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Abstract
Psycholinguistic knowledge resources have been widely used in constructing features for text-based human trait and behavior
analysis. Recently, deep neural network (NN)-based text analysis methods have gained dominance due to their high prediction
performance. However, NN-based methods may not perform well in low resource scenarios where the ground truth data is
limited (e.g., only a few hundred labeled training instances are available). In this research, we investigate diverse methods to
incorporate Linguistic Inquiry and Word Count (LIWC), a widely-used psycholinguistic lexicon, in NN models to improve
human trait and behavior analysis in low resource scenarios. We evaluate the proposed methods in two tasks: predicting
delay discounting and predicting drug use based on social media posts. The results demonstrate that our methods perform
significantly better than baselines that use only LIWC or only NN-based feature learning methods. They also performed
significantly better than published results on the same dataset.
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1. Introduction

Psycholinguistics research has shown that language
use provides clues into one’s emotional and cognitive
states (Pennebaker et al., 2003; Pennebaker and King,
1999). Text-based human trait and behavior analysis
aims at finding patterns in user-generated texts to help
analyze the characteristics and behavior of the author
such as their beliefs, attitudes, emotions, personality,
and online/real world behaviors. Previously, psycholin-
guistic lexicons such as Linguistic Inquiry and Word
Count (LIWC) have been widely used in predicting hu-
man traits and behavior from text (Riff et al., 2019;
Robinson et al., 2013; Yarkoni, 2010). Recently, fu-
eled by big data and big machines, deep neural network
(NN)-based models have gained near dominance due
to their high prediction performance (Majumder et al.,
2017a; Ding et al., 2017). However, NN-based meth-
ods may not work well when the training data is limited
(e.g., with only a few hundred labeled training exam-
ples). Such a low resource scenario is common in hu-
man trait and behavior analysis because sophisticated
psychometric evaluations are often required to obtain
the ground truth (Zafarani and Liu, 2015). As a re-
sult, it is expensive to acquire the grount truth at a large
scale.
When the ground truth data is limited, the power of
deep learning can also be limited. Since high-level
abstractions related to human emotions and cogni-
tions may not be easily inferred from a small num-
ber of examples, in such a low resource scenario, psy-
cholinguistic knowledge may complement the infor-
mation extracted automatically by NNs. In this re-
search, we investigate diverse methods to incorporate
Linguistic Inquiry and Word Count (LIWC), a widely
used psycholinguistic lexicon, in neural network(NN)-
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Figure 1: The Reference System Architecture

based human trait and behavior analysis. Many state
of the art NN-based models employ a self-supervised
user embedding process to take advantage of a large
amount of unsupervised text (Pan and Ding, 2019). In
this research, we adopt a similar architecture that first
learns a concise and application-agnostic user repre-
sentation/embeddings from unsupervised text (e.g., un-
labeled raw social media text). Then we use supervised
machine learning to predict the target user trait and be-
havior (e.g., drug use) from the learned user represen-
tation/embedding. Figure 1 shows the reference archi-
tecture employed in this study.
The main contributions of this research include:

• We propose a diverse set of new methods for in-
corporating LIWC, a general-purpose psycholin-
guistic lexicon in NN-based human trait and be-
havior analysis. Our methods significantly outper-
form traditional and base neural methods in low
resource scenarios.

• Our investigation also sheds new light on the im-
pact of various design choices such as LIWC in-
jection stage (e.g., during self-supervised user em-
bedding or behavior prediction), goal or purpose
of injection (e.g., to augment input or regularize
output) and the fusion or parameter sharing strat-
egy (e.g., early fusion or later fusion, parameter
freeze or no parameter freeze) on system perfor-
mance in low resource settings.
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• We evaluate the effectiveness of our methods in
two complex human trait and behavior analysis
tasks: predicting delay discounting and predicting
drug use from social media posts.

