
Proceedings of the 13th Conference on Language Resources and Evaluation (LREC 2022), pages 4904–4912
Marseille, 20-25 June 2022

© European Language Resources Association (ELRA), licensed under CC-BY-NC-4.0

4904

Enhancing Deep Learning with Embedded Features for Arabic Named
Entity Recognition

Ali Lotfy1, Caroline Sabty2, Slim Abdennadher2
1German University in Cairo, 2German International University

1El Tagamoa El Khames, New Cairo, Cairo, Egypt, 2Administrative Capital, Regional Ring Rd, Cairo, Egypt
ali.hatab@student.guc.edu.eg, {caroline.sabty, slim.abdennadher}@giu-uni.de

Abstract
The introduction of word embedding models has remarkably changed many Natural Language Processing tasks. Word
embeddings can automatically capture the semantics of words and other hidden features. Nonetheless, the Arabic language
is highly complex, which results in the loss of important information. This paper uses Madamira, an external knowledge
source, to generate additional word features. We evaluate the utility of adding these features to conventional word and
character embeddings to perform the Named Entity Recognition (NER) task on Modern Standard Arabic (MSA). Our NER
model is implemented using Bidirectional Long Short Term Memory and Conditional Random Fields (BiLSTM-CRF). We
add morphological and syntactical features to different word embeddings to train the model. The added features improve the
performance by different values depending on the used embedding model. The best performance is achieved by using Bert
embeddings. Moreover, our best model outperforms the previous systems to the best of our knowledge.

Keywords: Arabic Natural Language Processing, Named Entity Recognition, Deep learning

1. Introduction

The Arabic language is spoken in a large area, includ-
ing North Africa and the Arab Peninsula. Although
there is no agreed-on statistic estimating the number
of speakers of each language, Arabic always comes
among the top 10 spoken languages. Arabic is also one
of the oldest living languages (Al-Jallad, 2017), which
adds to the importance of its processing.
The processing of the Arabic language faces many
challenges that arise from its unique nature. For in-
stance, an Arabic word is often connected to one or
many suffixes and/or one, or many prefixes (Awad et
al., 2018a). In addition, some words are changed based
on their position in a sentence. Due to this complex
morphological system, the number of unique words in
a document becomes relatively big. Every letter in Ara-
bic can have one of four different states (the four basic
diacritics). Another diacritic (Shadda) is also used to
indicate two letters being written as one letter. Differ-
ent diacritics on the same sequence of characters pro-
duce other words (Sabty et al., 2018). These diacritics
are not written in most Arabic texts, as Arabic speak-
ers can recognize them easily from context. Moreover,
Arabic is a relatively low-resource language.
The named entity recognition (NER) task is one of the
classical tasks of Natural Language Processing. There
are particular challenges for the NER task, shared be-
tween all languages. They include naming organiza-
tions and locations after famous person names and the
nested named entities. Due to the complex morphol-
ogy of the Arabic language, the Arabic NER task faces
more challenges than other languages, like lack of cap-
italization. Capitalization indicates that a word is a
proper noun.

The implementation of the NER task has evolved ac-
cording to advancements in algorithms and computa-
tional power. Early NER systems depended on hand-
crafted rules. Afterward, machine learning approaches
were trained on hand-crafted features to classify words
into different named entity classes. Recently, deep
learning techniques that rely on word embeddings be-
came dominant. Word embedding models automat-
ically capture hidden features in sentences (Sabty et
al., 2019b). They also capture the semantic aspects
of words, which enhances the performance and gen-
eralizability of NER models (Sabty et al., 2019a). In
this work, we combine the advantages of different ap-
proaches by adding information from external sources
as features to word embeddings. We used four different
word embedding models. We also added character em-
beddings as a secondary representation of words. We
used a language analyzer to generate three additional
features and designed one hand-crafted feature. The
added features and the character embedding signifi-
cantly improved the performance of the NER BiLSTM-
CRF model. To the best of our knowledge, this is
the first work that incorporates features from external
sources in a deep learning model that performs the
NER task for the Arabic language. Our model achieved
an F1-score of 86.71% on the ANERcorp 2 and 79.48%
on the AQMAR corpus (Mohit et al., 2012), outper-
forming all previous works.
One of the drawbacks of assessing language tasks us-
ing the known evaluation metrics is that they reveal no
information about the nature of failures or successes of
the tested model. In addition, a natural phenomenon in
datasets is the repetition of entities, and similar to this
is the resemblance between different entities as they oc-
cur in the same article. This makes the scores achieved

4905

by a model misleading. To overcome this drawback, we
examined the mispredicted entities to know the limita-
tions of the model and how they reflect on its perfor-
mance.
The main contributions of this paper are evaluating the
utility of adding information from an external knowl-
edge source to word embeddings, achieving the state-
of-the-art in Arabic NER, and describing the limita-
tions of using deep learning to recognize Arabic named
entities. The rest of the paper is organized as follows.
Section 2 presents some related work for the Arabic
NER task. Section 3 describes our deep learning NER
model. Section 4 explains the experiments done to
evaluate the model. Section 5 discusses the errors made
by the model. Section 6 concludes the paper.

