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Abstract
Conversational speech represents one of the most complex of automatic speech recognition (ASR) tasks owing to the high
inter-speaker variation in both pronunciation and conversational dynamics. Such complexity is particularly sensitive to
low-resourced (LR) scenarios. Recent developments in self-supervision have allowed such scenarios to take advantage of large
amounts of otherwise unrelated data. In this study, we characterise an (LR) Austrian German conversational task. We begin
with a non-pre-trained baseline and show that fine-tuning of a model pre-trained using self-supervision leads to improvements
consistent with those in the literature; this extends to cases where a lexicon and language model are included. We also show
that the advantage of pre-training indeed arises from the larger database rather than the self-supervision. Further, by use
of a leave-one-conversation out technique, we demonstrate that robustness problems remain with respect to inter-speaker
and inter-conversation variation. This serves to guide where future research might best be focused in light of the current
state-of-the-art.

Keywords: Speech Recognition, Conversational Speech, Austrian German, Low-Resource, Wav2vec2.0, Kaldi

1. Introduction
Solving automatic speech recognition (ASR) tasks for
conversational speech is crucial especially for social
robots interacting with humans or automatic transcrip-
tions of multimedia meetings (Popescu-Belis et al.,
2012). Two humans who interact spontaneously with
each other introduce complex inter- and intra-speaker
variation depending on for instance the speaker’s atti-
tude towards the listener and the speaking task (Wright,
2006). Especially casual face-to-face conversations are
characterized by a large amount of speaker-dependent
pronunciation variation, by disfluencies, and by broken
words or incomplete utterance structures. The resulting
high degree of variation on all linguistic levels affects
the acoustic model, the lexicon and language model of
an ASR system.
Given the high variation in spontaneous conversations,
the amount of annotated training data needed for ASR
experiments to enable generalization for an unseen test
set can sometimes be misleading in the sense that
avoiding the data sparseness problem appears not to
be possible, especially in case of spontaneous speech
(Furui et al., 2005; Furui, 2009). Such studies give in-
sights into the relationship between data size for acous-
tic model training and WER in case of Japanese spon-
taneous speech recognition: Utilizing 1/8 of available
data (63.75h) for acoustic model training results in a
WER of approx. 27% whereby training with the entire
data (510h) gives an improvement of approx. 2%, but
still no convergence.
In this paper, we deal with conversational speech from
the “Graz corpus of Read And Spontaneous Speech”
(GRASS) (Schuppler et al., 2014a), which contains

about 19h (or 19 conversations) of Austrian German
conversations introducing a considerable complexity
in light of both inter-speaker and inter-conversation
variation (i.e., from conversation to conversation, the
amount of laughter, overlapping speech and disfluen-
cies varies (Schuppler et al., 2017)). Despite German
being a well resourced language, for the Austrian va-
riety there are few resources available. For conversa-
tional speech, GRASS is the only resource currently
available. For less spontaneous and less casual speak-
ing styles, using German German1 data for training
an ASR system still delivers reasonably good results
for recognizing Austrian German (Adda-Decker et al.,
2013), this is, however, not the case for casual conver-
sations where speakers show a higher degree of dialec-
tal pronunciations. Hence, with respect to this vari-
ation, ASR experiments may require larger amounts
of annotated conversational speech data than for less
spontaneous speaking styles and thus may be viewed
as a case of low-resourced (LR) language processing.
With wav2vec2.0 (Baevski et al., 2020b), a framework
for self-supervised learning of speech representations,
powerful ASR models can be built also with small
amounts of annotated data by finetuning pre-trained
models. With the help of this modern architecture it
is even possible to come close to state-of-the-art results
with only 10min of labeled training data in the case
of Librispeech (Baevski et al., 2020a; Conneau et al.,
2021; Hsu et al., 2021; Zhang et al., 2021; Panayotov
et al., 2015). Hence, we hypothesize this innovative
framework also to be effective in solving a LR speech

1With German German we refer to German as spoken by
German speakers.
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recognition task for Austrian conversational speech.
This study presents ASR experiments for Austrian Ger-
man conversational speech from two ASR frameworks,
the Kaldi speech recognition toolkit (Povey et al.,
2011) and the wav2vec2.0 implementation of fairseq
(Ott et al., 2019). In case of wav2vec2.0, we fine-
tune a cross-lingual speech representation (XLSR) pre-
trained model (Conneau et al., 2021) with different
training data splits by testing each of the 19 GRASS
conversations individually. Referring back to the prob-
lem of conversational speech complexity, we compare
the XLSR experiments with an LR approach by pre-
training and finetuning only with available GRASS
conversational speech data. Ultimately, this paper aims
at investigating three hypotheses to gain more insight
about the role of data for conversational speech:

1. Performing cross-validation by testing each con-
versation individually points out conversational
speech complexity and reinforces a LR language
processing assumption.

