8126 316 192 1.57 45740 553 93.72 60.00 99.25 95.17 66.67 99.56
-TWITTIRO 1424 72.75 1.05 5412 252 144 1.56 22104 539 90.74 37.62 92.01 86.11 15.24 86.65
-VIT 10087 86.08 3.48 22364 771 455 1.89 213917 1418 89.80 46.91 99.77 90.91 59.78 99.55
Japanese 16200 86.63 0.31 35732 268 218 1.95 282609 489
-GSD 8100 84.37 0.32 19053 245 174 1.78 154068 439 94.97 71.46 99.89 94.30 68.90 99.93
-GSDLUW 8100 88.89 0.31 27653 207 136 1.29 128541 379 97.48 85.49 99.87 97.23 83.26 99.92
Kazakh-KTB 1078 85.44 7.33 3871 138 80 1.26 8301 312 93.06 69.20 88.33
Korean-Kaist 27363 73.72 21.70 73414 841 518 1.5 258013 1876 94.04 68.66 99.68 93.18 63.53 99.68
Kurmanji-MG 754 64.32 8.49 2015 146 81 1.36 5751 268 86.68 19.62 74.32
Latin 58405 58.71 33.45 35695 1016 613 2.41 403753 2429
-ITTB 26977 56.39 36.27 13554 704 424 2.31 196987 1533 87.93 75.77 99.70 86.62 76.29 99.58
-LLCT 9023 68.34 28.86 5610 346 241 1.98 102918 793 92.46 85.77 99.54 86.77 76.01 97.20
-PROIEL 18411 60.55 28.39 16913 433 280 1.74 77968 981 91.81 74.18 99.30 92.52 77.17 99.43
-Perseus 2273 49.05 48.13 4613 185 115 1.32 9865 448 96.10 73.75 97.14
-UDante 1721 37.94 48.17 4924 344 196 1.63 16015 759 92.01 30.46 93.20 90.45 28.33 96.79
Latvian-LVTB 15984 84.82 6.76 45783 717 435 1.73 206297 1759 92.20 61.11 99.51 91.78 60.63 99.53



5231

Treebank
Conversion Rate Statistics Coverage (dev) Coverage (test)