2. Related Work
The three main approaches used in NER systems
are the rule-based, machine learning-based, and deep
learning approaches. Regarding the rule-based ap-
proach in (Mesfar, 2007), they developed an Arabic
NER system using Nooj linguistic environment. The
system achieved an F1-score of 85% for a person, 84%
for organization, and 76% for location classes. Also,
in (Maloney and Niv, 1998), they used a morphologi-
cal analyzer to extract word features. They achieved an
F1-score of 85% on five different named entity classes.
The second main approach is machine learning. In (Be-
najiba and Rosso, 2008), they used Conditional Ran-
dom Fields (CRFs) to classify words. Features were ex-
tracted using external tools that generate part-of-speech
(POS) tags and base phrase chunk tags. This model
achieved an F1-score of 79.21% on the ANERcorp. An
SVM classifier was used in (Benajiba et al., 2008) to
detect named entities. They used lexical, morphologi-
cal, and contextual features. Gazetteers were also used
as an external knowledge source. This system achieved
an F1-score of 82.17% on the ACE 2003 data.
Also, a combination of both rule-based and machine
learning-based approaches was used as a hybrid ap-
proach. In (Shaalan and Oudah, 2014) and (Meselhi
et al., 2014), NER systems using hybrid techniques
were implemented. The models proposed incorporated
hand-crafted rules and gazetteers in a machine learning
model. The first system was achieved using ANERcorp
F1-score equal to 94.0% for the person, 90% for loca-
tion, and 88% for the organization types. The second
one reached 96.65% for a person, 92.90% for location,
and 94.80% for organization classes.
After the neural network, systems have been proposed
for the NER task, which improved performance signif-
icantly. In (Awad et al., 2018b), they used BiLSTM
along with word and character embeddings. The model
used a corpus composed of both AQMAR and ANER-
corp. An F1-score of 76.65% was achieved on 20% of
the data.
A BiLSTM-CRF model was used in (El Bazi and
Laachfoubi, 2019), (Ali et al., 2019) and (Khalifa and

Shaalan, 2019) along with different word and character
embeddings models. In (El Bazi and Laachfoubi, 2019)
the ANERcorp is split into 10% test, 10% dev, and 80%
train. The model achieves an F1-score of 90.6%. In
(Ali et al., 2019) they achieved F1-score is 91.3% on a
corpus containing both ANERcorp and AQMAR with-
out considering the miscellaneous entities. In (Khal-
ifa and Shaalan, 2019) they achieved an F1-score of
88.77% on the ANERcorp.
The usage of AraBert word embedding with the BiL-
STM model in (Antoun et al., 2020) achieved an F1-
score equal to 83.1% on the Camel split of the AN-
ERcorp. In (Obeid et al., 2020), AraBert was fine-
tuned. In (Youssef et al., 2020), they concatenated
multi embeddings together instead of choosing one em-
bedding model to be used with a BiLSTM-CRF model.
An F1-score of 77.62% was achieved on the AQMAR
dataset. BERT was trained in (Helwe et al., 2020) in a
semi-supervised learning approach for Arabic NER us-
ing labeled and semi-labeled datasets. They relied on
the pre-trained model of AraBERT and followed the
approach of the teacher-student learning mechanism.
They achieved an F1-score equal to 65.5% on the AQ-
MAR dataset.
A model was proposed in (Liu et al., 2019) that inte-
grates various tailored techniques, including represen-
tation learning, feature engineering, sequence labeling,
and ensemble learning. The final model achieves an
F1-score of 75.82% on the AQMAR dataset.
The utility of using hand-crafted features in deep learn-
ing models was evaluated for the English NER task in
(Wu et al., 2018) but was not evaluated for the Ara-
bic NER before. This approach is similar to the ap-
proach we adopted here. Three hand-crafted features
were concatenated to word embeddings to form the
input representation for a BiLSTM-CNN-CRF model.
Results on the Conll 2003 English dataset in (Sang and
De Meulder, 2003) show that hand-crafted features sig-
nificantly improve the F1-score of the NER task from
91.06% to 91.89%.

3. Arabic NER Model
The Arabic NER model we proposed is implemented
using deep learning techniques. The architecture of the
model is based on BiLSTM-CRF, and it is implemented
using Keras framework (Chollet and others, 2015). The
Bi-LSTM component has proven its ability to capture
context, while the CRF component makes the best pre-
diction for the whole sequence of words. Both lay-
ers were used in many sequence tagging tasks as in
(Lample et al., 2016), (Chiu and Nichols, 2016) ,and
(Huang et al., 2015). In Figure 1 the general model
architecture is illustrated. It is composed of a single
BiLSTM layer. The input sentences are represented by
the concatenation of word embedding, character em-
bedding, and the set of additional features. We tuned
the hyper-parameters of the model by manually choos-
ing the parameters that achieve the best performance.

4906

Figure 1: Model Architecture

The dropout of the embedding layer is equal to 0.3,
and the dropout of the BiLSTM layer is equal to 0.5.
The number of LSTM units is 200. The activation
function is Hard-Sigmoid, and the optimizer is Nadam.
The batch size is 5. We used no validation as experi-
ments showed that saving the validation data for train-
ing achieves higher performance.

