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Abstract

This study aims to create the very first dependency-to-constituency conversion algorithm optimised for Turkish language. For

this purpose, a state-of-the-art morphologic analyser (Yıldız et al., 2019) and a feature-based machine learning model was

used. In order to enhance the performance of the conversion algorithm, bootstrap aggregating meta-algorithm was integrated.

While creating the conversation algorithm, typological properties of Turkish were carefully considered. A comprehensive and

manually annotated UD-style dependency treebank was the input, and constituency trees were the output of the conversion

algorithm. A team of linguists manually annotated a set of constituency trees. These manually annotated trees were used as the

gold standard to assess the performance of the algorithm. The conversion process yielded more than 8000 constituency trees

whose UD-style dependency trees are also available on GitHub. In addition to its contribution to Turkish treebank resources,

this study also offers a viable and easy-to-implement conversion algorithm that can be used to generate new constituency

treebanks and training data for NLP resources like constituency parsers.

Keywords: Constituency parsing, Dependency parsing, Constitueny Dpendency conversion

1. Introduction

Following the phrase-based translation model

(Koehn et al., 2003), syntactic trees have been

prominent in the past studies on statistical grammar

(Ding and Palmer, 2005; Ding and Palmer, 2004),

statistical parsing (Grammar and Hockenmaier, 2003;

Wang and Harper, 2004; Cahill et al., 2008;

Candito et al., 2010), machine translation

(Huang et al., 2006; Ding and Palmer, 2005;

Shen et al., 2008; Xie et al., 2011) and various other

subbranches of NLP. There are two main syntactic tree

representations: Dependency and constituency trees.

Both are able to capture valency, argument structure

and various other syntactic relations between phrases.

Although it is possible to argue that dependency trees

are better equipped to handle long-distance dependen-

cies and free word order languages, constituency trees

can better illustrate phrasal continuity and government.

Based on the notion of dependency grammar first in-

troduced by Lucien Tesnière (See (Percival, 1990) for a

detailed history and discussion), dependency trees con-

nect linguistic units (heads and dependents) through di-

rected links and labels these links based on the relation-

ship between the head and its dependent(s). Inspired

by term logic, constituency trees have their theoreti-

cal origins at phrase structure grammars (also known

as constituency grammars) presented by Noam Chom-

sky (Chomsky, 1957). Based on constituency relation,

constituency trees illustrate phrases as sub-trees and

shows the relationship between not only the head and

its dependent but also the relationship between the de-

pendents of the same head (See Figure 2). Although

these two syntactic representations appear very distinct

büyük bir okul servisi

amod

det

compound

Figure 1: Example dependency tree

(“a big school bus”)

at first sight (refer to (Matthews, 1981) for a thorough

discussion), they share enough features that they can be

combined (Sag et al., 2003), or even converted into one

another (Kong et al., 2015). With the Universal Depen-

dencies’ (Nivre et al., 2020) attempt to offer a frame-

work and set of rules that can be applied to a wide range

of different languages, an impressively comprehensive

multilingual dependency treebank1 was created to of-

fer much needed data -especially for low resource lan-

guages.

Syntactic treebanks, both dependency and con-

stituency, are essential resources for many areas of

study including linguistic research, natural language

processing, machine translation, machine learning and

improving pre-trained transformers (Bai et al., 2021)

yet their possible applications and practical value are

“potentially limited by the degree to which they sub-

scribe to a specific linguistic theory” (Bick, 2006).

That is why being able to convert such treebanks into

another format is so important that it must also be

considered during the design processes of these tree-

banks (Nivre, 2003). Moreover, conversions between

1https://github.com/UniversalDependencies
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Figure 2: Example constituency tree

constituency and dependency trees allow researchers

to accommodate advantages and disadvantages of each

structure, such as dependency’s ability to better il-

lustrate clefting, non-projectivity and raising, or con-

stituency’s firmer grasp on coordination (Bick, 2006).

In addition, treebanks are often employed in creating

and evaluating automatic syntactic parsers. As stated

by Daum et al. (2004), practice of training and eval-

uating such parsers gives rise to the need for mas-

sive quantities of annotated trees (Daum et al., 2004).

