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Abstract
Semantic Storytelling describes the goal to automatically and semi-automatically generate stories based on extracted,
processed, classified and annotated information from large content resources. Essential is the automated processing of text
segments extracted from different content resources by identifying the relevance of a text segment to a topic and its semantic
relation to other text segments. In this paper we present an approach to create an automatic classifier for semantic relations
between extracted text segments from different news articles. We devise custom annotation guidelines based on various
discourse structure theories and annotate a dataset of 2,501 sentence pairs extracted from 2,638 Wikinews articles. For the
annotation, we developed a dedicated annotation tool. Based on the constructed dataset, we perform initial experiments
with Transformer language models that are trained for the automatic classification of semantic relations. Our results with
promising high accuracy scores suggest the validity and applicability of our approach for future Semantic Storytelling solutions.

Keywords: Semantic storytelling, Text classification, Discourse parsing, Wikinews

1. Introduction
The ever-increasing size of information available dig-
itally, and especially the growth of unstructured in-
formation online, leads to the development of tech-
nologies to curate, process and understand digital data
(Moreno Schneider et al., 2017). Due to its semi-
structured nature, it is a challenge for the machine to
process the information automatically. Content cre-
ators, scientists, and journalists write and publish ar-
ticles and literary works based on researched informa-
tion from a variety of (often digital) sources. They need
domain-specific knowledge to verify content and facts,
discuss different perspectives, and combine different
sources. For journalists in particular, the ever-growing
incoming stream of heterogeneous information, such as
news articles, social media and press statements, is a
major challenge. To better cope with this, knowledge
workers rely on curation technologies to help them
process, analyze, skim, sort, summarize, evaluate and
present large amounts of digital content (Bois et al.,
2017; Caselli and Vossen, 2017; van Meersbergen et
al., 2017; Rehm et al., 2019; Rehm et al., 2021; Rehm
et al., 2018; Linscheid et al., 2021).
The long-term Semantic Storytelling vision describes
the automatic and semi-automatic generation of stories
based on extracted, processed, classified and annotated
information from large content resources (Rehm et al.,
2019; Rehm et al., 2020b; Rehm et al., 2021). Story-
telling can be understood as a technique to order a se-
ries of events in the world or to recognize meaningful
patterns in natural language (Bruner, 1991). Hereby,
Semantic Storytelling is one element of our long-term
efforts to develop curation technologies as part of the
QURATOR project (Rehm et al., 2020a). Our Seman-
tic Storytelling approach is characterized by a stronger
focus on extraction and presentation, in contrast to the

much more established field Natural Language Gener-
ation (NLG) (Fan et al., 2018; Fan et al., 2019). Our
goal is to support content curators in creating new sto-
rylines through the relevant information extracted and
presented by a corresponding tool (Rehm et al., 2021).
This enables knowledge workers to explore datasets
fast, efficiently and intuitively (Rehm et al., 2020b).
Essential for Semantic Storytelling is the automated
processing of extracted text segments from different
content resources or news streams. In order to process
this information faster for users, the relevance of a text
segment to a certain topic, the importance and the se-
mantic relation to other text segments need to be esti-
mated automatically (Rehm et al., 2020b).
For this purpose, we train a new classifier based on cur-
rent machine learning approaches that can determine
the semantic relation between extracted sentences from
different news articles (Section 4). We use pre-trained
language models based on the Transformer (Vaswani
et al., 2017), BERT (Devlin et al., 2019) and DeBERTa
(He et al., 2020) architecture. The most severe chal-
lenge for Semantic Storytelling is the lack of available
datasets. There are only very few annotated corpora
for cross-document semantic relations like CSTBank
(Radev et al., 2004). For our vision of Semantic Sto-
rytelling, no such dataset exists, which is why we cre-
ate our own corpus based on semantic relation classes
derived from the discourse relation frameworks CST
(Radev, 2000), PDTB (Prasad et al., 2008) and RST
(Mann and Thompson, 1987) (Section 3.4). To support
the annotation process, we develop a custom annotation
tool tailored to our use case (Section 3.3). We make the
dataset and the annotation tool publicly available.1