3.1. Character Embedding
The first principal component of the input sequence for
our NER model is the character embeddings. In Ara-
bic, words can have many suffixes and prefixes. They
can also have different versions. Using character-level
representations can help the model recognize these dif-
ferences between versions of a word and overcome the
complex morphology of Arabic. We used CNN to gen-
erate character embeddings of words as they proved
that they could capture the morphological feature of
language (Zhang et al., 2015). As shown in Figure 2
character encodings are fed to a 2D CNN layer fol-
lowed by a max-pooling layer. The activation function
used in the CNN layer is Tanh. The number of filters is
25, and kernels are 3. The dimension of the character
embedding is 100. The output character embeddings
are then concatenated with word embeddings and ad-
ditional features to train the BiLSTM-CRF part of the
model.

3.2. Word Embedding
The second principal component of the input sentence
for our NER model is word embedding. In general, in-
troducing a contextualized word embedding model led
to a revolution in Natural Language Processing. The

Figure 2: CNN Architecture

utilization of BERT embeddings led to state-of-the-art
results in many tasks. We used several types of embed-
dings to represent the input words. The embeddings
used are AraBert, which is the Arabic version of Bert
(Antoun et al., 2020). We used AraBert large version
2.0. The generated vectors are the mean of all trans-
formers layers with mean subtoken pooling. Neither
context was used in generating the embeddings, nor
were the embeddings finetuned. In addition, we used
classical word embeddings models such as FastText
(Bojanowski et al., 2017), GloVe (Tarekeldeeb, 2018),
and AraVec (Soliman et al., 2017), which is the Arabic
version of Word2Vec. The dimensions of word embed-
dings are 1024, 300, 256, and 300, respectively.

3.3. Additional Features
We added four external features to the word and charac-
ter embeddings to form the final word feature. We used
the 2019 release of the Madamira tool (Pasha et al.,
2014) to generate the Part-of-speech (POS), capitaliza-
tion, and word analysis features. Madamira can predict
POS with an accuracy of 95.9% and has a complete
evaluation accuracy of 84.1%. Moreover, we designed
a fourth feature which is the quote feature. The chosen
features were previously used in traditional machine
learning and rule-based approaches related to named
entities. All features were represented as one-hot vec-
tors and concatenated to the word and character embed-
dings. Table 1 shows examples of some of the features
generated by Madamira.
Capitalization feature indicates that a word is a proper
noun. Arabic letters do not have cases like Latin letters.
The English translation of words compensates for capi-
talization. The capitalization feature of an Arabic word
is positive if the translation provided by Madamira is
capitalized. This feature has a length of 1.
Word Analysis feature is a set of attributes for ev-
ery word. They include gender (male, female), num-
ber (single, dual, or plural), state (indefinite, definite,
or construct), suffixes, prefixes, voice of a verb (ac-
tive or passive), person (first, second, or third), case

4907

word gloss gen num stt prc3 prc2 prc1 prc0 enc vox per cas asp mod pos
A«Xð call m s na 0 wa 0 0 0 a 3 na p i verb

©J
Òm.
Ì'@ all of m s d 0 0 0 Al det 0 na na n na na noun

È
	
YJ. Ë spending m s c 0 0 li prep 0 0 na na g na na noun

Xñêm.
Ì'@ efforts m s d 0 0 0 Al det 0 na na g na na noun

�
éÓ 	PCË@ necessary f s d 0 0 0 Al det 0 na na g na na adj

©
	
�ñË laying down m s c 0 0 li prep 0 0 na na g na na noun

Yg stop m s i 0 0 0 0 0 na na g na na noun
�
é
�
¯@PB

pouring out f s i 0 0 li prep 0 0 na na g na na noun

ZAÓYË@ blood m s d 0 0 0 Al det 0 na na g na na noun

Table 1: Example of Features by Madamira

(nominative, genitive, or accusative), aspect of a verb
(command, perfective, or, imperfective) and mood of
a verb(indicative, jussive, or subjunctive). These at-
tributes allow the model to learn patterns of named en-
tities. Some patterns can also indicate the absence of a
named entity. Every attribute is represented as a one-
hot vector. All vectors are concatenated to represent
the final feature vector. The final vector has a length of
91.
Part-of-Speech (POS) feature is a category indicating
a grammatical property for a word. Arabic has three
main POS tags: noun, verb, and particle. The main
categories are further divided into subcategories. The
Madamira tool generates 29 possible POS values mak-
ing the length of the feature vector also 29. POS tags
that belong to the verb or the particle category indicate
the absence of named entities. Moreover, the POS tag
indicates if a word is a proper noun, .i.e, a name of a
particular entity. POS tag can also help the model learn
patterns of named entities.
Quote feature indicates whether a word or a set of
words is between quotes or not. We added the quote
feature to help recognize the miscellaneous entities,
which are usually the least recognizable ones. Mis-
cellneous tags ,such as art works, are sometimes put
between quotes. The quote feature has a length of 2 to
represent the existence of a quote and its type.