2. Finetuning a data-driven pre-trained cross-lingual
speech representation model is effective for Aus-
trian conversational speech.

3. Finetuning a LR speech representation model pre-
trained only on Austrian conversational speech is
not effective for Austrian conversational speech.

These hypotheses are investigated by the experiments
presented in section 4. After answering our hypothe-
ses, the corollary section 5 discusses further findings
which result from comparing the results from our ASR
experiments.

2. Related Work
Training acoustic models for conversational speech
typically needs large amounts of training data, because
generalization to pronunciation variation introduced by
this speaking style is difficult.
For comparison with a traditional approach to train
acoustic models for speech recognition, we use the
Kaldi speech recognition toolkit. Kaldi is a speech
recognition system based on finite-state transducers,
where the core library supports acoustic modeling with
standard Gaussian mixture models (GMM). Resulting
alignments from basic GMM-HMM models can be
used for further training with, e.g., time-delay neural
networks (TDNN) (Peddinti et al., 2015).
In case of LR scenarios, where the amount of anno-
tated data is limited, unsupervised and representation
learning techniques have gained a lot of attention re-
cently (Glass, 2012; Chung and Glass, 2018; Schnei-
der et al., 2019; Synnaeve et al., 2019). Self-supervised
learning from unlabeled speech data in end-to-end ASR
systems creates general and powerful speech represen-
tations which can be used as a basis for finetuning on
small amounts of labeled data yielding both the pos-
sibility of high capacity model training and the pre-
vention of over-fitting (Baevski et al., 2020a; Baevski

et al., 2020b). It turned out that exploiting a XLSR
model is an effective strategy in building state-of-the-
art speech recognition systems given only few labeled
speech data, because shared discrete acoustic units
across languages can be adapted to a specific task by
finetuning a classifier representing self-chosen target
units plus word boundary tokens. We can solve this
task, e.g., with a Connectionist Temporal Classification
(CTC) loss when training a speech recognition system
(Conneau et al., 2021; Graves et al., 2006).
One system to exploit an XLSR model is wav2vec2.0
(Baevski et al., 2020b), a framework for self-
supervised learning of contextual representations ob-
tained from the raw waveform of speech. The architec-
ture consists of a transformer network (Vaswani et al.,
2017) which is fitted by encoded speech audio coming
from a multi-layer convolutional neural network. Pri-
marily, the transformer network tries to learn contextu-
alized representations by solving a contrastive task.

3. Materials
3.1. GRASS
The Graz Corpus of Read and Spontaneous Speech
(GRASS corpus) (Schuppler et al., 2014a; Schup-
pler et al., 2017) contains about 19h of Austrian con-
versational speech collected from 38 Austrian speak-
ers (19f/19m). As language use in conversational
speech varies strongly with educational level, social
background and dialect region, GRASS contains only
speakers who were born in the same broad dialect re-
gion (Eastern Austria), have been living in an urban
area for years and have a higher education degree.
For the conversational speech component, 19 pairs of
speakers who had been knowing each other for sev-
eral years were recorded for one hour each without in-
terruption in order to encourage a fluent, spontaneous
conversation. There was no restriction in terms of
chosen topic or speaking behavior leading to the use
of authentic, partly dialectal pronunciation with typi-
cal characteristics such as frequently occurring over-
lapping speech, laughter, or the use of swear words
(Schuppler et al., 2017). No other person was present
in the recording studio during the conversation. De-
spite the speakers’ awareness of being recorded, they
appeared to completely forget about the studio record-
ing situation after a period of five to ten minutes, re-
sulting in completely casual conversations.