1https://github.com/DFKI-NLP/semantic-storytelling

https://github.com/DFKI-NLP/semantic-storytelling
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2. Related Work
The study of semantic relations between text segments
from narratives such as news articles is related to the
analysis of discourse relations, which has mostly been
considered in the context of text coherence.
This has led to established theories and frameworks
such as Rhetorical Structure Theory (RST) (Mann and
Thompson, 1987), which analyses the rhetorical struc-
ture of a text into hierarchical functional blocks that
can be related to one another. For this purpose, 23
relation classes are defined as well as two unit types:
the nucleus carries the main information, and the satel-
lite adds supporting information. Carlson et al. (2003)
present an RST corpus with 385 annotated Wall Street
Journal articles from the Penn Treebank (Marcus et al.,
1993). The largest corpus with annotated discourse
relations, Penn Discourse Treebank (PDTB), includes
Wall Street Journal articles with more than one mil-
lion words (Miltsakaki et al., 2004; Prasad et al., 2008).
Discourse relations are encoded using a theory-neutral
lexical approach (Webber et al., 2003). Discourse re-
lations are classified according to hierarchical senses,
which are captured by marking explicit lexical items
called discourse connectives. This approach makes it
difficult to transfer the PDTB framework to our sce-
nario, which is not in-document but cross-document.
Rehm et al. (2020b) adopt this approach for classify-
ing semantic relations between text segments from dif-
ferent documents and fine-tuned two DistilBERT lan-
guage models in a siamese architecture on the PDTB2
corpus for the four top-level senses temporal, contin-
gency, comparison, expansion (and none). The au-
thors qualitatively evaluate the transfer to the cross-
document scenario and emphasise the problem of de-
pendency on lexical markers.
The functional cross-document structure theory (CST)
(Radev, 2000) is related to RST. CST analyses rhetor-
ical relations between thematically related documents.
Rather than relying on a tree representation, cube and
graph representations are used to illustrate connections
within and between documents. Relationships are clas-
sified using 18 domain-independent, linguistically mo-
tivated relationship types, including comparative bidi-
rectional relations such as identity, equivalence, reader
profile, or change of perspective. Radev et al. (2004)
created a corpus of document clusters manually anno-
tated with CST relations from various news sources
(e. g., BBC, CNN, MSNBC, ABC News, USA Today,
FOX News, Penn Treebank). Zhang et al. (2003)
first attempted to classify seven sentence-level CST
relations across document boundaries from this cor-
pus using a booster machine learning approach that
combines multiple weak hypotheses (classifiers) into
one strong hypothesis. Comparative lexical, syntactic,
and semantic features were used to process the sen-
tence pairs. The multi-label and multi-class classifier
achieved an accuracy of 88% and a macro F1 score of
38%. Maziero and Pardo (2011) was able to improve

the F1-score to 44% using a decision tree (J48) clas-
sifier on the Portuguese-language CSTNews corpus.2

The authors used similar lexical and syntactic features
and linked them to external knowledge resources. This
was done by adding the number of possible common
synonyms and named entities as features. Kumar et al.
(2013) were able to increase the F1 score to 62% by
creating an SVM classifier for only four CST relations,
which was trained on a set of 477 sentence pairs from
the CST Bank corpus and tested on 205 sentence pairs.
Only lexical metrics were used as features, e. g., cosine
similarity, word overlap and sentence length.

3. A Corpus of Semantic Relations
between Text Segments

In the following, we first describe the annotation task
(Section 3.1) as well as the relations and annotation
guidelines developed specifically for this work (Sec-
tion 3.2). Afterwards, Section 3.3 describes the anno-
tation tool we developed and Section 3.4 gives a brief
overview of the constructed dataset.

