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Abstract
Although Automatic Speech Recognition (ASR) systems have achieved human-like performance for a few languages, the
majority of the world’s languages do not have usable systems due to the lack of large speech datasets to train these models.
Cross-lingual transfer is an attractive solution to this problem, because low-resource languages can potentially benefit from
higher-resource languages either through transfer learning, or being jointly trained in the same multilingual model. The
problem of cross-lingual transfer has been well studied in ASR, however, recent advances in Self Supervised Learning are
opening up avenues for unlabeled speech data to be used in multilingual ASR models, which can pave the way for improved
performance on low-resource languages. In this paper, we survey the state of the art in multilingual ASR models that are built
with cross-lingual transfer in mind. We present best practices for building multilingual models from research across diverse
languages and techniques, discuss open questions and provide recommendations for future work.

Keywords: speech recognition, multilingual, low-resource languages

1. Introduction

The field of Automatic Speech Recognition (ASR) has
made significant progress over the last few years due to
the advent of Deep Neural Network (DNN) based mod-
els. Most notably, on benchmarks such as Switchboard,
models have now achieved human parity (Xiong et al.,
2016), which means that models are able to transcribe
human speech with the same or better accuracy as hu-
mans. However, due to the large data requirement of
DNN-based models, most of these advances have been
restricted to a few languages of the world, which have
large datasets of transcribed speech. Languages that do
not have much transcribed and/or untranscribed speech,
that is, low-resource languages have been left behind.
(Joshi et al., 2020) classify languages based on re-
sources for Natural Language Processing (NLP) and
find that almost 90% of the world’s population speaks
languages that are very low resource and are thus
not benefited by language technologies. Since speech
datasets are usually more expensive to build than text
datasets, the situation may be even more stark for ASR.
This is a lost opportunity for serving language commu-
nities where speech is the only medium of expression,
owing to low literacy or the lack of a standardized writ-
ing system.
The problem of ASR for low resource languages has
been well studied starting from traditional HMM-
GMM based models, to the transformer-based models
used today. The main technique used for addressing the
lack of resources in the target language is cross-lingual
transfer, in which models or resources from a higher re-
source language are adapted to the target low resource
language using adaptation data. Cross-lingual transfer
may take place using models trained on a single high
resource language, or multiple languages with varying
amounts of resources. The intuition behind these tech-

niques is that the lower resource language benefits from
the language invariant features learned by the model
from the large amount of data in the high resource lan-
guage.

Recently, there has been a paradigm shift in NLP re-
search with the advent of pre-trained models such as
BERT (Devlin et al., 2018). These models first use
unlabeled data (raw text) for pre-training and are then
fine-tuned for a downstream task using labeled task-
specific data. The intuition behind this approach is
that the model can learn features from unlabeled data
that can be shared across tasks. Massively Multilingual
Language Models (MMLMs) (Devlin et al., 2019; Con-
neau et al., 2020b) are pre-trained on a large amount of
unlabeled text from multiple languages (around 100)
and then fine-tuned for a particular language and task.
MMLMs have shown impressive cross-lingual transfer
(Wu and Dredze, 2019), leading to performance gains
on languages that have no labeled data (through zero-
shot learning) or a small amount of labeled data (few-
shot learning). Recently, the idea of using unlabeled
data for pre-training has also been used in the field of
speech processing (Chung et al., 2021), which could
greatly solve the challenges of low-resource ASR if
successful, since there may be large amounts of un-
transcribed speech available in many languages. An
additional benefit of multilingual models is that train-
ing and maintenance costs can be lowered by reusing
the same model for multiple languages, which can ben-
efit low-resource languages having limited budgets.

In this paper, we survey the progress made in multilin-
gual ASR. For the purposes of this paper, we define
multilingual ASR models as models that are trained
with the aim of aiding cross-lingual transfer to even-
tually benefit other (usually low-resource) languages.
We classify them as follows (i) ASR models trained us-
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ing labelled data in one or multiple languages (ii) ASR
models that are first pre-trained using unlabeled data
from one or multiple languages and then fine-tuned us-
ing labeled data. In our survey, we set out to answer the
following questions:

• Are multilingual models better in terms of perfor-
mance compared to monolingual models for high
and low-resource languages?

• Can multilingual ASR models exploit unlabeled
data for improving performance on low-resource
languages?

• What are the best practices for building multilin-
gual ASR models?