4. Experiments
This section explains the two datasets used, along with
their preprocessing. Then the training process is dis-
cussed, and the results of the different experiments are
listed.

4.1. Datasets
ANERcorp is the most used corpus for Arabic NER. It
was collected and annotated by (Benajiba et al., 2007).
Text in the ANERcorp forms 316 articles extracted
from different news websites. Articles included have
different topics such as sports, politics, and society.
The ANERcorp makes 150,268 tokens, 11 % of which

are named entities. Table 2 shows the number of enti-
ties in the ANERcorp.
AQMAR is the American Qatari Modeling of Arabic.
It is an Arabic NER corpus consisting of 28 Wikipedia
articles (Mohit et al., 2012). The topics of the in-
cluded articles are history, science, sports, and technol-
ogy. AQMAR makes 73,910 tokens, 12.6% of which
are named entities. Table 3 shows the number of enti-
ties in AQMAR.

Class Train Test
Person 2724 882
Location 3778 656
Organization 1579 450
Miscellaneous 889 229
All 8970 2217

Table 2: Number of Entities in the ANERcorp

Class Train Test
Person 1048 424
Location 1117 325
Organization 354 102
Miscellaneous 1763 721
All 4282 1572

Table 3: Number of Entities in AQMAR corpus

4.2. Data Pre-processing
Before generating word embeddings, some forms of
noise such as diacritics and special characters con-
nected to words were removed. We set the length of
the maximum sequence to be equal to 512. Sentences
were added together to meet the maximum length with-
out being cut from the middle, as context plays an es-
sential role in predicting the NER tag. The BiLSTM
layer depends on previous and next tokens to encode
context. Also, the CRF layer makes predictions for the
sequence as a whole.

4908

Embedding Alone +Features +Character Embedding +Features & Character Embedding
One Hot 54.90 59.7S0 60.00 61.80
GloVe 61.52 72.33* 72.27* 75.22*
AraVec 73.46 77.668* 77.09* 78.10*
FastText 78.34 79.85* 78.87 * 79.44*
AraBert 85.97 86.47* 85.89 86.00

Table 4: Average F1-scores of 6 runs on ANERcorp in (%)
* indicates statistical significance on the test set against mere embeddings by a paired sample t-test at level α = 0.05.

Embedding Alone +Features +Character Embedding +Features & Character Embedding
FastText 70.66 71.77* 71.63 71.95*
AraBert 77.82 78.51* 77.42 77.56

Table 5: Average F1-scores of 6 runs on AQMAR in (%)
* indicates statistical significance on the test set against mere embeddings by a paired sample t-test at level α = 0.05.

4.3. Training
For the ANERcorp, we trained our BiLSTM-CRF
model on four different word embedding models with
and without adding the external features and charac-
ter embedding to each. We trained the model for 40
epochs saving the best performance achieved. We also
trained the four word embedding models with each ad-
ditional feature separately. For the AQMAR corpus,
we repeated the first experiment using only AraBert
and FastText as they achieved the highest performance
among the four embedding models. Glove embeddings
are outdated, and they achieve the least performance.
FastText compensates for the absence of Word2Vec
(AraVec) as they both use the same skip-gram model.
The training of neural networks is a non-deterministic
process as it typically depends on a random number
generator to initialize the weights of the network. We
ran the model six times to overcome this problem and
computed the average performance. We also ran a
paired sample t-test for the experiments that show small
differences in performance.

4.4. Results
Table 4 summarizes the performance of the model us-
ing different word embedding models using the AN-
ERcorp dataset. Adding external features increased the
F1-score from 54.9% to 59.7% when using one hot em-
bedding. Adding Character embedding alone on one
hot embedding increased the F1-score from 54.9% to
60%. Adding the two of them together increased the
F1-score from 54.9% to 61.8%. The remarkable in-
crease in performance proves the effectiveness of us-
ing features and character embedding together. The
best performance comes from AraBert embeddings.
AraBert alone achieved 85.97%, and adding features
increased the F1-score to 86.47%. However, adding
character embeddings to AraBert did not enhance the
performance. As shown in Table 5 similar perfor-
mances were achieved when the model was trained and
tested on AQMAR corpus using AraBert and FastText
embeddings.

Table 6 shows the performance of the model on the AN-
ERcorp using each additional feature separately with
each word embedding model. The results show that the
word analysis feature is the most effective. Both cap-
italization and POS improved the performance. The
quote features did not enhance the performance.For
AraBert embedding, each feature alone does not im-
prove performance significantly; however, all features
together do as shown in Table 4.

Features and character embeddings increased the per-
formance significantly when concatenated with GloVe,
AraVec, and one hot embedding. However, they only
improved the performance by a small margin when
added to AraBert and FastText embeddings. AraVec
and GloVe models miss many words as the process of
generating embeddings in these models is a static one
.i.e it depends on a fixed vocabulary. The number of
out-of-vocabulary words in Arabic is relatively signif-
icant due to its complex nature; therefore, adding fea-
tures and character embeddings improved the perfor-
mance significantly as they compensated for the miss-
ing vectors. AraBert and FastText generate embed-
dings dynamically. AraBert uses an external tool called
Farasa to tokenize Arabic words, .i.e to separate words
from suffixes and prefixes. FastText splits words into
syllables before generating embeddings. FastText and
AraBert can handle out-of-vocabulary words, making
the performance improvement smaller. In addition,
AraBert and FastText exploit more sophisticated train-
ing algorithms on more data. Tokenization in Fast-
Text and AraBert can also explain Why adding charac-
ter embedding to AraBert did not improve the perfor-
mance. Similarly, adding character embedding to Fast-
Text with the features did not enhance performance.