3.2. Lexicon
All words from the GRASS corpus remaining after pre-
processing are included in a lexicon file. For all phone-
based experiments, we used the G2P online tool (Re-
ichel and Kisler, 2014) for German German to create
canonical German pronunciations, as a similar resource
is not available for Austrian German.
Only for the Kaldi experiments, we derived additional
pronunciation variants from the canonical pronuncia-
tions with 29 phonological rules based on findings from
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(Schuppler et al., 2014b). Some of the rules were
assimilation and deletion rules relevant for conversa-
tional speech of all German varieties, whereas other
rules cover pronunciations typical for the Austrian Ger-
man variety. We added manually created pronunciation
variants in order to capture specific pronunciations that
cannot be generated in an automated way.
For wav2vec2.0 models, we create simplified lexicons
where each word maps only to one pronunciation.
In case of the character-based models, words are di-
rectly mapped to character sequences and in case of
the phone-based models, words are directly mapped to
canonical pronunciations.

4. Experiments
To investigate our three hypotheses, we first present
experiments with Kaldi (section 4.1) and then experi-
ments with fairseq (section 4.2).

4.1. Experiments with Kaldi
This section describes our experiments with Kaldi,
which serve as a baseline for the main investigation.

4.1.1. Methods
When preprocessing GRASS transcriptions files for
Kaldi, we excluded chunks involving artefacts, laugh-
ter and noise, resulting in a deletion of approx. 3.3h
of all available chunks (≈ 17.5h of all chunks from
GRASS contain lexical items). In the end approx. 14h
of the data were used in the experiments.
We performed leave-p-out cross-validation (with p = 2
speakers of the same conversation) resulting in ap-
prox. 0.75h of test data and 13.5h of training data per
split. Hence, we trained 19 baseline models (Kaldi-LR)
where each training split involves 18 conversations.
We reduced the initial phone set from 65 to 38 tar-
get phones by performing phone set minimization
rules based on phonetic studies on Austrian German
(Moosmüller, 2007): First, a replacement rule (silibant
devoicing of the alveolar fricative /z/, as usual in Aus-
trian German); second, a rule which split all diphthongs
into two separate phones; third, a rule which united
short vowels and long vowels.
We extracted 13-dimensional MFCCs and performed
cepstral mean and variance normalization (CMVN).
For acoustic models (AM), initial GMM-HMM-models
comprised basic monophone and triphone training.
On top of the triphone GMM, a speaker indepen-
dent GMM model with linear discriminative analy-
sis (LDA) and maximum likelihood linear transform
(MLLT) (Gopinath, 1998) was trained. This model was
the new basis for training with constrained maximum
likelihood linear regression (fMLLR) (Gales, 1998).
Finally, latter triphone alignments were used to train
a TDNN with 13 layers and hidden dimensions of 512
utilizing only existing MFCC features.
For Kaldi experiments, the language models (LM)
were built using the SRILM toolkit with a Witten-Bell
discounting for N-grams of different orders (Stolcke,

2002). LMs were trained on data coming from one
training split. The experiments with 3-grams and 4-
grams indicated a 4-gram model to be superior.

4.1.2. Results
With this Kaldi experiment, we aimed at investigating
the hypothesis that testing each conversation individ-
ually points out conversational speech complexity and
reinforces a LR language processing assumption. Table
1 shows the WERs achieved with our baseline Kaldi-
LR system. They range between 43.89% and 65.12%,
where the resulting mean WER lies at approx. 56%,
with a standard deviation of 5.4%. Hence, we observe
a lack of performance and also high variation between
the conversations with respect to the WERs.
The problem with conversational speech in LR scenar-
ios is well-known: Results from (Laurent et al., 2016)
give WERs of ≈ 40% in case of conversational-like
data. (Sriranjani et al., 2015), for instance, showed that
based on very limited LR Indian language data (≤ 3h)
recorded in a rural environment WERs ranged from
≈ 10% to ≈ 34.5%. Furthermore, WERs from base-
line experiments described in (Yi et al., 2020) range
from 33.77%...51.54% in case of LR multilingual tele-
phone conversation data.
We find that performing cross-validation by testing
each conversation individually points out conversa-
tional speech complexity and indicates a data sparsity
problem. At this stage we conclude that our first hy-
pothesis cannot be rejected.

4.2. Experiments with Fairseq
This section describes our experiments with fairseq in
order to further investigate our hypotheses.