3.1. Annotation Task
For annotating discourse relations between text seg-
ments within a document, annotation guidelines, soft-
ware, and annotated datasets exist, see, e. g., Milt-
sakaki et al. (2004). In the context of Semantic Sto-
rytelling, we are especially interested in semantic rela-
tions between extracted sentences from different docu-
ments, especially news articles. Our source documents
are English-language Wikinews articles from 2004 to
2020. We select a large number of sentence pair can-
didates from articles of similar category such that there
is a high probability of the sentences being semanti-
cally related. Here, semantic relatedness refers to any
possible relation with respect to topic, discourse or any
other similarity that allows a story to be created out of
sentence pairs.
For selecting candidate pairs, we apply three differ-
ent pre-matching strategies: random matching, cosine
similarity, and next sentence prediction. With random
matching any two sentences, which are not from the
same article, are randomly sampled from the whole
corpus. With cosine similarity, the sentences are first
converted into vector representations and then candi-
dates are selected from vector representations with a
high cosine similarity. For next sentence prediction, we
make use of BERT’s language model objective (Devlin
et al., 2019) that is the model being trained for pre-
dicting whether one sentence follows another sentence.
We use the BERT model in the same fashion and se-
lect sentence pairs with a high prediction value as can-
didates. After automatically selecting candidate pairs,
we use our dedicated annotation tool to manually an-
notate the semantic relations between the sentence pair
candidates (both directions).

2http://nilc.icmc.usp.br/CSTNews/

http://nilc.icmc.usp.br/CSTNews/
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3.2. Relations and Annotation Guidelines
We annotate relation labels for each sentence pair (both
directions) using the following relation classes:

• None indicates no semantic relation from one text
segment to the other.

• Attribution is a uni-directional connection that
exists if segment A presents an attributed version
of information in segment B, e. g. using “Accord-
ing to CNN”. It is derived from the CST classes
attribution, citation and modality. Example:

(A) According to a top Bush advisor, the Presi-
dent was alarmed at the news.

(B) The President was alarmed to hear of his
daughter’s low grades.

• Causal is a bi-directional relation that indicates
that both segments are causally influenced, but
not in a conditional way. Similar relation classes
exist in PDTB (Contingency.Cause) and RST
(evidence, justify, solutionhood, (non)volitional
cause, (non)volitional result). Example:

(A) By 11:59 p.m. tonight, President Bush must
order $16 billion of automatic, across-the-
board cuts in government spending to comply
with the Gramm-Rudman budget law.

(B) The cuts are necessary because Congress
and the administration have failed to reach
agreement on a deficit-cutting bill.

• Conditional is a uni-directional connection
present if an unrealized situation in segment
A leads to the situation described in segment
B. The relation also exists in PDTB (Contin-
gency.Condition) and RST (condition). Example:

(A) Call Jim Wright‘s office in downtown Fort
Worth, Texas, these days.

(B) The receptionist still answers the phone,
“Speaker Wright‘s office”.

• Contrast is a bi-directional relation type that
highlights conflicting information and important
differences between segments regarding falsehood
(first example), different aspects (second exam-
ple) and different point of views (third example).
It is included in CST (contradiction) and PDTB
(Comparison.Contrast) and relates to the RST re-
lations antithesis and concession. First example:

(A) There were 122 people on the downed plane.

(B) 126 people were aboard the plane.

Second example:

(A) After all, gold prices usually soar when infla-
tion is high.

(B) Utility stocks, on the other hand, thrive on
disinflation.

Third example:

(A) Mr. Edelman said the decision ”has nothing
to do with Marty Ackerman”.

(B) Mr. Ackerman contended that it was a direct
response to his efforts to gain control of Dat-
apoint.

• Description is a uni-directional relation that ap-
plies if segment B describes an entity from seg-
ment A. The relation is derived from CST and
PDTB (EntRel). Example:

(A) Mr. Greenfield appeared in court yesterday.

(B) Greenfield, a retired general and father of
two, has declined to comment.