2. Related Work

In this section, we first survey the work on text-based
human trait and behavior analysis with a specific fo-
cus on combining LIWC with NNs. We then extend
the scope to include general methods on incorporating
lexicons in NN-based models.
Early work on text-based human trait and behavior
modeling focuses on using basic text features such as
ngrams (Saleem et al., 2012; Iacobelli et al., 2011),
psycholingustics features dervied from LIWC or senti-
ment lexcons (Saleem et al., 2012; Golbeck et al., 2011;
Mairesse et al., 2007) and latent text features derived by
LDA, SVD and factor analysis (Schwartz et al., 2013;
Kulkarni et al., 2018). Recently, there is a surge of in-
terests in nerual network-based models. For example,
(Majumder et al., 2017b) employs Convolutional Neu-
ral Networks (CNN) to predict big5 personality from
text. In addition, (Ding et al., 2017) employs neural
network-based document embedding and multiview fu-
sion to predict substance use from social media posts
and likes. There is limited existing work on combining
LIWC with NNs for human behavior analysis (Trotzek
et al., 2018; Majumder et al., 2017b; Yang et al., 2021).
Most of them simply concatenate LIWC features with
other text features (e.g., word embeddings). No sys-
tematical investigation has been conducted to identify
the most effective methods of integrating LIWC in NN
models, under low resource scenarios.
Previous work on incorporating lexicons to neural
network-based models can be grouped into two cate-
gories: (1) adding lexical knowledge to improve task
agnostic- representation learning (e.g., to enhance word
embedding) (2) adding lexical knowledge to improve
task prediction. For (1), since some of recent word
embedding models such as BERT are very expensive
to retrain under low recourse scenarios, most existing
work on incorporating lexicons into word embedding
is based on word2vec (Mikolov et al., 2013). Among
them, some change the objective of word embedding
training to include lexical knowledge (Bian et al., 2014;
Yu and Dredze, 2014). Others adapt word embeddings
in a post-processing step via rretrofitting (Faruqui et al.,
2014; Jo and Choi, 2018; Bian et al., 2014). Unlike
these methods which try to improve the representation
of a word with additional lexical knowledge, we fo-
cus on incorporating LIWC in learning a user embed-
ding. Most work on incorporating lexical knowledge to
improve the final task is for sentiment analysis (Shin
et al., 2016; Teng et al., 2016; Nguyen and Nguyen,
2017). Lexical knowledge was added through either
concatenation to word vectors or weighing word vec-
tors by their corresponding sentiment scores.

3. Design Choices
In this section, we first provide an overview of LIWC,
followed by a few design considerations.

LIWC
Previous psycholinguistics research has shown that lan-
guage use provides clues into one’s emotional and cog-
nitive states (Pennebaker et al., 2003; Pennebaker and
King, 1999). To capture the relationship between word
usage and the author’s cognitive and mental states,
psycholinguists developed a text analysis tool called
LIWC (Pennebaker and King, 1999; Pennebaker et al.,
2015) which assigns words into psychologically or lin-
guistically meaningful categories including psycholog-
ical constructs (e.g., cognition, biological processes),
personal concern (e.g., work, home, leisure), linguistic
properties (e.g., pronoun, punctuations and word com-
plexity) among various others. Given a text document,
LIWC outputs a score for each of the LIWC categories.
The resulting vector of 71 real numbers can then be
used as a representation of the characteristics of the au-
thor.

Choices
In this study, we systematically explore methods listed
in Table 1 based on different design choices.
Learning stage - Text-based user behavior prediction
can be divided into two stages: (1) application-agnostic
user embedding or representation learning and (2) pre-
dicting the target behavior using a supervised approach.
We consider three options for incorporating LIWC: in
user embedding learning (embd), during target behav-
ior prediction (behv) and in both stages simultaneously.
Purpose - We further divide the above choices based on
whether LIWC information is used to augment the in-
put (e.g., adapting the text used in embedding) or regu-
larize the embedding learning process (e.g., add LIWC
score prediction as a auxiliary task in multi-task learn-
ing to regularize user embedding Embd-Obj or target
behavior prediction Behv-Obj).
Fusion - We explore multiple design options when
LIWC is fused with NNs. For incorporation LIWC
in user embeddings, we explore two options: mask-
ing or replacing words (Embd-Repl) and annotating
words (Embd-Anno). For incorporating LIWC during
behavior prediction, we explore three options: LIWC
and user embedding feature are concatenated in input
layer (Behv-Early), concatenation of user embedding
and LIWC occurs in later layers in the network (paral-
lel networks concatenated later) (Behv-Late-NoFreeze),
training of the parallel networks are isolated by freez-
ing one when training the other (Behv-Late-Freeze).