Also, extensive treebanks are very useful in building

rule governed natural language processing tools and

systems (Bouma and Kloosterman, 2002), context free

grammars and statistical grammars. That is why a suc-

cessful dependency to constituency conversion algo-

rithm is especially valuable for low resource languages

like Turkish.

For the reasons discussed above, many dependency

to constituency and constituency to dependency

conversion algorithms have been developed in the

last two decades (Höfler, 2002; Lee and Wang, 2016;

Bosco, 2007; Bick, 2006; Xia and Palmer, 2001;

Lu et al., 2016; Kong et al., 2015). The majority

of such algorithms work with CoNLL-U, Stanford

Dependencies and UD. Constituency trees created by

such algorithms often follow Penn Treebank format

or a specific linguistic framework like X-Bar Theory

(Chomsky, 1968). One of the trends in dependency

to constituency conversion studies is using algorithm

generated dependencies. The downside of this method

stems from the very nature of dependency trees.

Dependency structures are defined by head dependent

relations yet in some rather language specific cases,

the decision on the head of a phrase can be contestable.

The phrase “genel olarak” (lit. “general, to be”;

“generally, broadly”) is a perfect example for that

(Figure 3). “olarak” (‘\being”) is a light verb in

Turkish, hence some linguists consider it an auxiliary

and argue that the head of “genel olarak” is “genel”

as Dependency Framework doesn’t allow auxiliaries

or function words to be phrasal heads. Following this

insight, the dependency tree of “genel olarak” looks

like (A) below. On the other hand, it i possible to

argue that “olarak” is the verbal head and “genel”

is an adverb (B). Due to its high frequency, some

linguists argue that speakers do not decompose this

expression, rather treat it as a compound. Hence,

another possibility is to draw a dependency tree like

(C) for “genel olarak.” When annotated manually,

annotators can discuss and agree upon how to annotate

such cases to ensure the consistency in theoretical

framework and inter-annotator agreement. Yet al-

gorithm generated dependency treebanks often lack

coherency in such language specific cases where head

- dependent relation is disputable.

One of the biggest aims of this study was to create

a constituency treebank for Turkish, a low resource

language. For this purpose, we used an existing

Universal Dependency treebank 2. The reasons behind

our choice were:

• Our desire to use a manually annotated De-

pendency treebank for the reasons we discussed

above.

• Offering an enhanced dataset that has both Depen-

dency and constituency trees.

A learning-based algorithm that takes in Universal De-

pendency trees and converts them into constituency

trees is created for this study. This conversion algo-

rithm takes the dependency structure as its input to iter-

ate all links and find all phrasal projections in the struc-

ture. After detecting the phrases, the task is merging

the sub-trees of these phrases in the right hierarchical

order to create the constituency tree. In order to do so,

it the algorithm does one of the three operations: Left,

Right and Merge. Left operation fuses the node at hand

with the one on the immediate left. Right operation

does the same with the node on the immediate right.

Merge operation merges all nodes at hand to create a

phrasal projection. The goal of the algorithm is decid-

ing upon the correct operations and applying them in

the correct order to create the desired constituency tree.

As the very first study of dependency to constituency

conversion in Turkish, the work presented in this paper

sets a baseline and offers a swift and accurate method to

enrich constituency tree datasets in Turkish using Uni-

versal Dependency trees.

This paper is organised as follows: First the conver-

sion process is explained in terms of input and ma-

chine learning-based conversion algorithm. Following

the conversion process, the evaluation of the conver-

sion algorithm’s performance is discussed and finally,

closing remarks are made.

2. Basic Structure of the Constituency

Trees

In this study, we opted for an algorithm that produces

flatter phrase structures compared to the X-Bar the-

2https://github.com/UniversalDependencies/UD Turkish-

Penn
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(A) genel olarak (B) genel olarak (C) genel olarak

aux advmod compound

Figure 3: Possible dependency annotations of “genel olarak” (generally, broadly)
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Figure 4: “[S/he] opened the door with a key”

ory representations (Chomsky, 1968) and Penn Tree-

Bank trees by allowing ternary branching and bypass-

ing bar-levels. Flatter trees are useful for reflecting

the argument structure of the predicate since they are

able to show all complements in the same level. This

way of representation allows more specific context-free

grammar rules, thus it can be used in CFG applica-

tions as well. There is a Turkish PropBank as a re-

source for a better analysis of the predicate features

(Kara et al., 2020). Incorporating a PropBank can en-

hance the accuracy of phrase structures and trees that

a conversion algorithm offers. This way, constituency

trees can be more linguistically sound since they di-

rectly reflect the adjunct and argument structure of the

predicate and, as a bonus, this methodology is useful

for conversions to other languages as well, since it does

not depend on the language specific restrictions or rules

and operates on the predicate itself.