• Equivalence is another bi-directional relation that
indicates that both segments describe the same
situation from different perspectives, including
personal, political and other dimensions. It
covers several relations from CST (equivalence,
reader profile, change of perspective), PDTB
(Expansion.Equivalence, Comparison.Similarity)
and RST (restatement). Example:

(A) Chairman Krebs says the California pension
fund is getting a bargain price that wouldn’t
have been offered to others.

(B) In other words: The real estate has a higher
value than the pending deal suggests.

• Fulfillment is a uni-directional class that states
that an event predicted in segment A is asserted in
segment B. This relation is only present in CST.
Example:

(A) Mr. Green will go to Austria Thursday.

(B) After traveling to Austria Thursday, Mr.
Green returned home to New York.

• Identity is a bi-directional relation that indicates
that both segments provide the same information.
This relation is available in CST only. Example:

(A) Tony Blair was elected for a second term to-
day.

(B) Today, Tony Blair won the election and is
preparing for a second term.

• Purpose is a uni-directional connection from A
to B if segment A presents an action that an
agent undertakes with the purpose of the goal con-
veyed by segment B being achieved. This class
is derived from PDTB (Contingency.Purpose) and
RST (enablement, motivation, purpose). Exam-
ple:
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(A) Skilled ringers use their wrists to advance or
retard the next swing,

(B) so that one bell can swap places with another
in the following change.

• Summary is a uni-directional relation class ap-
plied if segment B summarizes segment A.
This relation covers multiple classes in CST
(overlap, subsumption, summary), PDTB (Ex-
pansion.Instantiation, Expansion.Level-of-detail,
Expansion.Manner, Expansion.Substitution) and
RST (background, interpretation, summary). Ex-
ample:

(A) After a grueling first six games, the Mets
came from behind tonight to take the Title.

(B) The Mets won the Title in seven games.

• Temporal can connect segments uni- or bi-
directionally if one segment presents additional
information which has happened after (first ex-
ample) or at the same time (second example).
Temporal classes are also present in CST (follow-
up) and PDTB (Temporal.Asynchronous, Tempo-
ral.Synchronous). First Example:

(A) So far, no casualties from the quake have
been confirmed.

(B) 102 casualties have been reported in the
earthquake region.

Second Example:

(A) Then, in late-afternoon trading, hundred-
thousand-share buy orders for UAL hit the
market, including a 200,000-share order
through Bear Stearns that seemed to spark
UAL’s late price surge.

(B) Almost simultaneously, PaineWebber began
a very visible buy program for dozens of
stocks.

The definitions and examples of these relation classes
are taken from the original paper on RST (Mann and
Thompson, 1987), a follow-up paper of the origi-
nal publication of CST (Zhang et al., 2002) and ver-
sion 3 of PDTB.3 We grouped and filtered their relation
classes in order to create an initial inventory of relations
that we can experiment with towards the goal of further
developing our Semantic Storytelling approach.

3.3. Annotation Tool and Data Format
The annotation process was performed using the open-
source web-based annotation platform INCEpTION4

(Klie et al., 2018), which supports the annotation of
various NLP-related features and setting up multiple

3https://catalog.ldc.upenn.edu/docs/LDC2019T05/
PDTB3-Annotation-Manual.pdf

4https://inception-project.github.io

annotation layers, label classes, annotators, documents,
knowledge resources and recommender systems. In
order to be able to annotate relations of individual
text segments from different source documents, a sep-
arate editor was developed using the modular plat-
form. INCEpTION’s internal data structure is based
on Apache UIMA5 (Unstructured Information Man-
agement Architecture) framework and the associated
Common Analysis System (CAS) data structure (Fer-
rucci et al., 2008). The data structure allows the an-
notation model to be represented by merging the ex-
tracted text segments into one document, adding the
source documents as metadata to each segment, and
using placeholder relations between them to represent
pre-matching. We preprocessed the data in Python us-
ing the open source library DKPro cassis6 (Eckart de
Castilho and Gurevych, 2014) and imported the result-
ing UIMA CAS XMI file in INCEpTION. After the an-
notation process, we exported the project in the same
format for further processing.
Figure 1 shows the user interface of our relation editor.
It allows the annotator to quickly assess the text seg-
ments, retrieve their source documents for reference,
and select directed relations using a drop-down menu.
The annotator can navigate through the sentence pairs
either in a pair-wise fashion or individually for each
segment, to ensure an efficient annotation process. The
navigation bar shows additional information about the
progress and distribution of label classes in the dataset.