Tables 7 and 8 show the precision, recall, and F1-score
of the four named entity classes presented in the AN-
ERcorp and AQMAR. Using AraBert embeddings and
the additional features achieved the highest F1-score,
86.71%, and 79.48%, respectively.

4909

Embedding None +Part of Speech +Capitalization +Word Analysis +Quote
GloVe 61.52 67.97* 64.97 * 69.82 * 61.43
AraVec 73.46 76.31* 75.01* 77.46* 73.90*
FastText 78.34 79.29* 79.13* 80.16* 78.23
AraBert 85.97 86.17 85.87 86.26 86.04

Table 6: Average F1-score of 3 runs in (%) after adding features one at a time
* indicates statistical significance on the test set against mere embeddings by a paired sample t-test at level α = 0.05.

Class Recall Precision F1
Location 95.59 89.08 92.22
Miscellaneous 64.83 74.63 69.39
Organization 74.00 83.04 78.26
Person 89.75 92.03 90.88
All 85.66 87.77 86.71

Table 7: Performance measures in (%) of the best
model on the ANERcorp

Class Recall Precision F1
Location 90.49 84.05 87.15
Miscellaneous 66.90 72.63 69.65
Organization 75.25 71.70 73.43
Person 91.96 89.63 90.78
All 79.07 79.88 79.48

Table 8: Performance measures in (%) of the best
model on AQMAR

4.5. Comparison with Existing Approaches

Different researchers used the ANERcorp with differ-
ent train-test split ratios. Some researchers do not
mention how they split the corpus. Most of them do
not consider the miscellaneous entities in evaluation.
Moreover, most previous systems were evaluated using
different evaluation criteria from the one followed by
the author, which led to higher scores. Due to differ-
ences in evaluation, the exact split of ANERcorp was
published in 2020 in (Obeid et al., 2020). It is called the
Camel split. All researchers must use the same training
and testing configuration to make results comparison
meaningful.

The testing configuration used in this work is the Camel
split of the ANERorp. The ANERcorp is sequentially
split into two corpora: one for training with a ratio of
83.33% and one for testing with a ratio of 16.67%. For
AQMAR, we followed (Helwe and Elbassuoni, 2019)
in testing the model on seven articles of the 28. We
used the Seqevel Python library (Nakayama, 2018) for
calculating the F1-score. Seqeval implements an exact
match evaluation adopted by Conll shared tasks and the
authors of the ANERcorp and AQMAR. The F1-score
is the micro average of the four named entity classes.
We follow (Obeid et al., 2020) in only comparing our
results with models that used the same evaluation stan-
dard.

Model F1-Score
(Benajiba and Rosso, 2008) 79.21
(Antoun et al., 2020) 83.10
(Obeid et al., 2020) 83.00
Our model 86.71

Table 9: Comparison with previous taggers results in
(%) on the ANERcorp

Model F1-Score
(Helwe and Elbassuoni, 2019) 67.22
(Bazi and Laachfoubi, 2018) 61.80
(Liu et al., 2019) 75.82
(Youssef et al., 2020) 77.62
Our model 79.48

Table 10: Comparison with previous taggers results in
(%) on the AQMAR

Tables 9 and 10 show our results compared to previ-
ous models. Our model outperforms all of them. The
two models that achieved 83% on the ANERcorp also
used AraBert embeddings but with a CRF model. The
achieving model 77.62% used a combination of word
embeddings, including AraBert and a BiLSTM-CRF
model. Adding the BiLSTM component, incorporating
the external features, and our preprocessing steps are
responsible for the significant performance improve-
ment.

5. Error analysis
The performance of Arabic NER is generally lower
than NER in other languages like English and Chinese.
We examined the mispredicted tags to find the error
sources. To the best of our knowledge, this is the first
paper to examine the mispredictions of an Arabic NER
system. We do error analysis by comparing the predic-
tions of our model with the actual tags. For the AN-
ERcorp, the total number of false-negative entities is
314, while false-positive entities are 262. After exam-
ining the mispredicted words, we classified them into
six categories. Table 11 summarizes the error sources.
Examples that we mention in the following sections
frequently occurred in the test corpus.