#Sent. %Converted %Cross. #Tok. #Cat. #Cat.>1 #Cat./Tok. #Rules #U. Rules %Lex. %Sent. %Rule %Lex. %Sent. %Rule
Lithuanian-HSE 263 76.43 14.07 1790 163 83 1.38 3755 382 91.92 41.46 90.30 92.89 43.18 92.30
Livvi-KKPP 125 82.40 12.80 657 70 45 1.18 1152 175 78.79 24.42 63.34
Maltese-MUDT 2074 85.68 3.86 7409 243 166 1.78 34154 502 93.40 50.14 99.28 93.31 51.02 99.17
Marathi-UFAL 466 89.27 4.08 873 71 46 1.52 3070 150 93.49 67.50 99.14 85.43 55.81 93.51
North Sami-Giella 3122 91.86 4.39 7375 212 136 1.45 22808 487 94.11 63.43 97.85
Norwegian 37619 81.57 7.54 51928 1055 623 2.02 437745 1978
-Bokmaal 20044 82.73 7.39 30564 777 447 1.78 225173 1462 92.31 74.06 99.62 92.27 74.12 99.71
-Nynorsk 17575 80.26 7.71 28554 792 455 1.77 212572 1453 92.12 72.25 99.62 92.85 74.22 99.69
Old Church Slavonic-PROIEL 6338 75.23 16.31 7229 351 221 1.96 33453 725 92.08 72.83 98.60 88.35 54.17 82.05
Old East Slavic 18003 76.43 16.27 27463 574 353 1.59 102856 1307
-RNC 1059 59.87 33.43 4720 236 136 1.36 13358 542 95.02 41.50 94.35
-TOROT 16944 77.47 15.20 23716 453 290 1.57 89498 960 93.65 81.00 98.69 94.17 78.13 99.31
Old French-SRCMF 18029 82.00 15.19 15432 464 302 2.08 134058 1016 89.43 76.95 99.76 90.42 78.41 99.72
Persian 35104 74.62 12.72 31261 811 481 2.64 434328 1672
-PerDT 29107 77.28 14.22 27923 565 361 2.08 356480 1165 94.41 79.19 99.86 94.64 80.68 99.86
-Seraji 5997 61.73 5.45 10842 528 286 2.25 77848 1012 90.30 50.12 99.53 89.10 46.11 99.54
Polish 39398 92.35 3.79 71292 853 538 2 398067 1955
-LFG 17246 98.12 0.64 32490 371 249 1.47 114768 655 95.87 85.39 99.69 95.52 85.17 99.65
-PDB 22152 87.85 6.25 58264 799 497 1.63 283299 1862 94.87 73.50 99.69 94.84 73.46 99.63
Portuguese 21376 81.39 6.79 41524 831 505 2.29 405680 1786
-Bosque 9357 80.05 8.87 23796 551 331 1.73 163300 1092 94.50 68.11 99.75 93.85 68.66 99.68
-GSD 12019 82.44 5.18 29284 624 385 1.84 242380 1378 93.59 64.90 99.79 94.45 67.66 99.71
Romanian 40430 82.15 7.30 66174 1359 848 2.25 708959 2966
-Nonstandard 26225 82.85 5.43 31603 1133 687 2.14 436327 2434 89.88 70.17 99.82 88.72 60.15 98.97
-RRT 9524 82.58 8.86 30574 656 440 1.72 171229 1396 93.59 56.66 99.60 93.29 52.73 98.83
-SiMoNERo 4681 77.38 14.61 15708 414 271 1.85 101403 786 92.31 54.18 99.58 93.06 56.61 99.66
Russian 110237 88.02 6.67 165650 1506 951 2.24 1470807 3644
-GSD 5030 90.02 6.12 27722 397 258 1.44 82498 976 95.59 65.38 99.28 95.65 63.81 99.50
-SynTagRus 87336 87.75 6.82 141089 1383 888 1.97 1239947 3354 92.29 70.87 99.85 92.04 69.60 99.86
-Taiga 17871 88.77 6.13 35730 553 329 1.49 148362 1289 94.04 72.41 99.67 93.47 72.51 99.56
Sanskrit-Vedic 3997 74.43 23.42 5348 220 139 1.57 15812 478 93.44 77.92 97.66
Scottish Gaelic-ARCOSG 4402 64.88 6.97 5240 351 226 2.15 36533 639 87.79 65.62 99.04 85.06 58.56 98.78
Serbian-SET 4384 85.99 3.24 17723 396 257 1.67 79051 823 95.00 62.96 99.51 95.05 64.30 99.41
Slovak-SNK 10604 91.72 3.27 26390 440 289 1.45 88163 996 96.31 73.55 99.08 95.89 74.31 99.18
Slovenian 11188 84.07 9.86 31682 504 336 1.68 126362 1007
-SSJ 8000 82.30 12.00 29330 440 293 1.5 105572 858 93.65 53.79 96.60 93.65 58.07 96.64
-SST 3188 88.52 4.49 4951 265 174 1.84 20790 487 90.37 69.77 98.50
Spanish 33675 80.34 5.69 61453 1202 761 2.35 713429 2487
-AnCora 17662 79.01 5.54 36039 907 592 2.07 394852 1867 91.85 56.16 99.79 91.75 58.63 99.76
-GSD 16013 81.82 5.85 42224 779 471 1.66 318577 1535 93.62 63.92 99.75 93.90 60.29 99.78
Swedish 11269 89.08 4.21 24301 774 455 2.15 149457 1434
-LinES 5243 87.43 5.61 13219 577 336 1.91 70473 1078 91.36 57.19 98.79 91.72 61.35 99.23
-Talbanken 6026 90.51 2.99 15017 525 321 1.8 78984 915 88.99 49.32 98.96 91.44 59.27 98.97
Tamil-TTB 600 97.67 1.67 3508 230 140 1.61 9289 456 89.86 48.10 95.42 90.50 37.93 95.99
Telugu-MTG 1328 99.77 0.15 2046 78 53 1.42 5676 157 97.49 93.13 98.63 96.09 89.66 99.05
Turkish 78334 94.46 2.27 104863 1086 659 2.37 613545 2682
-Atis 5432 98.73 1.09 2140 161 107 3.46 43998 290 80.75 71.78 99.66 80.68 76.38 99.60
-BOUN 9761 87.88 3.34 33251 567 345 1.57 101677 1447 92.31 63.15 99.16 92.51 63.19 99.24
-FrameNet 2698 97.48 0.26 8211 137 81 1.31 17948 244 96.18 84.08 99.55 95.69 79.70 98.86
-IMST 5635 86.57 6.35 15992 437 264 1.66 44429 1088 92.94 65.31 98.45 92.49 67.98 98.17
-Kenet 18687 94.32 2.25 46922 468 305 1.63 166437 1191 92.55 64.20 99.64 92.29 62.93 99.73
-Penn 16396 93.65 3.08 35687 633 389 1.79 163056 1310 91.07 62.99 99.69 87.68 57.83 99.52
-Tourism 19725 99.20 0.51 4843 151 108 2.31 76000 329 92.89 94.20 99.83 91.50 92.71 99.92
Turkish German-SAGT 2184 75.87 13.42 5605 343 202 2.08 25365 704 91.91 38.60 95.86 92.05 37.17 96.94
Ukrainian-IU 7060 87.08 7.69 28980 507 312 1.5 96269 1206 94.85 62.41 99.36 94.81 65.67 99.34
Upper Sorbian-UFAL 646 81.89 11.30 3747 161 112 1.27 8284 347 88.15 20.59 83.13
Uyghur-UDT 3456 88.60 4.98 10731 238 146 1.62 36262 679 95.01 68.49 98.45 94.70 65.38 98.53
Welsh-CCG 2111 70.82 1.80 5210 208 138 1.95 24355 373 93.84 64.79 98.94 95.36 58.71 98.87
Western Armenian-ArmTDP 5026 78.19 7.72 17476 555 311 1.58 64885 1247 92.83 56.53 98.55 92.27 63.89 99.09
Wolof-WTB 2107 82.82 2.99 5182 361 207 2.16 33791 688 88.46 44.79 98.59 88.48 44.83 98.28