To make trees flat, we followed the strategy also

employed by Hajic et al. (1998):

• Each constituent X has only one parent, XP.

• There is no X’ level or its equivalent (such as XX).

Once the head of a phrase is detected, all of its depen-

dents are attached on the same level. In other words, the

algorithm does not assign different positions for a com-

plement and an adjunct. This feature is illustrated in

the tree below (Figure 4) where “kapıyı” (“the door”)

is a complement and “anahtarla” (“with a key”) is an

adjunct of the verb “açtı” (“opened”).

Our trees diverge from the Penn TreeBank’s trees

mainly due to the tags used for the subtrees and empty

projections. Contrary to the Penn format, the baseline

algorithm produces trees that have no bar-level projec-

tions and empty projections. We decided that the bar

level production is not necessary for properly reflecting

the argument structure of the verb since there is also a

Turkish PropBank ready (Kara et al., 2020). This de-

cision led us to flatter trees. In addition, we based

the phrasal tags on morphology instead of the syntac-

tic and/or semantic roles, meaning that phrasal projec-

tions have basic tags like NP, PP and VP based on the

morphological features. Our constituency trees lack se-

mantic function indicators like (NP)-SUBJ, (NP)-OBJ,

or (ADV)-TMP. We used morphological analyser to

identify the morphological features and POS tags for

the morphemes (Yıldız et al., 2019).

3. Conversion Process

3.1. Input

The input of the conversion algorithm is a manually an-

notated dependency treebank which can be found in a

GitHub repository of Universal Dependencies organ-

isation3. The data of this treebank consists of Penn

Treebank sentences, translated into Turkish by profes-

sional translators. After being proofread and edited,

these translated sentences were manually annotated by

a team of linguists following the UD framework and

style guide. In order to ensure inter-annotator agree-

ment and quality, manually annotated dependencies

were revised and edited when necessary by two lin-

guists after the annotation process.

3.2. Conversion Algorithm

The conversion algorithm follows a bottom-up ap-

proach to start conjoining terminal nodes and adding

their phrasal projections until it reaches the root. Along

the process, dependency tags and headedness indicated

in the dependency trees are referred to correctly convert

each dependency relation. For each edge in the depen-

dency tree, a sub-tree is generated. Then these sub-

branches are conjoined using the dependency relations,

headedness, and POS tags indicated in the dependency

trees. POS tags determine the phrasal tags such as NP,

VP, DP and so forth.

There are two different oracles created for the purposes

of this study, one of which refers to a set of predefined

heuristics to conjoin subtrees. These predefined set

of heuristics are based on the dependency relations,

POS tags and headedness. These rules guide sub-tree

merger process. After every terminal node is assigned

to a sub-tree in accordance with it headed or depen-

dent, the basic oracle refers to the rules and merges

them by one of the three operations: Left, Right and

Merge. The operations applied at this stage and their

3https://github.com/UniversalDependencies/UD Turkish-

Penn
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order are critical to create the correct tree output.

Hence, the algorithm refers to two oracles to make the

correct decision:

• The first oracle is the basic oracle which bases

merging decisions on the set of rules discussed

above, which are carefully created by a team of

linguists in accordance with UD framework and

syntactic typology of Turkish language. Trees cre-

ated by the basic oracle constitutes the baseline for

this study. The learning-based algorithm aims to

exceed the performance of this basic oracle.

• The second one is the classifier oracle which bases

merging decisions on a machine learning model.