3.4. Overview of the Dataset
We annotated a total of 2,501 sentence pairs from 2,638
different articles with semantic relations. The sen-
tences result in a corpus of 291,146 words (376,002
words if we add the titles of the original articles).
In terms of pre-matching (Section 3.1), 616 sentence
pairs were matched randomly, 529 using BERT’s NSP
model, and 1,356 using cosine similarity. Figure 2
shows the final distribution of labels in the dataset. It
should be noted that each sentence pair includes two
relations (both directions) and, thus, two labels. How-
ever, this is an imbalanced classification problem. The
none relation (no semantic relation) is by far the most
represented with 63.4% (3,172 cases). It is followed by
the temporal with 11.8% (590 cases), causal with 8.7%
(434 cases) and equivalence with 6.8% (340 cases) and
contrast with 3.3% (165 cases). The seven other rela-
tion labels account for less than 2% each.
Using our annotation tool, we were able to annotate
between 10 and 30 sentence pairs per hour, depending
on the complexity of the articles and the pre-matching
algorithm on which the chances of potential semantic
links depended. The annotation of all 2,501 sentence
pairs by one annotator took about 150 hours. The an-
notation process was performed by one of the authors,
so the annotation guidelines explained in 3.2 were suf-

5https://uima.apache.org
6https://github.com/dkpro/dkpro-cassis

https://catalog.ldc.upenn.edu/docs/LDC2019T05/PDTB3-Annotation-Manual.pdf
https://catalog.ldc.upenn.edu/docs/LDC2019T05/PDTB3-Annotation-Manual.pdf
https://inception-project.github.io
https://uima.apache.org
https://github.com/dkpro/dkpro-cassis


4927

Figure 1: User interface of the annotation tool, developed using INCEpTION, with navigation bar (1), segment
items with meta data (2), and the relation label selector (3).

Figure 2: Label distribution in the annotated dataset

ficient and an inter-annotator agreement could be omit-
ted.

4. Experiments
In order to train a multi-class classifier for semantic re-
lations between sentence pairs, it is necessary to ex-
ploit the annotated dataset in the best possible way. We
utilise pre-trained language models and fine-tune them
for the classification task on the corpus. As an input
sequence, we investigate different input strategies (Ta-
ble 1) and evaluate whether a language model can ben-
efit from adding more metadata such as the title of the
article (TS, TSD, STD) or publication date (TSD, STD)
in the input to be classified and whether the order of ti-
tle and extracted sentence have an impact on the focus
of the language model (TSD or STD).
For training and testing, we apply 4-fold cross valida-
tion. The training process involves four runs in which
the validation dataset consists of one alternating fold
and the training data consists of the remaining three
folds. To evaluate the results, we consider the mean
and standard deviation of the four folds. Using scikit-

Input Example

S Sentence. However preliminary results based
on 95% of the votes cast give
Hamas’ Change and Reform Party
76 seats, leaving Fatah with 43
seats.

TS Title.
Sentence.

Hamas wins Palestinian election.
However preliminary results based
on 95% of the votes cast give
Hamas’ Change and Reform Party
76 seats, leaving Fatah with 43
seats.

TSD Title.
Sentence.
Date.

Hamas wins Palestinian election.
However preliminary results based
on 95% of the votes cast give
Hamas’ Change and Reform Party
76 seats, leaving Fatah with 43
seats. January 29, 2005

STD Sentence.
Title.
Date.