• Where should resources be invested for improv-
ing low-resource ASR in the era of multilingual
models?

• What are the open questions and main challenges
that need to be addressed going forward?

The paper is organized as follows. Section 2 describes
the general ASR training pipeline and resources re-
quired for building ASR models. In Section 3, we
survey multilingual models for ASR categorized by
whether or not they use unlabeled data. In Section 4,
we list the key findings and open questions that still
need to be addressed. Section 5 concludes.

2. ASR training and resources
ASR is the task of converting a spoken utterance into
a sequence of words. It can be broken down into three
broad steps.
(i) The first step is to convert the raw audio into a com-
pact feature vector, for example MFCC, PLP, Spectro-
gram, etc. (ii) The next step is to learn an acoustic
model, usually referred to as an encoder to associate
these features to higher level speech or orthographic
units (phonemes or graphemes). This is achieved ei-
ther using Gaussian Mixture Models (GMM) (Khan et
al., 2018) or a Deep Neural Network (DNN) (Hannun
et al., 2014; Amodei et al., 2016; Li et al., 2019) with
HMMs, where the GMM/DNN acts as a function ap-
proximator and the HMM adds context capabilities to
the encoder. With advances in deep learning, Long
Short Term Memory networks (LSTMs) have replaced
both the GMM/DNN and HMM models, since LSTMs
act as function approximators and also learn context-
dependence. The two most popular training frame-
works used for acoustic modeling are Expectation-
maximization (EM) (Dempster et al., 1977) and Con-
nectionist Temporal Classification (CTC) (Graves et
al., 2006) respectively. Using the CTC loss function
GMM/DNN-HMM system can be replaced by power-
ful auto-regressive models like LSTMs and Transform-
ers. (iii) Lastly, the output speech units are conditioned
on a pre-trained language model (LM) (Heafield, 2011;

Devlin et al., 2018) such that the output sentence has a
low perplexity.
Traditional techniques optimize the ASR task in three
steps independently as described above. Both GMM-
based and early DNN-based techniques relied on the
following language resources (i) A large corpus of
speech transcribed by native speakers for training, (ii) a
pronunciation lexicon mapping words in the language
to phonemes, (iii) a phone set for the language, (iv) a
large corpus of text for the language model (v) tran-
scribed data for evaluation.
With the the availability of large annotated datasets for
some languages, current state-of-the-art (SOTA) tech-
niques solve the task in an end-to-end fashion (Gulati et
al., 2020; Synnaeve et al., 2019; Han et al., 2020) via
supervised learning using only transcribed speech, in
which sounds are directly mapped to graphemes/sub-
word-units present in the language (Zhou et al., 2021).
This forgoes the need for a lexicon and language
model, which are learned implicitly by the model. Al-
though end-to-end training seems attractive for low-
resource languages where lexicons and text data may
not be available, these models typically require larger
amounts of labeled speech data than their traditional
counterparts to reach the same level of performance
(Kannan et al., 2019; Toshniwal et al., 2018).
Recently, self supervised learning (SSL) has been used
to pre-train an encoder on unlabelled data using con-
trastive loss. In this setup, the model learns a general
high-level contextual representation of the input data
which can potentially be used for any downstream task.
The training process is divided into two steps: (i) learn-
ing an encoder which maps the raw audio to a high level
compact representation, usually done using Convolu-
tional Neural Networks (CNNs) (ii) Reconstruct the fu-
ture frames given the high level features, using a strong
auto-regressive model such as Transformers. Experi-
ments by (Baevski et al., 2020) have shown that quan-
tizing the high level features before computing the con-
trastive loss leads to performance gains. These models
have achieved SOTA performance in low resource sce-
narios and have been shown to perform on par, if not
better, in high resource settings (Baevski et al., 2020;
Hsu et al., 2021; Chung et al., 2021).

3. Multilingual ASR models
In this section, we survey recent research on multilin-
gual ASR models. We categorize multilingual ASR
models based on the data that they can be trained on
- labeled data, in which each word that is spoken is
carefully transcribed by a native speaker, and unlabeled
data, which consists of speech without any transcrip-
tions. Labeled data is expensive to create and may not
always be feasible to collect if access to native speakers
is challenging. Unlabeled data may be available ’in the
wild’ for many languages, in the form of user-generated
content, such as on YouTube.
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3.1. Models that use only labeled data
3.1.1. Acoustic models
(Heigold et al., 2013) presents an extensive study com-
paring three major approaches towards building multi-
lingual ASR using the GMM or DNN (or combined)
and HMM setup.