5.1. Wrong Tags
After examining the mispredictions, we found that
44.9% of them are mislabelled. Table 12 shows a

4910

Class Wrong
Tags

Tagging
Convention

Unclear
Context

Unclear
Language

Nested
Entities

Remaining
Failures

Person 62.82 3.84 0 14.1 18.5 0
Location 50.46 15.88 16.82 1.87 0 15
Organization 40.21 4.9 19.56 10.32 4.34 20.7
Miscellaneous 25.58 6.98 20.15 13.18 9.3 24.8
ALL 44.96 13.88 10.41 8.50 7.11 15.14

Table 11: Error Sources Per Class in the ANERcorp in (%)

few examples. Although we only examined the mis-
predicted words in the testing set, we suppose there
are many wrong tags in the rest of ANERcorp. High-
quality annotations are critical for both model learning,
and evaluation (Li et al., 2020). Incorrect tags make a
model learn false knowledge, affecting the overall per-
formance. We estimated the F1-score of the best model
to be 93.6% after correcting these wrong tags. More-
over, we started annotating the ANERcorp to correct
flaws not recognized by the model1.

word tag prediction
AJ

	
K AJ.�@

(Spain) O B-LOC

PAJ.
	
K

B@ (Al-Anbar) O B-LOC

ø

ð@ð 	QË @ (Al-Zawawy) O B-PERS

�
éËA¿ñË@ (Agency) O B-ORG
�
éJ
ËðYË@ (International) O I-ORG
�
é
�
¯A¢ÊË (Energy) O I-ORG
�
éK
P

	
YË@ (Atomic) O I-ORG

Table 12: Examples of Wrong Tags

5.2. Tagging Convention
Many mispredicted words may be considered correct.
Most cases are words that describe or identify an entity,
for example, the word film festival [àAg. QêÓ] in Venice

Film Festival [�éJ

�
¯Y

	
JJ. Ë @

	
àAg. QêÓ]. One missing token re-

sults in a total failure as performance is evaluated us-
ing an exact match standard. What decides whether
these words are part of the entities or not is the tag-
ging convention. After examining these mispredictions
and similar entities, we found that no unified criterion
was followed in the tagging process. In addition, coun-
try names such as Egypt, France, and Canada are given
the tag organization when they represent football teams
of these countries, like in the sentence: England beat
the Netherlands [@Y 	JËñë úÎ« @Q

�
�Êm.
�
	
' @

�
H 	PA

	
¯]. Our model

classifies these words as locations. After examining
similar words, we found that this rule is applied only in
some parts of the ANERcorp. In the Arabic language, a
word like Egypt can represent the inhabitants, the gov-
ernment, the army, or the sports team of Egypt. Our
model also classifies stadiums and airports as locations

1https://github.com/CSabty/ANERcorp-Correction

while classified as miscellaneous entities in the corpus.
Car and airplane models were predicted as miscella-
neous entities, while they were tagged as organizations
in the corpus. We estimate errors were originating from
these issues to be 13.88 % of the mispredictions.

5.3. Unclear Context
A BiLSTM-CRF model depends heavily on the con-
text in making predictions. Moreover, contextual word
embedding models such as Bert and AraBert use con-
text to generate customized word vectors. When an
entity appears in an unclear context, the model fails
to predict it. An example of ambiguous context from
the ANERcorp is one very long sentence that enumer-
ates participants in a racecar followed by their coun-
tries and their car model. A part of the sentence is the
word Muni[ú

	
GñJ
Ó], which is a name of a person in the

context: Muni Italy Ki Tim M [Ð@

Õç
�
' ú

» AJ
ËA¢�
@

ú

	
GñJ
Ó].

10.41 % of the mispredictions are due to unclear con-
text.

5.4. Unclear Language
A percentage of errors equal to 8.5 % occurred in
sentences when the language is unclear, for exam-
ple, when entities are composed of or containing non-
Arabic words or numbers. Another repeated case is
when two names are conjugated using the particle [ð],
which is not separated by a space from the second to-
ken. The model considers the two names as one entity
and considers the [ð]particle an original part of the sec-
ond name. This failure only occurs with transliterated
names, which rarely appear in Arabic text. An exam-
ple is in Donald and Palmer [QÖÏAK. ð YËA

	
KðX]. This failure

occurs although the context indicates that two different
names are mentioned. The percentage of errors in this
section is 8.5 % of the total mispredictions.

5.5. Nested Entities
Our model recognizes the nested entity when an entity
is composed of another famous entity and other words.
For example, in entities such as the ”Bank of France”
or ”cup of Africa,” the nested entity is only recognized.
We considered entities named after entities from other
classes in this section. For example, a company named
after its founder is recognized as a person. The per-
centage of errors in this section is 7.11 % of the total
mispredictions.