However preliminary results based
on 95% of the votes cast give
Hamas’ Change and Reform Party
76 seats, leaving Fatah with 43
seats. Hamas wins Palestinian elec-
tion. January 29, 2005

Table 1: Tested input strategies for elements of the
input pair of the classifier (Sentence: the extracted sen-
tence; Title: the title of the article; Date: the publica-
tion date of the article).

learn7 (Buitinck et al., 2013), we employ a stratified
k-fold method that produces equally distributed folds
regarding the relation labels. Thus, low standard devi-
ations can be expected.
To assess the impact of the imbalance in the distribu-
tion of label classes on the results and to ensure bet-
ter comparability of the results with other experiments
that also have a smaller number of classes, we also run
all experiments with an adjusted relation class inven-

7https://scikit-learn.org

https://scikit-learn.org
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tory with a total of seven classes. For this purpose, we
group the six least represented classes conditional (56
samples), description (52), fulfillment (44), attribution
(24), summary (24), and purpose (24) to others (sum of
224 samples). With this adjustment we expect a strong
improvement in the macro class observations.

4.1. Systems
BERT (Devlin et al., 2019, Bidirectional Encoder
Representations from Transformers) is a pre-trained
language model based on the architecture of the multi-
layer encoder of a Transformer by Vaswani et al.
(2017). BERT achieved the state of the art in the GLUE
benchmark (Wang et al., 2018) and in eleven sentence-
level and token-level NLP tasks including Multi-Genre
Natural Language Inference (Williams et al., 2018,
p. 1), a classification task with similar properties to
classifying semantic relations between text segments.
The BERT architecture is very well suited for our ex-
periments due to its pre-training with two text seg-
ments as our prior work has shown (Ostendorff et al.,
2020a; Ostendorff et al., 2020b). Hence, we expect
to achieve a high level of text comprehension by the
classifier for each sentence by simultaneously process-
ing the left and right context of a token in the input
sequence in each layer (bi-directionality), enabled by
the pre-training strategy of Masked Language Model-
ing. In addition, we expect the BERT model to infer
(semantic) relations between a sentence pair through
the pre-training training strategy of Next Sentence Pre-
diction (NSP), which predicts if the second input is the
successor of the first in the source document.

DeBERTa (He et al., 2020, Decoding-enhanced
BERT with disentangled attention) is an optimization
of the BERT architecture processing the content and
position embeddings of the input as separate vectors in
the attention mechanism (disentangled attention) and
using absolute token positions in the last layer of the
decoder (Enhanced Mask Decoder). The authors argue
that this enables DeBERTa to better identify important
tokens in the text segment and understand syntactical
nuances like subject and object contexts. We hypoth-
esise that the understanding of news excerpts and the
identification of semantic relations benefit from this.

Implementation Details We perform and evaluate
the experiments with the pre-trained cased and un-
cased BERTbase models with approx. 110 million pa-
rameters, the cased and uncased BERTlarge models with
approx. 335 million parameters, and the DeBERTabase
model with 140 million parameters. For all experi-
ments, we use a batch size of 8, a learning rate of
0.00002, and a weight decay of 0.01. We found that the
best accuracy was achieved at 10 training epochs. Two
NVIDIA Quadro RTX 6000 GPUs with 24GB mem-
ory each are used. The fine-tuning of the four folds
conducted with Hugging Face’s Transformers library8

8https://huggingface.co/transformers/

Relation Prec. Rec. F1 Support

none 87.0 86.0 86.5 794
identity 78.3 77.5 77.6 20
equivalence 78.5 71.9 74.6 85
causal 57.3 67.0 61.6 109
contrast 55.0 66.1 59.9 41
temporal 45.9 50.3 48.0 147
conditional 24.1 21.4 21.5 14
description 26.5 13.1 17.4 13
attribution 20.8 8.3 11.8 6
fulfillment 0.0 0.0 0.0 11
summary 0.0 0.0 0.0 6
purpose 0.0 0.0 0.0 6