• Language independent feature extraction: In this
approach, feature extraction is learned indepen-
dent of the languages, so the feature extractor can
be used for any language, after which an ASR sys-
tem can be built on top of it. A major drawback of
such a system is that it is not optimised jointly.

• Transfer learning: In this approach, a model’s
learnable weights are initialised from a model
trained on a high-resource language, followed by
a separate fine-tuning step.

• Multi-task learning: In this setting, one unified
model is optimized/trained to perform n tasks,
without any separate fine-tuning step. In our case,
n is the number of different languages i.e., and
each language is treated as a separate task.

(Heigold et al., 2013) conduct experiments on 11 lan-
guages with a total duration of around 10000 hours for
training and 35 hours for testing. The authors first com-
pare, on all the 11 languages, GMM-HMM and DNN-
HMM based monolingual systems and observe that the
later performs better. Therefore they use DNN-HMM
architecture for cross-lingual and multilingual experi-
ments. (i) In the cross-lingual experiments, the DNN-
HMM model is first trained on 3000 hours of English
and then fine-tuned in two settings, either fine-tuning
the top two layers or all layers for each language. Fine-
tuning the top two layers avoids over-fitting for low re-
source languages. (ii) In the multilingual experiments,
the DNN-HMM model is trained on combined data
of all the 11 languages. It performs better than the
cross-lingual setup consistently on all the languages.
This study shows that multilingual models trained
by combining data of all languages performs bet-
ter than fine-tuning an English model on the target
languages.
(Thomas et al., 2010) proposes using trained Multi-
Layer Perceptron (MLP) features in cross-lingual set-
tings i.e., adapting the learned MLP to a new language
using phone mapping without re-initializing the last
layer. The authors train an MLP on a combination of
German and Spanish and after the phone mapping fine-
tune the MLP on 1 hour English dataset, which they
treat as the low-resource language. (Thomas et al.,
2012) proposes training a four-layered MLP for fea-
ture extraction on a German and Spanish followed by
fine-tuning on English. In this setup, the first three lay-
ers are shared among different languages and the last
layer is language specific. This results in in substan-
tial (30%) performance gain compared to the baseline