4911

5.6. Remaining Failures
The remaining failures make 15.14% of mispredic-
tions. These are clear, named entities, and we could
not specify the source of the error. We believe that fail-
ures in this section are due to the nature of the data
itself. The miscellaneous class has the worst perfor-
mance, with an F1-score of 69.39%. The miscella-
neous class includes all entities that do not belong to
the three main categories: person, location, and organi-
zation. Entities that rarely appear in the corpus, such as
music genres, currencies, historical eras, and animals,
are consistently mispredicted as the model did not learn
the common features of these entities. The model gave
some named entities different tags, although they ap-
pear in similar contexts. We found that these entities
and other entities were tagged differently in the train-
ing corpus, which confuses the model and results in
many failures. Also, some failures exist because they
are challenging for the model as they require a deep
understanding of the language.
One of the failures of our model is the incapability of
differentiating between two occurrences of a word, one
of which represents a type of entity and the other rep-
resents another type .e.g Riyadh as a City name and
as a newspaper name. To solve this issue, we suggest
forcing a model to pay more attention to the context by
utilizing the masking language model, .i.e hiding the
word of interest.
Most researchers do not consider the miscellaneous
class when calculating the F1-score. After examin-
ing miscellaneous entities, we found that they are very
distant from each other. Miscellaneous entities in-
clude religions, God, Mosques, churches, artworks,
movies, songs, books, animals, stadiums, airports, his-
torical eras, historical events, car models, and curren-
cies. We suggest dividing the miscellaneous class into
many sub-classes for a NER model to learn the stan-
dard features of every type.
Only locations that humans can recognize because they
have prior knowledge of them are predicted wrong by
the model. For example, South Africa is a country
name that can refer to the southern part of the conti-
nent of Africa. South Africa is one entity while North
Africa is not. Such failure suggests that using external
knowledge sources such as gazetteers is inevitable.

6. Conclusion and Future Work
In this paper, we used a language analyzer to generate
morphological and syntactical features of words. We
evaluated the utility of using the three additional fea-
tures, one hand-crafted feature, and four different em-
bedding models. We also added character embeddings
as a secondary representation. Our experiments proved
that the extra features improved the performance of all
the embedding models when fed to a BiLSTM-CRF
NER model using AraBert embeddings, and the ad-
ditional features achieved an F1-score of 86.71% and
79.48% on AQMAR corpus, which outperforms all

previous models. Furthermore, we analyzed the fail-
ures of the model to evaluate the limitations of using
deep learning in NER.
In future work, we suggest solving the annotation qual-
ity problem by setting strict rules for the annotation
process and applying these rules to existing corpora and
new data. We also recommend designing separate tests
that focus on different NER challenges and include all
common occurrences of named entities. All NER tag-
gers test on arbitrary sentences that do not necessarily
represent the language of interest. In addition, we be-
lieve that using preprocessing tools that normalize data
and correct common mistakes can improve the perfor-
mance of NER taggers.

7. Bibliographical References
Al-Jallad, A. (2017). The earliest stages of arabic and

its linguistic classification. In The Routledge Hand-
book of Arabic Linguistics, pages 315–331. Rout-
ledge.

Ali, M. N. A., Tan, G., and Hussain, A. (2019). Boost-
ing arabic named-entity recognition with multi-
attention layer. IEEE Access, 7:46575–46582.

Awad, D., Sabty, C., Elmahdy, M., and Abdennad-
her, S. (2018a). Arabic name entity recognition us-
ing deep learning. In International Conference on
Statistical Language and Speech Processing, pages
105–116. Springer.

Awad, D., Sabty, C., Elmahdy, M., and Abdennad-
her, S. (2018b). Arabic name entity recognition us-
ing deep learning. In International Conference on
Statistical Language and Speech Processing, pages
105–116. Springer.

Bazi, I. E. and Laachfoubi, N. (2018). Arabic named
entity recognition using word representations. arXiv
preprint arXiv:1804.05630.

Benajiba, Y. and Rosso, P. (2008). Arabic named en-
tity recognition using conditional random fields. In
Proc. of Workshop on HLT & NLP within the Arabic
World, LREC, volume 8, pages 143–153. Citeseer.

Benajiba, Y., Diab, M., Rosso, P., et al. (2008). Arabic
named entity recognition: An svm-based approach.
In Proceedings of 2008 Arab International Confer-
ence on Information Technology (ACIT), pages 16–
18. Citeseer.

Chiu, J. P. and Nichols, E. (2016). Named entity
recognition with bidirectional lstm-cnns. Transac-
tions of the Association for Computational Linguis-
tics, 4:357–370.

Chollet, F. et al. (2015). Keras. https://keras.
io.

El Bazi, I. and Laachfoubi, N. (2019). Arabic named
entity recognition using deep learning approach. In-
ternational Journal of Electrical & Computer Engi-
neering (2088-8708), 9(3).

Helwe, C. and Elbassuoni, S. (2019). Arabic named
entity recognition via deep co-learning. Artificial In-
telligence Review, 52(1):197–215.

https://keras.io
https://keras.io

4912

Helwe, C., Dib, G., Shamas, M., and Elbassuoni, S.
(2020). A semi-supervised bert approach for ara-
bic named entity recognition. In Proceedings of the
Fifth Arabic Natural Language Processing Work-
shop, pages 49–57.

Huang, Z., Xu, W., and Yu, K. (2015). Bidirec-
tional lstm-crf models for sequence tagging. arXiv
preprint arXiv:1508.01991.

Khalifa, M. and Shaalan, K. (2019). Character convo-
lutions for arabic named entity recognition with long
short-term memory networks. Computer Speech &
Language, 58:335–346.

Lample, G., Ballesteros, M., Subramanian, S.,
Kawakami, K., and Dyer, C. (2016). Neural archi-
tectures for named entity recognition. arXiv preprint
arXiv:1603.01360.