4.2.1. Methods
In comparison to our Kaldi experiments, the prepro-
cessing of GRASS transcriptions files was slightly dif-
ferent: We additionally had to exclude chunks involv-
ing foreign words and dialect lexemes, resulting in a to-
tal deletion of approx. 4h of all available chunks (i.e.,
approx. 0.7h more than for the Kaldi experiments).
Other chunks which can involve breathings, speaker
noise, singing, smacking, laughed speech, coughing,
sighing, broken words or multi-word expressions were
maintained. When parsing the transcriptions, we auto-
matically corrected inconsistent orthography of fillers
(e.g., hm and hmm), as these tokens can cause a high
number of substitution errors. In the end approx. 13.5h
of the data remained for our experiments.
Just as in the Kaldi experiments, we perform cross-
validation resulting in 19 training splits where each
split results from leaving out 1 conversation. Subse-
quently, we receive approx. 0.75h of test data and
12.75h of training data per split. Finally, we randomly
choose 10% of resulting training splits as validation
sets (approx. 1.25h) to adjust the LM weights in the
decoder.
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Table 1: Summary of best and worst conversation-dependent WERs (test set abbreviations include speaker IDs
plus sex): Character-based (CHR) and phone-based (PHN) models with wav2vec2.0 are finetuned on LR pre-
trained models (only GRASS) or XLSR. Kaldi-LR models are also phone-based and incorporate additional pro-
nunciations in the lexicon. We present results coming from 3 decoding strategies: Decoding without a lexicon
(Lexfree), decoding with a lexicon (Lex) and decoding with a lexicon and LM (4-gram).

Phone-based
Kaldi-LR Lexfree Lex 4-gram

009M010M - - 65.12
021F022F - - 43.89

µ/σ - - 56.19/5.4 Character-based

PHN-XLSR Lexfree Lex 4-gram CHR-XLSR Lexfree Lex 4-gram

006M007M - 42.03 32.71 006M007M 41.5 38.95 34.49
038F039F - 26.63 17.44 038F039F 22.37 19.88 17.36

µ/σ - 33.15/4.32 24.69/4.10 µ/σ 31.23/4.86 28.06/4.92 25.06/4.42

PHN-LR Lexfree Lex 4-gram CHR-LR Lexfree Lex 4-gram
016M018M - 90.44 73.45 016M018M 95.32 98.11 76.98
021F022F - 64.93 45.14 038F039F 75.61 72.32 48.52

µ/σ - 75.14/5.86 57.28/6.46 µ/σ 85.5/4.63 84.75/6.36 62.54/6.36

Training a speech recognition system with wav2vec2.0
involves two steps: 1) self-supervised learning from
unlabeled speech data (pre-training) and 2) finetun-
ing an obtained pre-trained model with labeled speech
data. For all speech representation models, we used the
same architecture with 315M parameters containing 24
transformer blocks with model dimensions 1024, inner
dimension 4096 and 16 attention heads.
When finetuning wav2vec2.0 models, we compared
two basic target sets: 1) a character-based (CHR) set
resulting in 31 characters as targets and 2) a phone-
based (PHN) set resulting in 65 phonetic units as tar-
gets. Both target sets included a white space unit which
models silence parts. Similar to our lexicon creation,
in case of the character-based models, the orthographic
transcriptions given by GRASS were directly mapped
to character sequences. In case of the phone-based
models, the orthographic transcriptions were mapped
to canonical phonetic sequences.
The available pre-trained XLSR model was trained
with 56000h of multilingual speech data built on top of
wav2vec2.0. The training data of XLSR contains Com-
monVoice (36 languages, 3600h) (Ardila et al., 2020),
BABEL (17 languages, 1700h) (Gales et al., 2014)
and MLS (8 languages, 50000h) (Pratap et al., 2020).
We finetuned XLSR with our labeled speech data with
a CTC loss (Graves et al., 2006) after introducing a
classification layer representing our targets. Here, we
present results coming from 19 phone-based models
(PHN-XLSR) and 19 character-based models (CHR-
XLSR), as there are 19 conversations in GRASS.
For our experiments with LR wav2vec2.0 models, we
pre-trained merely with in-domain GRASS data fol-
lowed by finetuning the pre-trained GRASS models
given the labels from our training splits. Also these
models were trained with a Connectionist Temporal