Micro avg. 74.6 75.0 74.6 1251
Macro avg. 39.5 38.5 38.2 1251

Table 2: Training results of the best classifier
(DeBERTabase with TS input strategy) for all classes
sorted by F1-score (average of four folds and rounded
support)

with GPU support by the PyTorch9 backend took, for
the BERTlarge cased model with ten training epochs and
the STD input strategy, up to 2h 52min under these con-
ditions. The same experiment with the BERTbase cased
model took only 1h 11min. The main metric for the
evaluation in every training step and for evaluating the
best hyperparameters (language model, input strategy,
number of label classes) is accuracy. For a deeper un-
derstanding of the results and a better comparison to
similar experiments, we also consider the macro and
micro averages of precision, recall and F1-score.

4.2. Results
For the 12 relations the best classifier is based on
DeBERTabase using the TS input strategy. It has an av-
erage accuracy of four folds of 75% with a standard
deviation of 1.74 percentage points, which is in the
upper middle range compared to the other classifiers.
The micro precision, recall and F1-score are also the
best results in the classification of the 12 label classes
with about 75%. As shown in Table 4, the macro av-
erages of precision, recall and F1-score are rather low
with 39% and 38%, which is due to the high number
of classes and their uneven distribution in the data set.
Table 2 shows that especially the underrepresented uni-
directional classes conditional, description, attribution,
fulfillment, summary and purpose have low F1-scores.
In the experiment with the subset of seven relations,
these labels are grouped together in the class others.
In this setting, the best classifier is also based on the
DeBERTabase model using the STD input strategy. Ta-
ble 3 shows the difference in metrics for each class.
Except for equivalence, all classes benefit in terms of
F1-score. The new class others performs the worst, but

9https://pytorch.org

https://huggingface.co/transformers/
https://pytorch.org
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Class Prec. Rec. F1 Support

none +0.8 +1.8 +1.3 0
identity +11.8 -1.3 +4.6 0
equivalence -4.3 -3.5 -3.6 0
contrast +11.0 -3.6 +4.2 0
causal +2.6 +0.7 +1.8 0
temporal +4.6 +3.2 +3.9 0
others* +41.6 +33.5 +36.9 +55

Micro avg. +2.7 +2.2 +2.6 0
Macro avg. +27.7 +25.7 +27.11 0

Table 3: Difference in training results of best classifier
(DeBERTabase with STD input strategy) for the sub-
set of seven classes compared to the full classification
(rounded, * is the added class others).

far better than any replaced class. The macro averages
of precision, recall, and F1-score benefit from the re-
duction of class labels, with gains of over 26 percent-
age points. The micro averages also improve, just like
the general accuracy from 75% to 77%.
Compared to the experiments of Zhang et al. (2003),
Maziero and Pardo (2011) and Kumar et al. (2013)
with five to seven CST relation classes, our classifier
with seven of our own relation classes achieves new
best scores in macro precision and F1-score and a sim-
ilarly high macro recall as in the experiment by Kumar
et al. (2013). However, the accuracy of the multi-label
classifier of Zhang et al. (2003) could not be improved
upon. This classifier tested whether the searched label
was present among the top ranked labels. Thus, it had
more chances for a correct classification, which is why
the accuracy is only partially comparable.

4.3. Analysis
We performed all experiments with different hyperpa-
rameters regarding the choice of language model and
input strategy: the DeBERTa architecture is superior to
BERT in the classification task, both on average (Fig-
ure 3) and in the best classifiers. DeBERTabase out-
performing the other Transformer models is consistent
with the findings by (He et al., 2020) and due to the
deeper syntactical understanding of the input by disen-
tangled attention (separating content and position em-
beddings) and the Enhanced Mask Decoder which in-
cludes absolute positions for tokens. Furthermore, it
can be observed that the uncased BERTbase model per-
forms better than the cased one. The expansion of the
vocabulary in the cased version seems to be counter-
productive here and to interfere with the deeper under-
standing of the input. In the BERTlarge model variants,
on the other hand, this observation cannot be made.
The larger models seem to be able to process and gen-
eralize the larger vocabulary better due to the multi-
tude of parameters. Except in the cased version, in
general no strong improvement of accuracy is observed
by the multitude of parameters in the BERTlarge mod-