Li, J., Sun, A., Han, J., and Li, C. (2020). A survey
on deep learning for named entity recognition. IEEE
Transactions on Knowledge and Data Engineering.

Liu, L., Shang, J., and Han, J. (2019). Arabic named
entity recognition: what works and what’s next. In
Proceedings of the Fourth Arabic Natural Language
Processing Workshop, pages 60–67.

Maloney, J. and Niv, M. (1998). Tagarab: a
fast, accurate arabic name recognizer using high-
precision morphological analysis. In Computational
approaches to semitic languages.

Meselhi, M. A., Bakr, H. M. A., Ziedan, I., and
Shaalan, K. (2014). A novel hybrid approach to ara-
bic named entity recognition. In China Workshop on
Machine Translation, pages 93–103. Springer.

Mesfar, S. (2007). Named entity recognition for arabic
using syntactic grammars. In International Confer-
ence on Application of Natural Language to Infor-
mation Systems, pages 305–316. Springer.

Nakayama, H. (2018). seqeval: A python framework
for sequence labeling evaluation. Software available
from https://github.com/chakki-works/seqeval.

Sabty, C., Elmahdy, M., and Abdennadher, S. (2018).
Arabic named entity recognition using clustered
word embedding.

Sabty, C., Elmahdy, M., and Abdennadher, S. (2019a).
Named entity recognition on arabic-english code-
mixed data. In 2019 IEEE 13th International Con-
ference on Semantic Computing (ICSC), pages 93–
97. IEEE.

Sabty, C., Sherif, A., Elmahdy, M., and Abdennad-
her, S. (2019b). Techniques for named entity recog-
nition on arabic-english code-mixed data. Interna-
tional Journal of Transdisciplinary AI, 1(1):44–63.

Sang, E. F. and De Meulder, F. (2003). Intro-
duction to the conll-2003 shared task: Language-
independent named entity recognition. arXiv
preprint cs/0306050.

Shaalan, K. and Oudah, M. (2014). A hybrid approach
to arabic named entity recognition. Journal of Infor-
mation Science, 40(1):67–87.

Wu, M., Liu, F., and Cohn, T. (2018). Evaluating the

utility of hand-crafted features in sequence labelling.
arXiv preprint arXiv:1808.09075.

Youssef, A., Elattar, M., and El-Beltagy, S. R. (2020).
A multi-embeddings approach coupled with deep
learning for arabic named entity recognition. In
2020 2nd Novel Intelligent and Leading Emerging
Sciences Conference (NILES), pages 456–460.

Zhang, X., Zhao, J., and LeCun, Y. (2015). Character-
level convolutional networks for text classification.
Advances in neural information processing systems,
28:649–657.

8. Language Resource References
Antoun, W., Baly, F., and Hajj, H. (2020). Arabert:

Transformer-based model for arabic language under-
standing. arXiv preprint arXiv:2003.00104.

Benajiba, Y., Rosso, P., and Benedı́ruiz, J. M. (2007).
Anersys: An arabic named entity recognition system
based on maximum entropy. In International Con-
ference on Intelligent Text Processing and Computa-
tional Linguistics, pages 143–153. Springer.

Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T.
(2017). Enriching word vectors with subword infor-
mation. Transactions of the Association for Compu-
tational Linguistics, 5:135–146.

Mohit, B., Schneider, N., Bhowmick, R., Oflazer, K.,
and Smith, N. A. (2012). Recall-oriented learning
of named entities in arabic wikipedia. In Proceed-
ings of the 13th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 162–173.

Obeid, O., Zalmout, N., Khalifa, S., Taji, D., Oudah,
M., Alhafni, B., Inoue, G., Eryani, F., Erdmann,
A., and Habash, N. (2020). Camel tools: An open
source python toolkit for arabic natural language
processing. In Proceedings of the 12th language
resources and evaluation conference, pages 7022–
7032.

Pasha, A., Al-Badrashiny, M., Diab, M. T., El Kholy,
A., Eskander, R., Habash, N., Pooleery, M., Ram-
bow, O., and Roth, R. (2014). Madamira: A fast,
comprehensive tool for morphological analysis and
disambiguation of arabic. In Lrec, volume 14, pages
1094–1101. Citeseer.

Soliman, A. B., Eissa, K., and El-Beltagy, S. R. (2017).
Aravec: A set of arabic word embedding models
for use in arabic nlp. Procedia Computer Science,
117:256–265.

Tarekeldeeb. (2018). tarekeldeeb/glove-arabic: Glove
model for distributed arabic word representa-
tion. https://github.com/tarekeldeeb/
GloVe-Arabic.

https://github.com/tarekeldeeb/GloVe-Arabic
https://github.com/tarekeldeeb/GloVe-Arabic

	Introduction
	Related Work
	Arabic NER Model
	Character Embedding
	Word Embedding
	Additional Features

	Experiments
	Datasets
	Data Pre-processing
	Training
	Results
	Comparison with Existing Approaches

	Error analysis
	Wrong Tags
	Tagging Convention
	Unclear Context
	Unclear Language
	Nested Entities
	Remaining Failures

	Conclusion and Future Work
	Bibliographical References
	Language Resource References