monolingual GMM-HMM models. This work shows
that feature extraction and phone-mapping followed
by fine-tuning of the target language results in sig-
nificant gains over the monolingual model, possibly
because the source and target languages are from the
same language family.
(Tüske et al., 2013a) compare systems built using Bot-
tleneck (BN) features and MFCC features on datasets
consisting of 150 hours of speech in German, Span-
ish, and English. They experiment with two setups (i)
cross-lingual: fine-tuning the pre-trained MLP model
from one language to a target language. They report a
slight performance gain using BN features over mono-
lingual baselines. (ii) multilingual: train one MLP
model with all the languages combined. Their exper-
iments show consistent improvement on all the three
languages using BN features compared to MFCC fea-
tures.
(Tüske et al., 2013b) perform extensive experimen-
tation to study the scalability of BN features using
four languages i.e., French (317 hours), English (232
hours), German (142 hours), and Polish (110 hours)
and train five and nine layer MLP models. The ex-
periments show that BN features trained in multilin-
gual settings perform better compared to BN features
trained on the target language only. Lastly, jointly
training a language dependent hidden layer with mul-
tilingual BN features performs best. This shows that
the choice of features may play an important role in
cross-lingual transfer, and that training features on
all languages performs better than training only on
the target language.
(Ghoshal et al., 2013) trains the DNN directly, in the
hybrid DNN-HMM setup, in sequential order and re-
initialize the softmax layer for each language i.e., they
train on one language then fine-tune on the second lan-
guage, followed by fine-tuning on the third language
and so on. They experiment with seven European lan-
guages in their setup with a total duration of 140hours
for training and 14 hours for testing. Their setup shows
improvement over the monolingual GMM-HMM and
DNN-HMM baselines, however it is not clear whether
the improvement is due to sequential training or the ad-
ditional languages and training data added in each step.
(Huang et al., 2013) train a shared-hidden-layer multi-
lingual DNN (SHL-MDNN), setup on four languages
i.e, French (138 hours), German (195 hours), Spanish
(63 hours), and Italian (63 hours). Their experiments
show that multilingual training improves over mono-
lingual training on all languages. Furthermore they
also train models on two unseen languages, English
and Chinese, using the trained DNN as a feature extrac-
tor. Cross-lingual transfer performs better than training
models for English and Chinese from scratch, which
shows the learned features are transferable to unseen
languages also. It is interesting to note that the trans-
fer performs well for Chinese too, which is not in the
same language family as the languages used to train
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the feature extractor.
(Graves et al., 2013) shows that LSTM is a better
choice of architecture than DNNs for ASR. Based on
this, (Zhou et al., 2017) study LSTM in the shared-
hidden-layer multilingual LSTM (SHL-MLSTM) set-
ting and compare it to SHL-MDNN. They show
that monolingual SHL-MLSTM performs comparable
to multilingual SHL-MDNN and multilingual SHL-
MLSTM consistently outperforms multilingual SHL-
MDNN on all the seven languages. SHL-MLSTM with
residual learning helps them to train deeper networks,
which results in even better performance. They hypoth-
esize that residual learning helps overcome the gradient
vanishing problem, indicating that the choice of archi-
tecture is important while building larger, deeper
models trained on multiple languages. They also find
that the performance increases as the number of lan-
guages in the multilingual model increase.
The Interspeech 2018 ASR challenge (Srivastava et
al., 2018) compared models built for three Indian lan-
guages (Gujarati, Tamil and Telugu), in which base-
lines were monolingual models built using HMM-
GMM, DNN-HMM and TDNN techniques. Most sys-
tems that improved over the baselines used multilingual
training, that is combining data from all languages to
build a single model and decoding using language spe-
cific Language Models (Billa, 2018). (Sailor and Hain,
2020) work on the same dataset and train four mod-
els (i) monolingual, (ii) multilingual, (iii) MTL with
Language ID, and (iv) MTL with phoneme recogni-
tion. Their experiments show that using language ID
as an auxiliary task degrades the performance of multi-
lingual ASR system and propose that phoneme recog-
nition is better choice. Adding phoneme recognition
as an auxiliary task gives small performance gains
compared to the multilingual model.
One other approach is to replace the GMM-HMM
and train acoustic models (LSTMs) using the CTC
loss function. (Tong et al., 2017) studies training on
multiple languages using the CTC loss function i.e.,
for English (81 hours), French (120 hours) and Ger-
man (136 hours). In their experiments training on
all the languages combined performs worse com-
pared to monolingual models, and fine-tuning mul-
tilingual models on target languages performs bet-
ter than monolingual models. They also observe per-
formance gains when the trained multilingual model is
fine-tuned on two low-resource unseen European lan-
guages. (Müller et al., 2017) shows similar results that
feeding language vectors during training performs bet-
ter than training multilingual models by just combining
data.

3.1.2. seq2seq models
(Watanabe et al., 2017) used the hybrid attention/CTC
framework to study multilingual training on 10 lan-
guages, with 1327 hours of speech for training and
150 hours for testing. The authors find that the per-
formance of some high resource languages degrades