Classification (CTC) loss after introducing a classifica-
tion layer representing the two target types. Thus, we
view the resulting models as LR approaches, because
we used exactly the same training data (11.5h) for both,
pre-training and finetuning. Also for this LR experi-
ment with fairseq, we compare WERs coming from 19
phone-based (PHN-LR) and 19 character-based (CHR-
LR) models.
For both XLSR and LR experiments with fairseq, we
used a greedy decoder (Lexfree) in case of CHR mod-
els and a beam-search decoder without language model
weighting (Lex) or with language model weighting (4-
gram) in case of CHR and PHN models. The greedy
decoder searches the greedy best path by using only
acoustic model predictions. The AM search space of
the beam-search decoder is restricted by a lexicon and
we incorporated an LM by providing an LM weight.
Here, when incorporating an LM, we trained LMs of
order 4 with modified Kneser-Ney smoothing and de-
fault pruning, which removes singletons of order 3 or
higher by utilizing the KenLM toolkit (Heafield, 2011).
LMs were trained merely on data coming from one
training split and we choose an LM weight from the
set of LM weights {1, 2, 3} with respect to best WERs
coming from the additional validation data. In case of
beam-search decoding, we chose a beam size of 100.
For the phone-based models, we do not provide results
of the greedy decoder, because reasonable results could
only be produced with the help of a lexicon introducing
a target set which allows for word disambiguations.

4.2.2. Results from XLSR Pre-Training and
GRASS Fine-Tuning

This experiment investigates the hypothesis that fine-
tuning a data-driven pre-trained cross-lingual speech
representation model is effective for Austrian conver-
sational speech.
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The middle row of table 1 shows the WERs that
achieved with the XLSR models. When decoding
CHR-XLSR without a lexicon, WERs ranged between
22.37% and 41.5%, resulting in a mean value of
31.23% and standard deviation of approx. 5%. In
case of PHN-XLSR, the Lex WERs are more similar
to CHR-XLSR Lexfree results. Lex results of CHR-
XLSR, on the other hand, are approx. 5% better with
respect to mean value. We note that no big differences
between 4-gram PHN-XLSR and CHR-XLSR models
can be observed, i.e., mean values and standard devi-
ations are very similar. We observe that the power-
ful XLSR models give satisfactory results considering
the high difficulty level of given face-to-face conversa-
tional data. As a matter of fact, all WERs of XLSR
models are much lower than those from the Kaldi ex-
periment, regardless of LM incorporation, and in case
of CHR-XLSR even without utilizing a lexicon.
wav2vec2.0 models pre-trained on 50000h of English
data were tested on various languages showing their
effectiveness in LR scenarios (Yi et al., 2020): Re-
sults with German telephone speech (approx. 13h of
training data) demonstrated an absolute improvement
of approx. 20% compared to a baseline system. In
general, they achieve more than 20% relative improve-
ments in case of all six tested LR languages. Overall,
their WERs are in the same range as ours.
We conclude that solving ASR tasks for GRASS con-
versational speech by finetuning speech representation
models pre-trained on a high amount of out-of-domain
data is effective. Thus, our second hypothesis cannot
be rejected.

4.2.3. Results from GRASS Pre-Training and
GRASS Fine-Tuning

This experiment investigates the last hypothesis that
finetuning an LR speech representation model trained
only on Austrian conversational speech is not effective
for Austrian conversational speech.
The final row of table 1 shows WERs achieved with the
models PHN-LR and CHR-LR. The PHN-LR 4-gram
results were slightly worse than the results from the
LR Kaldi approach, both with respect to mean WERs
and to the worst conversation (i.e., by a difference of
8.33%). All PHN-LR models performed better than
CHR-LR models, resulting in mean WER differences
of 8.26% (4-gram) and 9.6% (Lex). Interestingly,
Lexfree and Lex results were similarly bad in case of
CHR-LR, with mean WERs of approx. 85%.
We refer back to section 4.1.2 which presents WERs
from the literature in case of LR conversational speech
recognition, because the results from this experiment
again demonstrate problems with respect to both, per-
formance and robustness in case of LR scenarios.
From this experiment, we conclude that finetuning a
LR speech representation model which is pre-trained
merely on Austrian conversational speech is not effec-
tive. Also our Kaldi-LR results demonstrate similar
performance issues. Consequently, for neither of the

two LR ASR approaches presented in this paper, where
models were trained merely on GRASS conversational
speech, resulted in state-of-the-art WERs for conversa-
tional speech. Hence, our third hypothesis is true, and
we show that training on approx. 11.5h hours of con-
versational speech emphasizes the data sparsity prob-
lem. Additionally, these results are also reinforcing our
first hypothesis, i.e., that performing cross-validation
by testing each conversation individually points out
conversational speech complexity and certifies the LR
language processing assumption.