4. Proposed Methods
In the following, we provide details on the proposed
methods. We group them based on which stage LIWC
is injected: during user embedding, target behavior pre-
diction or both.
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Design choices
Methods Stage Purpose Fusion Methods
Embd-Repl user embedding augment input replace words with LIWC categories
Embd-Anno user embedding augment input and

regularize output
annotate words with LIWC categories
and change embedding objective

Embd-Obj user embedding regualize output change the embedding objective
Behv-Early behavior prediction augment input early fusion
Behv-Late-Nofreeze behavior prediction augment input late fusion
Behv-Late-Freeze behavior prediction augment input late fusion with freeze to miminze pa-

rameter sharing
Behv-Obj behavior prediction regularize output change behavior prediction objective

Table 1: Mapping between design choices and resulting methodology

4.1. Incorporating LIWC in user embedding

We have explored three different methods to incorpo-
rate LIWC in user embedding: (1) LIWC-based word
replacement (Embd-Repl), (2) LIWC-based word an-
notation (Embd-Anno), (3) LIWC-based regualization
objective (Embd-Obj).

4.1.1. Embd-Repl
This method simply replaces word tokens in text with
their LIWC categories. If a word belongs to multi-
ple LIWC categories, then the replacement is a con-
catenation of the categories. For example, ”Adore” is
mapped to a combination of two LIWC categories ”Af-
fect&PositiveEmotion”. If a word is out of the LIWC
lexicon, then ”None” is used as the replacement. Since
we replace a specific word with its LIWC categories,
this may help our system to generalize and recognize
abstract patterns related to human emotions and cog-
nitions. Moreover, user embeddings learned from this
input not only capture the distributions of LIWC cate-
gories in a text, but also their sequential dependency.

4.1.2. Embd-Anno
In the previous method, after LIWC-based replace-
ment, we lose the information of the original words.
Here instead of replacement, we augment the input text
with LIWC categories. For each word in a text file, we
add its LIWC categories as word annotations.
To learn a user embedding that takes advantage of
the LIWC annotations, we developed two new al-
gorithms: LIWC-enhanced Distributed Memory (L-
DM) and LIWC-enhanced Distributed Bag of Word
(L-DBOW), Their architectures are illustrated in Fig-
ures 2a and 2b. For L-DM, we modify the objective
of the algorithm to predict the words wt and their an-
notation at given a document vector U and some con-
text words (e.g.,wt−1) and their annotations (e.g., at−1)
. For L-DBOW, we modify the objective of the algo-
rithm to predict the words wti and their annotations ati,
given a document vector U . More formally, the objec-
tive function of L-DM is to maximize the average log

wt/at

User ID wt-1 at-1 wt+1 at+1

U E E E E

(a)

User ID

U

at1wt1 at2wt2 at3wt3

(b)

Figure 2: Embd-Anno Architectures. (a) Embd-Anno
with L-DM and (b) Embd-Anno with L-BOW

probability of:

1

N

N∑
i=0

1

T

T∑
t=1

j=C∑
j=−C

log p(wt/at|wt+j , at+j , ui) (1)

and for L-DBOW the objective is to maximize the av-
erage log probability of:

1

N

N∑
i=0

1

T

T∑
t=1

j=C∑
j=−C

log p(wt+j , at+j |ui) (2)

where ui is a user embedding, N is the number of doc-
uments, T is the length of a document, wt and at are a
target word and its corresponding annotation, and C is
the window size.