in multilingual settings compared to the monolingual
baselines, due to unbalanced training data. To over-
come the imbalance, three techniques are proposed in
the literature i.e., (i) Appending language ID vector in
the input (Toshniwal et al., 2018), which performs bet-
ter than the baseline, (ii) Sampling, and (iii) combining
both, results in best performing models. So, the degra-
dation in performance for high-resource languages
can be overcome by using sampling and language
ID information.
(Toshniwal et al., 2018) studies multilingual training
on 9 Indic languages, with around 1500 hours for train-
ing and 90 hours for testing. In their work, the au-
thors experiment with four different models using Lis-
ten, Attend and Spell (LAS) (Chan et al., 2015) as
the architecture. (i) monolingual (baseline) models for
each language, (ii) A multilingual/joint model com-
bining all the 9 languages, (iii.) A single model for
ASR and predicting the language ID (iv.) A multilin-
gual model conditioned on the language ID as an in-
put. The language ID conditioned model gave the best
performance, showing that including language ID in-
formation helps training multilingual ASR systems.
They hypothesize that this is because the model re-
serves different parts of the network for different lan-
guages, while also being able to share language invari-
ant features.
(Zhou et al., 2018) shows similar findings using the
transformer based architecture with experiments on
six languages from the CALLHOME corpora. Their
extensive experimentation with classical SOTA tech-
niques shows that transformer based models per-
form better than i.e., Mono-DNN, Mono-LSTM, SHL-
MDNN, SHL-MLSTM, and SHL-MLSTM-residual
models. (Shetty and NJ, 2020) also use transformer
based models to show performance gains when using
language ID. They conduct experiments in three Indian
languages i.e., Gujarati, Tamil, and Telugu. Lastly, they
show that retraining the multilingual model on target
languages further improves the performance compared
to the universal multilingual model.
(Kannan et al., 2019) learn an adapter module after
each layer for each language separately for streaming
E2E ASR. Similarly to (Toshniwal et al., 2018), they
use nine Indic languages for training and testing. The
authors train a system combining (i) multilingual RNN-
T, (ii) language ID, and (iii) adapter modules. Both (ii)
and (iii) performs best on low resource and on par in
high resource languages. Adapter modules increase the
overall model size compared to language ID training,
however there is a small performance boost for both
low and high resource languages when an adapter
module is learned for each language separately.
The multilingual models surveyed so far are trained
with fewer than 10 languages, in contrast to the mas-
sively multilingual models in NLP that are trained on
100+ languages. Recently (Pratap et al., 2020) studies
training of models of size up to 1 billion parameters on
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51 languages, the largest till date. The total duration
of speech data is around 16000 hours for training and
1000 hours for testing. The authors experiment with
(i) a multilingual/joint model combining all the 51 lan-
guages, (ii.) a multilingual model conditioned on the
language ID as an input and, (iii) multi-head model
with 6-language-clusters ie. 6-different-decoders based
on language family groupings. The multi-head model
gives the best performance because training the same
decoder for multiple languages is beneficial if the
languages are similar.

3.2. Models that use unlabeled data
Pre-training can be done on both labelled and unla-
belled speech. Pre-training on unlabelled speech data
is more practical for low-resource languages because
it is easier and less expensive to find unlabeled speech
data.
(Conneau et al., 2020a) studied self-supervised multi-
lingual training on 53 languages (56,000 hours) using
the XLSR model. The authors train two variants of
Wav2Vec2.0 (Baevski et al., 2020) style models (base
and large), and perform a series of experiments to study
the effectiveness of multilingual SSL training. (i) Pre-
training (pre1) (on English only), which outperforms
monolingual models on low resource languages. (ii)
Multilingual pre-training (pre2) on 10 languages (800
hours), with the same amount of data as in pre1, which
outperforms pre1. This shows that pre-training on
multiple languages is a better choice rather than
just adding more data from one language. In both
the cases, performance degrades on high resource lan-
guages. To address this degradation, they pretrain a
larger model with 24 transformer blocks on 53 lan-
guages (56,000 hours) and this model shows improve-
ments in high resource languages, in comparison to the
pre2 model. This indicates that SSL may need larger
model capacity to show improvements for high re-
source languages. (iii) The Pre2 learnt representation
transfers well to unseen low resource languages in low
resource (50 hours) (iv) Fine-tuning one model for all
languages works a little worse on the base model and
works slightly better on the large model compared to a
monolingual model for each language. This again in-
dicates that models require large capacity to show per-
formance gains on larger datasets and a higher number
of languages. (v) Finally, they show that pre-trained
models transfer well if the target language is similar
to languages used for pre-training.
(Gupta et al., 2021) extends these findings by training
a model on Indic languages. They use around 10,000
hours for pre-training out of which the majority of
the data is in Hindi (50%). Their experiments results
are similar to (Conneau et al., 2020a), that multilin-
gual pre-training outperforms monolingual train-
ing, even in the case of Hindi, which is a large dataset.
(Javed et al., 2021) create a speech corpus of 17000
hours of unlabeled data in 40 Indian languages, includ-

ing several very low resource languages. They use this
data for pre-training multilingual ASR models and fine-
tune the models on 9 Indian languages that have labeled
data, leading to SOTA results on multiple benchmarks.
Their findings suggest the following: (i) fine-tuning can
be performed either monolingually, that is one-by-one
for each target language, or combining all languages
together. Jointly fine-tuning a single model with all
languages performs as well as multiple models fine-
tuned separately. 2. The size of pre-training and
fine-tuning datasets affect the accuracy of the final
model - contrary to previous findings ((Baevski et al.,
2020)), fine-tuning with just ten minutes of speech does
not lead to high performance. 3. Building on (Con-
neau et al., 2020a), pre-training with a diverse set
of languages improves performance on languages
not present in the pre-training data, which indicates
that multilingual models may be useful for building
speech technologies for very low resource languages,
provided that some data for fine-tuning and evaluation
is collected. Although these experiments do not in-
clude comparisons with monolingual models, the mod-
els beat previous SOTA models in terms of perfor-
mance, which in turn are better performing than mono-
lingual models (Srivastava et al., 2018).