5. Corollary
After answering our hypotheses, this section discusses
further findings which result from our experiments: we
discuss the role of linguistic knowledge, the role of tar-
gets and the role of inter-speaker vs. inter-conversation
variation.

5.1. Role of Linguistic Knowledge
We made several observations when looking at the in-
fluence of incorporating knowledge given by a lexicon
or LM in case of wav2vec2.0 models.
Both, lexicon-based PHN/CHR-LR and PHN/CHR-
XLSR models benefit from LM probabilites whereby
higher differences in WERs can be observed in case
of LR models (≈ 20% with respect to mean val-
ues). When comparing PHN-models with CHR-
models those improvements are similar in the LR cases,
but they differ more strongly in the XLSR cases, de-
spite the overall WERs being similar. Hence, we no-
tice that incorporating a LM has an higher impact on
lexicon-based PHN models compared to lexicon-based
CHR models in the XLSR case. At the same time, how-
ever, lexicon-free CHR-XLSR solutions are similar to
lexicon-based PHN-XLSR solutions.
The experiments presented in (Conneau et al., 2021)
showed WER improvements of ≈ 2 . . . 4% due to
LM incorporation when finetuning a smaller CHR-
XLSR model. Another study showed improvements
by adding LM probabilities and more advanced lexi-
cons via dialect variation modeling (Khosravani et al.,
2021). To the best of our knowledge, comparisons be-
tween PHN/CHR-XLSR models showing varying im-
pacts of LM probabilities, have not yet been reported.
Looking at lexicon-based beam-search decoding re-
sults from PHN-XLSR and knowing that the AM
search space is entirely restricted by the lexicon, one
might argue that word mapping ambiguities lead to
some substitution errors due to homophones. However,
in case of our small canonical lexicon, only ≈ 1.8%
of all words are ambiguous introducing those unpre-
dictable errors2 and we believe that those errors are
small in comparison to errors which arise from missing
Austrian German pronunciations. Hence, we conclude

2We hypothesize that, when introducing ambiguous pro-
nunciations in the lexicon, words are randomly selected dur-
ing beam-search decoding.
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that the canonical pronunciations in the lexicon, which
introduce 65 target phones, lead to higher amounts of
training errors in comparison to errors occurring from
31 character targets due to more noisy labels in case
of Austrian German. We hypothesize this error to be
lower in case of character-based systems, because they
have only 31 character targets. Nevertheless, for both
phone-based and character-based systems, incorporat-
ing LM probabilities resulted to help to reduce the im-
pact of ambiguities.

5.2. Role of Targets
Here, we discuss the role of target labels by comparing
our phone-based and character-based systems. If we
look at performances from the LR models, character-
based systems performed worse than phone-based sys-
tems in case of both, Lex and 4-gram, whereby Kaldi-
LR WERs were more similar to PHN-LR 4-gram
WERs. XLSR models showed similar results when de-
coding with a LM, but in case of only lexicon-based
decoding, CHR-XLSR models achieved better perfor-
mances.
The systematic comparisons between character-based
and phone-based ASR systems by (Basson and Davel,
2012) showed that increasing training data leads to
similar performances in character-based and phone-
based ASR systems. (Zeineldeen et al., 2020) com-
pared results for attention-based encoder-decoder mod-
els and found similar performances for character-
based and phone-based systems regardless of lexicon
or LM incorporation with more training data in gen-
eral. Additionally, they also achieved similar results
of 18.2% (PHN) and 18.6% (CHR) with a simplified
decoder without LM nor lexicon by inserting word-
disambiguate and end-of-word symbols in case of their
phone-based models.
Our results are in line with results reported in the litera-
ture and suggest that character-based systems give sim-
ilar performances as phone-based systems if enough
data is available. However, our differences between
phone-based and character-based models in case of
lexicon-based decoding results indicate the relevance
of knowledge, and that, for instance, the incorporation
of more advanced lexicons might lead to further im-
provements.