4.1.3. Embd-Obj
Unlike the previous two methods where LIWC infor-
mation is injected at the word level, for this method, we
use document-level normalized word counts of LIWC
categories as an additional training objective to regu-
larize the NN-based user embedding process. Specif-
ically, after learning user embeddings, we further use
the user embedding matrix to predict LIWC scores and
the original embeddings simultaneously. We measure
the similarity between vectors using mean squared er-
ror. The optimization objective is to minimize the fol-
lowing function:

1

N

N∑
i=0

α(ûi − ui)
2 + (1−α)(li − hLIWC(ui))

2 (3)
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where ûi is a pre-trained user embedding, ui is a mod-
ified user embedding, h is a non-linear transformation
and li is calculated LIWC scores. α is the weight to
control the influence of the original embedding vs pre-
dicted LIWC scores.

4.2. Incorporating LIWC in target
prediction

We also explore various methods that incorporate
LIWC in the target prediction stage. Here, we are
evaluating four different models: (1) early concatena-
tion (Behv-Early), (2) late fusion with no freeze (Behv-
Late-NoFreeze) (3) late fusion with freeze (Behv-Late-
Freeze) and (4) LIWC that regularizes target behavior
prediction via modified optimization objective (Behv-
Obj). For each of these models, to isolate the effect of
injecting LIWC at the target prediction stage, we re-
strict user representations to pre-trained user embed-
dings without LIWC enhancement.

4.2.1. Behv-Early
The early fusion model (Behv-Early) combines the user
embedding features with LIWC features at the input
layer. The concatenated features are then used as the
input to train a target prediction model (e.g., predicting
drug use). This is the simplest model to combine user
embedding and LIWC features. The same set of net-
work parameters are used to control both the mapping
between user embedding to the target behavior and the
LIWC scores to the target behavior.

4.2.2. Behv-Late-NoFreeze
Two parallel sub-NNs are used in Behv-Late-NoFreeze,
one takes user embeddings as the input and the other
takes LIWC scores as the input. The last layer of each
sub-NN will be fused together right before the last
classification layer. Comparing with Behv-Early, this
model uses two independent sets of model parameters,
one to mainly capture the relations between the target
behavior and user embeddings, the other to capture that
and LIWC scores. But the separation of influence be-
tween the parameters of these two sub-NNs is not clean
or fused due to the fact that the backpropagation is con-
trolled by the parameters of both networks. There is
some cross sub-NN influence between the two sets of
sub-NN parameters.

4.2.3. Behv-Late-Freeze
Similar to Behv-Late-NoFreeze, two parallel sub-NNs
are used in this model. Unlike Behv-Late-NoFreeze,
here each NN is trained to predict the target indepen-
dently. The two NNs are then frozen first before they
are fused for the final prediction. Comparing Behv-
Late-Freeze with Behv-Late-NoFreeze, due to parame-
ter freeze, the first set of parameters in the first sub-NN
mainly captures the relations between user embeddings
and the target behavior. The parameters in the second
NN capture the relations between the target behavior
and LIWC scores. There is no cross sub-NN influence
in this model.

4.2.4. Behv-Obj
In this model (Behv-Obj), we formulate this as a multi-
task learning problem. In addition to predicting the tar-
get behavior, the network also predicts LIWC scores.
Since the prediction tasks share the same set of parame-
ters, some of the knowledge learned during LIWC pre-
diction may transfer and benefit the prediction of the
target behavior. The objective is then to minimize the
binary cross-entropy loss of the behavior classification
as well as LIWC prediction:

1

N

N∑
i=0

α(−(yilog(h(ui))+

(1− yi)log(1− h(ui))))

+ (1− α)(li − hLIWC(ui))
2 (4)

where yi is the ground truth label for a user, ui is the
user embedding, h and hLIWC are non-linear transfor-
mations and li is calculated LIWC scores. The α pa-
rameter are weight values that control the influence of
the original embedding vs predicted LIWC score.

4.3. Incorporating LIWC in both stages
We explore one additional method to observe the ef-
fect of combining LIWC in both stages simultaneously:
user embedding learning and target behavior predic-
tion. For this purpose, we integrate the best performing
method within each stage: Embd-Anno and Behv-Late-
Freeze.