(Wang et al., 2021) proposes to combine supervised
learning with labeled data and the CTC loss and SSL
with the WAV2VEC2.0 loss in a Multitask Learning
(MTL) scheme which they call UniSpeech. This helps
the model to learn representations which are useful
for speech recognition e.g., phoneme identities or in-
variance to background noise and accents. Further-
more they randomly replace the contextual represen-
tation with their quantized counterparts from the en-
coder when calculating the CTC loss. According to
them this helps aligning the codewords from codebooks
to ASR-specific features. The authors perform three
sets of experiments based on one or multiple languages
used during the pre-training and fine-tuning phase. (i)
one-to-one (ii) many-to-one (iii) many-to-many. They
report performance gains when using UniSpeech over
XLSR (Conneau et al., 2020a) and CTC based model
on all the three settings, showing that the MTL setup
is useful for cross-lingual transfer. One downside of
this learning scheme is that the learned features do not
transfer to other tasks e.g., emotion or speaker recogni-
tion, as the features are specific to the ASR task.

(Billa, 2021) compares ASR systems for three lan-
guages, Farsi, Kazakh and Lithuanian built using the
following configurations: (i) in-domain labeled train-
ing data, which acts as the baseline (ii) mined data from
Youtube in each language, followed by fine-tuning with
in-domain data (iii) pooling data from 1 and 2 followed
by fine-tuning (iv) transfer from a high-resource Arabic
model by using the labeled data in each language. They
find that fine-tuning either the model with in-domain or
pooled data improves over the baseline, showing that
even unlabeled out-of-domain data can be used to
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improve performance over models built with only
labeled in-domain data. They also show that the fine-
tuning approaches are comparable to transfer learning
from a high-resource language.
Another technique for using unlabeled data is pseudo
labeling, in which untranscribed data is transcribed us-
ing an existing ASR system. This is followed by a step
to remove noisy labels, after which the transcribed data
is added back to train the ASR model, leading to more
data to train the model without investing resources for
manual transcription. (Javed et al., 2021) shows that
pseudo labelling for ASR (Kahn et al., 2020) does not
improve performance over 10 Indic languages com-
pared to models built using only transcribed speech.
They hypothesize that the generated pseudo labels are
noisy due to the difference in distribution between the
labeled and unlabeled speech, which is a common sce-
nario in the real world. SSL may be a better technique
for addressing domain and distribution differences in
labeled and unlabeled data. Another drawback of the
pseudolabel technique compared to SSL is that it is de-
signed to be used within the same language and does
not transfer.
(Zhang et al., 2021) addresses the lack of trans-
fer across languages by using self-training to learn
frame-level representations rather than generating the
pseudo labels and call the algorithm Cross-lingual
Self-training (XLST). XLST assumes that frame-level
acoustic representations could be shared in some de-
gree across different languages. In their setup, instead
of generating pseudo labels the authors generate frame
embeddings from a pre-trained ASR model (target-
network). Using this technique the authors show im-
provements over the XLSR model (Conneau et al.,
2020a) but the performance is worse compared to the
UniSpeech model (Wang et al., 2021). We specu-
late that XLST performs worse than UniSpeech be-
cause UniSpeech optimizes the output representations
directly on the ASR task using the CTC loss during
the training. For similar reasons XLST performs better
than XLSR because XLST use a pre-trained target net-
work whose representations are optimized on the ASR
task.

4. Discussion
4.1. Multilingual vs. monolingual models for

low-resource languages
From the papers surveyed, it is clear that multilingual
models perform better than monolingual counterparts
trained with the same amount of data for a single lan-
guage. Combining the data of all languages available
during pre-training also improves performance com-
pared to using multiple languages only during fine-
tuning.