After the subtree merging operations are complete,

these subtrees are linked to S node, thus creating the fi-

nal constituency tree in the final step. For the learning-

based oracle, the number of dependents the head has

guides the subtree merging process. Groups for 1-

dependent, 2-dependent, 3-dependent and 4-dependent

instances are first determined. Then combinatorial con-

straints that refer to dependency relations and syntac-

tic typology of Turkish are created for each group. In

accordance with these constraints, the learning-based

algorithm performs three operations (Left, Right and

Merge) to combine sub-trees and create the final con-

stituency tree output.

3.2.1. Basic Oracle

Basic oracle is exclusively rule-based. In other words,

it makes merging decisions in accordance with a set of

rules and heuristics created by a team of linguists. Ba-

sic oracle was created and used solely for setting the

baseline for this study. The machine learning based

conversion algorithm only uses the classifier oracle and

does not refer to the basic oracle at any point of the con-

version process.

The main challenge for the basic oracle is grouping

the subtrees in the correct order. For example the verb

“merak etmek” (lit. “curious, to do” “to wonder some-

thing”) is a transitive light verb construction. To appro-

priately reflect its argument structure, the oracle needs

to group the words “merak” and “etmek” as a VP (this

VP is the predicate) and then it needs to append the

object NP as a sister to the VP. After merging the ob-

ject, the algorithm needs to append adjuncts and ad-

verbs to VP, if there are any. This order of merger op-

eration is essential since if the adjuncts are merged be-

fore the object(s), the algorithm yields an incorrect tree.

Thus, a hierarchy of subtree appendage is created to

avoid doing the merger operations in the wrong order.

If the dependency tag of a subtree is COMPOUND, it

is appended to the S first. Then comes AUX, DET,

AMOD, NUMMOD, CASE, CCOMP and finally NEG

(See Figure 5). The reason why NEG (“değil,” a nega-

tion particle exclusively used with nominal predicates)

is at the bottom of the hierarchy is the fact that it has to

COMPOUND >AUX >DET >AMOD >

NUMMOD >CASE >CCOMP >NEG

Figure 5: The hierarchy of subtree appendage

govern and C-Command the entire predicate it negates.

COMPOUND is the highest in the hierarchy to main-

tain the integrity of phrasal verbs, light verb construc-

tions, and other two-word expressions. The rest of the

hierarchy is worked out by a team of linguists in accor-

dance with the typological features of Turkish.

Following the rule-based basic oracle, merging takes

place as follows:

In order to create the subtrees, the algorithm first refers

to the morphological analyser which provides basic

tags like N, ADJ and ADV. These basic tags constitute

the phrasal tags of the constituency tree (such as NP,

ADJP, ADVP etc.). Then, it goes over the dependency

relations to detect each terminal node. The output at

this point is the terminal nodes and the relationship

information between these nodes derived from the

dependency tree. In the next step, links between

terminal nodes are generated, thus subtrees are created.

For a sentence like “Ali cesur kadından yardım aldı.”

(lit. “Ali brave woman.ABL help take.PAST.3pSING”,

“Ali got help from the brave woman.”) the algorithm

starts with identifying leaves and their immediate

nodes:

Ali cesur kadından yardım aldı.

Ali.NP brave.ADJ woman.NP help.NP get.VP

Then the algorithm proceeds to create subsubtrees.

First the VP[NP[yardım] VP[aldı]] subtree (See Fig-

ure 6) is created as the hierarchy of subtree ap-

pendage suggests (see Figure 5), then NP[ADJP[cesur]

NP[kadından]] (See Figure 7) is created since it has no

child nodes:

VP

NP

yardım

VP

aldı

Figure 6: “yardım aldı” subtree

NP

ADJP

cesur

NP

kadından

Figure 7: “cesur kadından” subtree

As the dependency tag of [NP[Ali]] is NSUBJ, it is di-

rectly linked to the S node. That is why it is excluded
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Figure 8: “Ali cesur kadından yardım aldı.”

Figure 9: Sample set of instances

Figure 10: Sample ADJ, ADJ, NOUN instance

from this step. For the third step, subtrees and childless

nodes are merged and linked to the root S, thus creat-

ing the final tree in Figure 8. One of the most important

features of the algorithm is that it first detects the sub-

ject NP and predicate VP using NSUBJ tag and ROOT

tag from the dependency structure. Then everything on

the left hand side of the subject NP head is considered

as part of subject NP. Everything else except the (.) is

considered to be a child of the predicate VP. (.) is di-

rectly connected to the S node. The algorithm strictly

follows this linguistic principle while merging subtrees.