5. Experiment Settings
We evaluate the methods in two downstream tasks: (1)
predicting Delay Discounting (DD) and (2) predicting
Drug Use (DU) based on one’s social media posts.
Delay discounting, a behavioral measure of impulsiv-
ity, is often used to quantify the human tendency to
choose a smaller, sooner reward (e.g., $1 today) over
a larger, later reward ($2 tomorrow). Previous research
has shown that steep DD is often linked problematic
behaviors such as alcohol and drug abuse, pathologi-
cal gambling and credit card default (Alessi and Petry,
2003; Kirby et al., 1999). However, it is quite difficult
to acquire the ground truth delay discounting score of
a person as it requires sophisticatd psychometric eval-
uation via lengthy questionnairs (Stillwell and Tunney,
2012). To facilitate comparision, we adopt the same
DD threshold used in (Ding et al., 2019) to classify
users into either (1) ”HIGHlY IMPULSIVE” or (2)
”OTHER”. Moreover, substance abuse is a serious
public health problem impacting many communities in
our society. In our second task, we predict problematic
drug use behavior from social media posts. The sys-
tem is designed to be used as a scalable screening tool
for substance use disorders. The DU ground truth was
collected via a self-reported survey. Based on the fre-
quency of a person’s drug use, we categorize a user as
either a (1) ”DAILY DRUG USER” or (2) ”OTHER”.
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User representation AUC scores
methods DU DD
AV-W2V 0.537 0.528
AV-DM 0.600 0.592
All-DM 0.616 0.603
All-DBOW 0.644 0.643
AV-LSTM 0.593 0.577
LIWC scores 0.756 0.602
Ding et al. 2019 N.A. 0.641

Table 2: Performances of baseline models on drug use
(DU) and delayed discounting (DD) prediction.

Both the DD and the substance use (DU) datasets are
collected from Facebook users as a part of the myPer-
sonality projects (Kosinski et al., 2015). The data were
gathered with an explicit opt-in consent for reuse for
research purposes. To protect privacy, the data were
anonymized before the owners shared the data with us.
In total, our datasets contain 859 and 817 users with
the ground truth DD and DU annotations respectively.
In addition, We also have access to a large annotated
Facebook datasets with the social media posts of 100k
users. This unannotated data is used to train word em-
beddigns.

Evalaution Metrics
Given that our training dataset size is small (n < 1k)
and is imbalanced (about 10% positive cases), we ran-
domly split it 80/10/10 into a training, a development
and a test dataset. We repeat the process ten time and
report the average results. We use weighted ROC AUC
as the evaluation metric to address dataset size and
class imbalance.

Baselines
We include a total of seven baselines. Among them
(1)AV-W2V uses the average of word embeddings as
the user representation, where word embeddings are
learned using word2vec(Mikolov et al., 2013) (2) AV-
DM uses the average of document embeddings as the
representation of a user where each post is a docu-
ment and document embeddings are learned using the
Distributed Memory model (DM) in Doc2Vec (Le and
Mikolov, 2014) (AV-DM), (3 and 4): ALL-DM and
ALL-DBOW: train one document embedding with the
Distribute Memory (DM) or the Distributed Bag of
Word (DBOW) model in Doc2Vec (Le and Mikolov,
2014) for each person where all of a user’s posts
is a single document, (5)AV-LSTM: learn the repre-
sentation of a sentence using LSTM (Hochreiter and
Schmidhuber, 1997) and then average all the sentences
by a person as the user presentation. (6)LIWC: we use
the LIWC scores derived from all the texts authored by
a person as the user representation. In addition, we also
include the only known results on the same dataset on
DD prediction by (Ding et al., 2019) which use 10-fold
CV unlike our 10x random 80/10/10 split.