5.3. Inter-Conversation vs. Inter-Speaker
Variation

Our results indicate that variation in WERs with respect
to each conversation and with respect to each speaker
differs when comparing LR and XLSR models.
Table 1 shows that in case of beam-search decoding
standard deviations of WERs are always higher in the
LR scenario with wav2vec2.0 models than the WERs
of the XLSR scenario. Figure 1 clarifies this vari-
ation by comparing speaker-dependent WERs of 4-
gram models. In general, histograms over bins with
5%-width show that overall WERs and the range of
speaker-dependent WERs are lower in case of XLSR

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
WERs
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CHR-LR
PHN-LR
Kaldi-LR

Figure 1: Histogram showing speaker-dependent
WERs (4-gram). WERs and range of WERs
are lower in case of finetuned XLSR models
(35.71% . . . 16.09% = 19.62%) in comparison
to finetuned LR models (79.37% . . . 43.36% =
36.01%). Kaldi-LR model WERs range from
69.19% . . . 43.42% = 25.77%.

models compared to LR models. Furthermore, when
comparing WER ranges normalized by mean value
we measure values of 0.79 (PHN/CHR-XLSR), 0.6
(PHN/CHR-LR) and 0.46 (Kaldi-LR). Figure 2 clearly
demonstrates that range of conversation-dependent
WERs is lower in case of Kaldi models (21.23%) com-
pared to wav2vec2.0 LR models (31.84%). In case
of normalized conversation-dependent WER ranges
we measure values of 0.69 (PHN/CHR-XLSR), 0.53
(PHN/CHR-LR) and 0.38 (Kaldi-LR). Corresponding
entropy measurements which address directly to the
shape of the distributions are 0.83 (PHN/CHR-XLSR),
0.96 (PHN/CHR-LR) and 0.79 (Kaldi-LR). Even if ab-
solute WER ranges of XLSR models are lowest, our
measurements demonstrate that Kaldi distributions ap-
pear to have the least unexplained variability, especially
in case of conversation-dependent WERs.
A broad study on domain shifts in self-supervised pre-
training (Hsu et al., 2021) observe that adding more
out-of-domain data during pre-training is beneficial
and simultaneously pre-training on more domains im-
proves robustness in general.
Our findings confirm the effectiveness of finetuning
GRASS conversational speech with XLSR with respect
to performance, but we still observe lack of robustness
with respect to resulting WER distributions. Addition-
ally, in case of Kaldi models variation per conversation
appears to be better modeled than variation per speaker.

6. Conclusions
In this paper we presented ASR experiments for Aus-
trian German conversational speech from two ASR
frameworks, the Kaldi speech recognition toolkit and
fairseq (i.e., wav2vec2.0). We investigated the impact
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Figure 2: Histogram showing conversation-dependent
WERs (4-gram). WERs and range of WERs
are lower in case of finetuned XLSR models
(34.49% . . . 17.36% = 17.13%) in comparison
to finetuned LR models (76.98% . . . 45.14% =
31.84%). Kaldi-LR model WERs range from
65.12% . . . 43.89% = 21.23%.

of data size, inter-speaker and inter-conversation vari-
ation, and structural knowledge for ASR performance,
and compared phone-based and character-based ASR
approaches.
Our results showed the effectiveness of finetuning a
pre-trained cross-lingual speech representation model
when solving LR ASR tasks with Austrian conversa-
tional speech. Even though performances were already
satisfying with the data-driven approach, we still ob-
served the importance of including structural linguistic
knowledge via a lexicon or LM, as WERs decreased
in case of both, LR and XLSR models. Furthermore,
WERs varied strongly from speaker to speaker and
from conversation to conversation, indicating the com-
plexity of conversational speech, and also indicating
the lack of robustness to speaker variation in case of
all ASR approaches shown here.
In future, we will further investigate whether the impact
of more advanced lexicons and LMs is larger for ASR
of conversational speech in comparison to ASR of other
less spontaneous and less casual speaking styles. Given
our findings from this paper, we hypothesize that better
performing systems do not necessarily result in systems
which are also more robust to inter-speaker variation.
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