3.2.2. Classifier Oracle

A classifier oracle is employed for the machine learn-

ing model. The defining characteristic of the classifier

oracle is that it merges the subtrees in accordance with

their class information.

This class information is provided by the prede-

termined classes based on the number of depen-

dents each head has. There are four classes for

heads: 1-dependent, 2-dependent, 3-dependent and 4-

dependent. The constraints and features regarding

these classes are determined making use of dependency

tags, POS tags and syntactic particularities of Turkish.

The algorithm follows a bottom-up processing style:

It starts from the terminal nodes and builds the con-

Length Error Rate

3 21.06%

4 17.35%

5 17.35%

6 10.4%

7 4.79%

8 1.8%

Table 1: Error rates of the subtrees according to their

length (Bagging, Ensemble Size = 200)

stituency structure up until it reaches the root, which is

S. Similar to the basic oracle, classifier oracle refers to

the morphological analyser to pull basic tags and create

phrasal tags like ADJP, NP and VP. Then, dependency

relationships between the leaves of the subtree are re-

ferred to (See Figure 11).

In order to create a trainable model, a series of in-

stances that consisted of Left, Right and Merge com-

mands are created (See Figure 11). Each of these

instances carries information about the group to be

merged, including the POS-tags of all of the words in

the group, indices of each word in the group, indices of

the words they connect to, and their dependency rela-

tions (See Figure 9).

An instance for a subtree that consists of three nodes

whose POS-tags are NOUN, VERB, and PUNC re-

spectively, will carry the POS-tag information for each

node, the index of the first connecting node (it is 0 here

for NOUN), index of the node that it connects to (it is 1

here for VERB), and the dependency relation (here it is

NSUBJ). After nodes are connected in accordance with

headedness and information listed above, the algorithm

moves on to indicating other possible connections in

the group. In this example, next step is to indicate 2

for the connecting node PUNC, 1 for the target node

VERB and PUNCT for the name of the flag, and fi-

nally in order to indicate the class of the group, index

of the head is stated, in this example being 1 for the

verb head.

After these instances (Left-Right-Merge, Left-Merge-

Right-Merge and Right-Merge-Left-Merge) are cre-

ated, they are sorted in accordance with the nodes that

requires merging. Then, they are turned into class in-

formation which allows training the model using more

efficient commands.

3.2.3. Training and Testing the Model

In order to find the most efficient model for the pur-

poses of this study, different machine learning algo-

rithms are tested: Decision Tree, Naive Bayes, KNN,

Random Forest, and Bagging. Bagging performed bet-

ter than the other alternatives yielding less errors (See

Table 1). Thus, it was decided to proceed with this

model.

In addition, an experimental run was carried out where

features of the left and right context were referred to.



5059

S

NP

kapıyı

VP

açtı
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Figure 11: “[S/he] opened the door with a key” 3 merging possibilities of 3 leaf nodes. Each one will correspond

to one class. “açtı’” (lit. “open.PAST.3PSING”, “opened”) is the head node for this example.

When the features of two preceding words and two fol-

lowing words were incorporated into computation, er-

ror rates increased due to added complexity. Hence this

approach was abandoned quickly.

After settling on a model, few alternations to the fea-

tures were tested to attain better results. Replacing

some features with others and deleting the existing ones

did not yield better results. Thus, new features were

added to improve performance. The final version of the

algorithm refers to the POS tag of each leaf node and

their morphological analysis which offers information

on case inflection (ablative, dative, genitive, nomina-

tive, accusative, instrumental) and whether the lemma

is a proper noun. Hence, the algorithm first checks

the morphological information and POS tags associ-

ated with the words. For a subtree that consists of ADJ,

ADJ, and NOUN, it extracts these tags along with the

morphological information. If the root bears the inflec-

tion the algorithm checks for, it is assigned a true value;

if the root does not bear that specific inflection, it is as-

signed false value. This operation is iterated for each

inflection and word. This creates a sequence of binary

true/false outputs for the instance (See Figure 10).