Figure 3: Distribution of accuracy of all fine-tuned
classifiers depending on Transformer models

Figure 4: Distribution of accuracy of all fine-tuned
classifiers depending on input strategy

els, which means that the extra computational effort
is not always justified. Only the best classifiers can
improve. The BERTlarge models also appear compar-
atively unstable, with high standard deviation of accu-
racy within the four folds and a wide range in Figure 3.
However, on average, the DeBERTabase models are sub-
ject to larger variations within the four folds, too. This
seems to be due to the disproportion between the high
number of parameters and comparatively low amount
of training data.
The evaluation of the individual input strategies is not
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Precision Recall F1-score

Model Cl. Fr. # Cl. Datas. Acc. Macro Micro Macro Micro Macro Micro

DeBERTabase (I.S. TS) Custom 12 2501 75 39 75 38 75 38 75
DeBERTabase (I.S. STD) Custom 7 2501 77 67 77 64 77 65 77

Related Experiments

Zhang et al. (2003) CST 7 3942 82 47 – 33 – 38 –
Maziero and Pardo (2011) CST 7 *1511 – 44 – 44 – 44 –
Kumar et al. (2013) CST 5 682 – 66 – 64 – 62 –

Table 4: Comparison of full-classification and subset-classification results to related experiments (Cl. Fr.: Class
framework, # Cl.: Number of classes, Datas.: Number of sentence pairs, *: Sum of class support, Acc.: Accuracy,
I.S.: Input Strategy)

entirely clear. The distribution of the accuracy of all
classifiers with respect to the input strategy (Figure 4)
shows a tendency that both the addition of the arti-
cle title (TS versus T) and appending the publication
date (TSD and STD versus TS) significantly increases
the average accuracy. However, there are also outliers
for the input strategies T and TS. One of these is our
best classifier for the 12 relation classes. One reason
could be that some relations in this setup do not bene-
fit (as much) from adding the publication date and the
attention mechanism of DeBERTa might be disturbed
by the formatted date at the end of the input since the
other models benefit more from the publication date.
Although there are more uni-directional classes among
the 12 relation classes than in the reduced set of classes,
they are not as dependent on the order of publication as
the temporal relation. In general, adding the article title
seems to be useful and also the publication date, if the
uni-directional relations can benefit from it or when a
classic BERT architecture is used.

5. Conclusion
Our experiments yielded promising results in the clas-
sification of cross-document semantic relations be-
tween text segments using pre-trained language mod-
els. The performance of the DeBERTabase model for the
subset of seven classes surpassed previous results by
CST-based experiments with a similar setting. The re-
sults show that the use of pre-trained language models
is suitable for the task and yet leave room for improve-
ment. It turned out that an annotation model must fit
the dataset and should not contain too many underrep-
resented classes. In the future, our annotation guide-
lines with 12 relation classes must be adapted to this
finding, underrepresented classes must be questioned
and the individual classes must be made more distinct.
Using a custom annotation model is a surmountable
challenge in this regard. The process of constructing a
sufficiently large and qualitative dataset was made pos-
sible using the tools we developed. The process could
be improved in the future by further adjustments to the
editor, such as displaying more metadata like the arti-
cle’s publication date or an article preview that would,
in many cases, avoid opening external links. Also,

topic-based source article selection and preprocessing
of articles and extracted sentences using Named Entity
Recognition, Event Detection and Coreference Resolu-
tion could enable higher quality pre-matching and sup-
port the annotators in their work. As a pre-matching
algorithm, cosine similarity produced the best results
in our experiment. For future experiments, the De-
BERTa architecture and the use of different input string
strategies adding more metadata have proven particu-
larly useful.
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