4.2. Techniques and architectures
Fine-tuning plays an important role in the accuracy
of multilingual models, with multiple studies show-

ing that models fine-tuned to a target language per-
form better than simply combining data from all lan-
guages. Techniques that can be used for further im-
provements include phone-mapping, using a feature ex-
tractor trained on multiple languages and using a com-
mon decoder for related languages. Although prox-
imity in terms of language family may play a role in
accuracy, some studies show that unrelated languages
also benefit from common feature extractors. Mul-
titask Learning setups that use phoneme recognition
or Language Identification as auxiliary tasks seem to
improve performance only slightly over multilingual
models trained jointly with all languages.

4.3. Performance on high-resource languages
When building a multilingual model that can be re-
used across different languages, it is desirable that the
performance on high-resource languages does not de-
grade while making improvements over low-resource
languages. Some studies show that this degradation in-
deed occurs, however, there are strategies such as sam-
pling and using language ID information that can be
used to alleviate the problem. In the case of SSL, it
seems that pre-training can help improve performance
on high-resource languages as well.

4.4. Factors that influence cross-lingual
transfer

Many factors affect the overall accuracy on target lan-
guages, including the choice of features and the lan-
guages that the features are trained on and the choice
of architecture while building models trained on mul-
tiple languages. Some studies show that performance
increases with the number of languages in the model,
provided that the model is large and deep enough. In
addition to training common feature extractors, it is
also seen that training the same decoder for multiple
languages performs better if the languages are similar.

4.5. Role of SSL and unlabeled data
Although research on this topic is nascent, it is clear
that the choice of pre-training data matters. Pre-
training from a diverse set of languages, or languages
related to the target language is better than restricting
it only to one language such as English even if the to-
tal pre-training data remains the same. Interestingly,
pre-training with a diverse set of languages has been
shown to improve performance on languages that are
not present in the training data, though more experi-
mentation is needed to study this further. It has also
been shown that the pre-training data can be collected
from a different domain than the target data and still
improve performance. Finally, the size of pre-training
and fine-tuning data matters - although it is possible to
exploit unlabeled data for pre-training, the fine-tuning
data needs to be of a reasonable size to get performance
improvements. It is therefore important to invest in a
minimum amount of labeled data for fine-tuning for tar-
get low-resource languages, unless there is a language
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in the multilingual model that is very closely related to
the target language.
SSL and the use of unlabeled data are exciting direc-
tions for low-resource ASR, particularly when labeled
and unlabeled data are from different domains. How-
ever, this approach shows some degradation for high-
resource languages, that can potentially be addressed
by increasing model capacity.

4.6. Open problems and challenges
Although cross-lingual transfer and SSL are promising
directions for low-resource language ASR, there are
some concerns that still need to be addressed by the re-
search community. More research is need to determine
whether these techniques can be used for very low-
resource languages that have only a few hours of data,
since labeled data is required for fine-tuning, transfer
learning as well as evaluation.
Studies on multilingual ASR have been limited to a few
datasets and languages mainly from the Indo-European
language family, and more research is needed to de-
termine whether results hold true across languages.
Evaluation benchmarks for multilingual ASR should
be designed to cover diverse languages in terms of lan-
guage family and dataset sizes (both labeled and unla-
beled). Building such evaluation benchmarks is expen-
sive but would be a crucial investment for improving
low-resource language ASR.
Most multilingual models are trained on less than 10
languages and have not reached the size (in terms of
languages) of their NLP counterparts that are trained
on over 100 languages. An interesting direction of
study would be the implications of larger models cov-
ering more languages on performance on high resource
languages. As models become larger in terms of pa-
rameters, training time and training data required, it
would be prudent to continue to compare performance
with simpler monolingual models, particularly for low-
resource languages.
SSL in NLP not only transfers across languages but
also across tasks. Transferring representations learned
by ASR models trained using SSL is an interesting fu-
ture direction of research, in which some progress has
been made already.

5. Conclusion
In this paper, we survey more than 40 papers on
multilingual ASR, in which either multiple languages
are trained in a single model, or cross-lingual trans-
fer learning is used to improve performance on low-
resource languages. Till recently, ASR models were
only able to exploit transcribed data, however, with the
advent of Self Supervised Learning, they are now also
able to use unlabeled data which is an exciting devel-
opment for low-resource languages. We address ques-
tions about whether multilingual models are indeed su-
perior in performance to monolingual models for low-
resource languages, as well as for high-resource lan-

guages. We distill key findings from research in mul-
tilingual ASR to describe factors that influence cross-
lingual transfer and SSL, and provide recommenda-
tions for future research.
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