Here in Figure 10, ADJ is the POS tag of the first word

and NOUN is the POS tag of its root word. The first

three false values refer to the fact that the word does

not bear ablative, dative nor genitive inflection. The

true value indicates that this word bears nominative in-

flection. The remaining false values indicate that the

word does not bear accusative inflection and is not a

proper noun.

After morphological information is processed by the

algorithm, it moves on to checking the indices of each

head and their dependents. Then it extracts dependency

relation AMOD, and finally, it yields the index of the

head word.

4. Evaluation Process

Studies on conversion have different stances on

evaluating the performance of conversion algo-

rithms: Some scholars opt for sharing the F-score,

recall and precision of their algorithm (Bick, 2006;

Xia and Palmer, 2001; Lee and Wang, 2016) while

others skip this step (Lu et al., 2016; Bosco, 2007). As

Table 2: Precision, recall and F-score values of basic

oracle
Precision Recall F-Score

88.51 89.90 89.20

Table 3: Precision, recall and F-score values of classi-

fier oracle
Precision Recall F-Score

89.34 90.06 89.70

this study offers the very first conversion algorithm for

Turkish dependency trees, a careful evaluation of the

algorithm’s performance was conducted in order to set

a baseline for further studies. F-scores of the baseline

(See Table 2) and classifier oracle (See Table 3) can be

found in this section. For a thorough discussion of the

evaluation process and evaluation metric, see 4.1.

4.1. Evaluation Metric

After converting dependency trees into constituency

trees using the algorithm discussed in 3.2, the eval-

uation process started. Since parser evaluation is

still a heated point of discussion, various different

metrics are employed: Head attachment score, la-

bel precision, labelled attachment score, branch preci-

sion, GEIG, PARSEVAL (Black et al., 1991) and Leaf-

Ancestor (Sampson and Babarczy, 2002). Since our al-

gorithm employs morphological analyser to create tags

for each leaf, incorporating metrics like label preci-

sion and label attachment score would measure the ac-

curacy of the morphological analyser instead of the

conversion algorithm. That is why PARSEVAL and

Leaf-Ancestor were the top competitors for being the

evaluation metric. PARSEVAL is considered to be

the canonical metric. It has been criticised heavily

for failing to capture the true performance of parsers

(Sampson and Babarczy, 2002) mainly because it has

a tendency to punish parsers that make more mistakes

while attempting to offer more information by making

more claims. Moreover, it is more coarse compared to
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Table 4: Confusion matrix of the tags
Tag ADJP ADVP CONJP DP INTJP NEG NOMP NP NUM PP S VP WP

ADJP 92.2 2.0 0 0.3 0 0 0.1 2 0.1 0.2 0 0.8 0

ADVP 2.6 71.8 0.3 0.1 0.1 0 0.2 21.2 0.1 0.8 0 1.4 0

CONJP 0 8.4 89.2 0 0.1 0 0 0.3 0 0.1 0 0.3 0

DP 2.7 0.3 0 94.7 0 0 0 0.2 1.4 0 0 0 0

INTJP 0 10.0 0 0 80 0 0 3.3 0 0 0 3.3 0

NEG 0.4 0 0 0 0 99.1 0 0 0 0 0 0.4 0

NOMP 14.9 1.8 0 0.3 0 0 27.5 21.0 0.4 0.5 0.1 21.5 0

NP 0.7 0.2 0 0.3 0 0 0.2 93.2 0.1 0.5 0.2 0.5 0

NUM 0.1 0 0 1.2 0 0 0 3.9 92.8 0.1 0 0 0

PP 0.1 2.4 0.6 0 0 0 0.1 4.6 0.1 89.3 0 0.4 0

S 0.3 0 0 0 0 0 0.1 0.2 0 0 96.8 0.8 0

VP 0.3 0 0 0 0 0 0.2 0.2 0 0.1 0.1 90.9 0

WP 1.2 8.6 2.5 0 0 0 0 3.7 0 0 0 1.2 82.7

Leaf-Ancestor metric since the former compares brack-

ets and later compares the path from leaf node to root

node using Levenshtein distance. Since our intention

was not introducing the accuracy of POS tags as a met-

ric, we opted out of using Leaf-Ancestor.