Table 2: Conversion results on 101 treebanks of 59 languages in UD v2.9. Column names from left to right: (1)
Treebank, (2) Number of sentences, (3) Conversion rate, (4) Percentage of sentences with crossing dependencies,
(5) Number of distinct tokens, (6) Number of distinct categories, (7) Number of distinct categories that appear more
than once, (8) Average number of categories per token, (9) Number of CCG rule instantiations, (10) Number of
unique CCG rules, (11) Lexical coverage on dev, (12) Sentential coverage on dev, (13) Syntactic rule coverage on
dev, (14) Lexical coverage on test, (15) Sentential coverage on test, (16) Syntactic rule coverage on test.
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Treebank
#Train

samples

#Test

samples

PARSEVAL Unlabelled PARSEVAL Labelled Supertagging

accuracy (%)%Precision %Recall %F1 %Precision %Recall %F1

Catalan-AnCora 10002 1389 92.77 64.53 76.11 79.85 55.55 65.52 88.9

Classical Chinese-Kyoto 47471 4814 94.52 94.00 94.26 72.81 72.41 72.61 79.4

Czech-PDT 54435 8019 93.38 77.80 84.88 76.83 64.00 69.83 88.1

English-EWT 11303 1956 92.75 85.34 88.89 79.47 73.12 76.16 87.7

Estonian-EDT 21698 2790 89.87 62.34 73.62 64.77 44.93 53.06 78.0

Finnish-FTB 13491 1699 88.60 82.15 85.25 61.66 57.17 59.33 70.7

French-GSD 13073 361 93.11 74.61 82.84 81.10 64.98 72.15 89.8

Icelandic-IcePaHC 24414 3392 91.47 48.12 63.06 68.99 36.30 47.57 77.4

Italian-ISDT 12049 438 91.74 76.62 83.50 79.64 66.51 72.49 87.9

Korean-Kaist 16875 1763 90.96 76.32 83.00 63.31 53.12 57.77 82.9

Latin-ITTB 12712 1261 93.57 77.10 84.54 73.44 60.51 66.35 83.9

Latvian-LVTB 10071 1867 89.26 65.04 75.25 63.88 46.55 53.85 74.8

Norwegian-Bokmaal 12974 1592 93.45 81.78 87.23 78.09 68.34 72.89 86.7

Old East Slavic-TOROT 10352 1358 89.30 68.50 77.53 56.98 43.71 49.47 70.9

Old French-SRCMF 11563 1681 93.62 72.61 81.79 69.77 54.11 60.95 80.0

Persian-PerDT 20240 1144 94.69 86.88 90.62 77.37 70.99 74.04 90.3

Polish-PDB 15562 1952 92.33 74.40 82.40 72.51 58.42 64.71 82.6

Romanian-Nonstandard 19870 916 90.68 49.47 64.02 66.60 36.33 47.02 81.9

Russian-SynTagRus 61116 7691 92.41 68.29 78.54 75.06 55.47 63.79 87.7

Spanish-GSD 11623 340 90.63 76.01 82.68 75.15 63.03 68.56 85.9

Turkish-Tourism 15231 2180 98.05 97.73 97.89 79.15 78.89 79.02 88.4

Table 3: CCG parsing performance measured on the converted test sets of 21 treebanks of 21 languages that satisfy
the criteria described in the Evaluation section.
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(English_EWT:  sent_id = answers-20111107163942AA08rP5_ans-0001) 

Figure 12: An example of our obtained CCG derivation for a sentence with relative clauses in English.
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NP
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"last month I called very often"
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nsubj xcomp advmod 

discourse 
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(Vietnamese_VTB:  sent_id = train-s1091) 

Figure 13: An example of our obtained CCG derivation for a sentence with topicalization in Vietnamese.
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"a store that makes (me) feel (I) want to go again"

(Japanese_GSDLUW:  sent_id = train-s2) 
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Figure 14: An example of our obtained CCG derivation for a sentence with relative clauses in Japanese.


	Introduction
	Background
	Combinatory Categorial Grammar
	Universal Dependencies
	Related Work

	The Conversion Process
	Phase 1
	Binarization
	Category Assignment Rules
	Category Inference

	Phase 2
	Word Order Majority Voting
	Category Reassignment for Predicates
	Candidate Parse Generation
	Candidate Parse Filtering


	Discussion
	Case Study: Relative Clauses
	Case Study: Wh-questions
	Limitations

	Evaluation
	Conversion Rate and Coverage
	Manual Evaluation

	Conclusion
	Acknowledgements
	Bibliographical References
	Appendix