Our algorithm created flatter trees, thus we intended

to shift the focus of our evaluation to brackets and in-

corporation of subtrees. Also our constituency trees

only had basic tags like NP rather than function spec-

ifying ones like NP-Subj, NP-Obj and such. Conse-

quently, PARSEVAL metric was a better fit than Leaf-

Ancestor for us due to numerous reasons including the

fact that it weighs all nodes evenly instead of focus-

ing on certain syntagmatic and/or semantic relations

more. On the other hand, PARSEVAL failed to assess

the subtree grouping performance of our algorithm as

it processed parse trees in a bottom-up fashion and it

does not consider phrase tags while assessing similar-

ity. That is why we came up with a new evaluation

algorithm which operates in a top down fashion.

After conversion process was concluded, a set of lin-

guists manually annotated constituency trees of the de-

pendency structures used as the input of the conver-

sion algorithm. These manually annotated constituency

trees served as the gold standard in parser evaluation

process. In order to assess the performance of the con-

version algorithm, the evaluation algorithm starts com-

paring output trees and gold standard trees from the top

node. It compares the phrase below each node of the

conversion output and gold standard until it reaches the

individual leaves. Anything other than exact matches

are penalized.

4.2. Results

The overall performance of the rule based algorithm

is satisfactory with an F-score of 89.20 but it is not

as successful as the machine learning algorithm which

has an F-score of 89.70 (See Table 3 for details). The

success of morphological analyser (Yıldız et al., 2019)

and carefully created the hierarchy of subtree ap-

pendage (Figure 5) are the main contributors of these

F-score, precision and recall values. In addition, the

relatively shallow structure of the constituency trees of-

fer less information compared to trees that use bar lev-

els and more sophisticated tags that also show semantic

roles. As a result, precision and recall values of the un-

complicated and clearcut trees are quite high.

Accuracy of the NEG tag shows the peak performance

of the rule-based algorithm (Table 4) as Turkish nega-

tion of nominal and copular predicates is a distinct

word bearing only the meaning of negation, this result

is expected. Accuracy of S tag follows it with 96.8.

Since the information to detect the highest node S is

encapsulated in the ROOT tag of the dependency, this

performance may seem expected yet bearing in mind

the fact that predicates of embedded sentences are also

tagged with S, a 96.8 accuracy value is very impressive.

Accuracy values of WP (82), INTJP (80), ADVP

(71.8), and NOMP (27.5) are the lowest (Table 4). The

morphologically rich typology of Turkish allows de-

riving adjectives from verbal roots and stems. Such

adjectivals lead to a small degree of fuzz in the data.

However, detection of ADJPs still do not perform badly

with 92.2. Moreover, some adjectives can also be used

as determiners in certain cases. This quirk of Turkish

drops the accuracy of DP. Similarly, some conjunctions

can be used as interjections, hence the significantly low

precision of INTJPs and some adjectives and adverbs

have the same word form in Turkish which drops the

score of ADVP. As a newly introduced tag, NOMP is

as low as 27.5 the reason why, from a purely linguis-

tic perspective, is its unpredictable environment. With

the introduction of our machine learning model, perfor-

mance of NOMP gets higher to 36.

Overall, the greatest confusion was caused by the vast-

ness of the nominal domain in Turkish. The distinction

between nominals and verbs is pretty clearcut while

distinguishing nouns from adverbs and adjectives is

rather a challenging task. That is why the morpho-

logic analyser and consequently the conversion algo-

rithm had the most trouble with this task.

As anticipated, performance of machine learning algo-

rithm is overall better. Accuracy of the NEG tag is the

highest (99.1) followed by the S tag which has 96.9
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score. Accuracy of NOMP tag is the lowest with ma-

chine learning algorithm as well; however, we see sig-

nificant improvement as its score is now 36.

5. Conclusion

In conclusion, the algorithm developed in this study

creates flatter trees using a machine learning based

model, predefined set of heuristics, and morphology-

based tags with high accuracy. A total of 8786 trees

were created. The overall constituency structures were

flatter due to the following reasons:

• Not employing the bar-level representations,

• Choosing phrasal tags based on the POS tag of the

head of the each phrase,

• Not including empty projections helped making

the overall structure flatter.

Therefore, the conversion algorithm’s output offered

simpler trees with higher accuracy rates. The aim

of implementing rules like tag hierarchy and no bar

level representations was being able to offer a linguis-

tically sound constituency structure that fitted typology

of the Turkish language. Movement, co-indexation and

empty projections were not illustrated since Turkish li-

censes free word order and scrambling. As a result, a

single sentence can have many variations depending on

the focus position and emphasis.Thus, the movement

and co-indexation was not essential to be included.

Other than that, the constituency trees created by the al-

gorithm reflect the syntactic features of Turkish as they

illustrate particularities like nominal predicates.

The main goal of this study was setting a baseline for

dependency to constituency conversion algorithm. Of-

fering two different methods (rule-based and machine

learning-based) with high success rates, we believe that

we fulfilled this goal. Yet different machine learning

models and neural networks can be tested out in the

future studies to increase the performance of the con-

version algorithm even more.

6. Bibliographical References

Bai, J., Wang, Y., Chen, Y., Yang, Y., Bai, J., Yu, J.,

and Tong, Y. (2021). Syntax-bert: Improving pre-

trained transformers with syntax trees. arXiv.

Bick, E. (2006). Turning a dependency treebank

into a PSG-style constituent treebank. In Proceed-

ings of the Fifth International Conference on Lan-

guage Resources and Evaluation (LREC’06), Genoa,

Italy, May. European Language Resources Associa-

tion (ELRA).

Black, E., Abney, S., Flickenger, D., Gdaniec, C.,

Grishman, R., Harrison, P., Hindle, D., Ingria, R.,

Jelinek, F., Klavans, J., Liberman, M., Marcus,

M., Roukos, S., Santorini, B., and Strzalkowski,

T. (1991). A procedure for quantitatively compar-

ing the syntactic coverage of English grammars. In

Speech and Natural Language: Proceedings of a

Workshop Held at Pacific Grove, California, Febru-

ary 19-22, 1991.

Bosco, C. (2007). Multiple-step treebank conversion:

From dependency to Penn format. In Proceedings

of the Linguistic Annotation Workshop, pages 164–

167, Prague, Czech Republic, June. Association for

Computational Linguistics.

Bouma, G. and Kloosterman, G. (2002). Querying

dependency treebanks in XML. In Proceedings of

the Third International Conference on Language Re-

sources and Evaluation (LREC’02), Las Palmas, Ca-

nary Islands - Spain, May. European Language Re-

sources Association (ELRA).

Cahill, A., Burke, M., O’Donovan, R., Riezler, S.,

van Genabith, J., and Way, A. (2008). Wide-

coverage deep statistical parsing using automatic de-

pendency structure annotation. Computational Lin-

guistics, 34(1):81–124.
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and Yıldız, O. T. (2020). TRopBank: Turkish Prop-

Bank v2.0. In Proceedings of the 12th Language

Resources and Evaluation Conference, pages 2763–

2772, Marseille, France, May. European Language

Resources Association.

Koehn, P., Och, F. J., and Marcu, D. (2003). Statis-

tical phrase-based translation. University Of South-

ern California Marina Del Rey Information Sciences

Inst.

Kong, L., Rush, A. M., and Smith, N. A. (2015).

Transforming dependencies into phrase structures.

In Proceedings of the 2015 Conference of the North

American Chapter of the Association for Computa-

tional Linguistics: Human Language Technologies,

pages 788–798, Denver, Colorado, May. Association

for Computational Linguistics.

Lee, Y.-S. and Wang, Z. (2016). Language indepen-

dent dependency to constituent tree conversion. In

COLING.

Lu, A., Malamud, S., and Xue, N. (2016). Converting

syntagrus dependency treebank into penn treebank

style. pages 16–21, 01.

Matthews, P. H. (1981). Syntax. cambridge etc. Cam-

bridge University Press (Cambridge Textbooks in

Linguistics). Indices.

Nivre, J., de Marneffe, M.-C., Ginter, F., Hajič, J.,
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