Parameter Tuning
For word2vec, DM and DBOW, we tune two hyper-
parameters: embedding dimensions and windows size.
We varied the embedding dimension values from 50,
100, 300, to 500 and window size from 3, 5, to 8. We
use grid search to find the best model parameters.
For Embd-Anno, we double the context window size to
accomodate additional LIWC annotations. For Embd-
Obj, we fine turn the tradeoff parameter α in Equation 3
empirially based on the development dataset.
All the Behv-* models employ different neural net-
work architectures. For the first 3 models (Behv-Early,
Behv-Late-Nofreeze and Behv-Late-Freez), the neural
networks have multiple fully connected layers. The
number of layers and the number of neurons in each
layer were empirically determined via grid search. For
Behv-Obj, the tradeoff parameter α in the objective
function is empirically determined based on the devel-
opment dataset.
For our final behavior classification, we trained a shal-
low neural network with a single fully connected layer
between the input and output layers. The number of
neurons in the hidden layer was determined using grid
search with values ranging from 16 to 120. The ac-
tivation function for the mid-layer was ReLu (Glorot
et al., 2011). The output layer contained a single unit
with a sigmoid activation function. All models used
AdaGrad, a version of the gradient descent algorithm
where the learning rate is adaptive. For AdaGrad, the
initial learning rate hyperparameter was empirically de-
termined using grid search with values between 10−1
and 10−5.

6. Experiments Results
In this section, first, we present the baseline model
performance and move on to the performance of the
proposed methods, grouped based on the stage where
LIWC is incorporated.

6.1. Performance of Baseline Models
Table 2 shows the performance of the baselines.
Among the baselines we implemented, LIWC per-
formed the best for drug use (DU) prediction (.756
AUC) and third best for DD (.602 AUC). For DU, it
outperformed all the NN basic models by a signifi-
cant margin. Among the basic NN models we tested,
All-DM and All-DBOW model performed the best; for
DU prediction .644 and .616 AUC respectively and for
DD prediction .643 and .603 respectively. This result
demonstrates that (1) LIWC is effective, in low re-
source scenarios (2) NN-based models perform poorly
with limited training data. These results are unsur-
prising. In the following, we investigate whether the
knowledge learned by NNs complements LWIC and
thus still can be useful in low resource scenarios.

6.2. Performance of Embd-* Models
The performance of Embd-* methods are listed in Ta-
ble 3. We report the resutls on LIWC-based perfor-
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Base embedding Method DU AUC DU Pval DD AUC DD Pval
All-DBOW - 0.644 - 0.643 -
All-DM - 0.616 - 0.603 -
All-DBOW Embd-Repl 0.820 6.25e-14 0.806 6.58e-12
All-DBOW Embd-Anno 0.879 1.52e-13 0.833 4.84e-13
All-DBOW Embd-Obj 0.687 3.23e-05 0.617 2.04e-03
All-DM Embd-Repl 0.794 1.28e-13 0.784 2.94e-13
All-DM Embd-Anno 0.843 1.81e-14 0.819 2.55e-14
All-DM Embd-Obj 0.642 0.021 0.592 0.290
All-DBOW Behv-Early 0.744 5.14e-08 0.682 6.99e-04
All-DBOW Behv-Late-NoFreeze 0.731 3.36e-07 0.701 8.65e-07
All-DBOW Behv-Late-Freeze 0.765 6.70e-12 0.721 4.66e-06
All-DBOW Behv-Obj 0.679 3.58e-03 0.609 1.77e-03
All-DM Behv-Early 0.740 5.33e-11 0.706 4.21e-09
All-DM Behv-Late-NoFreeze 0.726 3.43e-10 0.699 5.25e-08
All-DM Behv-Late-Freeze 0.812 6.70e-14 0.783 7.89e-13
All-DM Behv-Obj 0.656 0.011 0.626 0.040
All-DBOW Embd-Behv 0.912 2.10e-15 0.880 4.17e-13
All-DM Embd-Behv 0.889 2.22e-17 0.846 5.11e-15

Table 3: Prediction Performance of different Embd-* and Behv-* methods to enhance the best base embedding
methods ALL-DBOW and ALL-DM. Embd-Behv is a combination method that incorporates LIWC into both
learning stages: user embedding learning with LIWC annotated words and parallel networks for these enhanced
user embeddings with manually calculated LIWC scores with freezing parameter training.

mance enhancement to the two best base embedding
methods: All-DM and All-DBOW. The results show
that the performance does not improve when LIWC
features are used as an additional optimization objec-
tive to regularize the user embedding training (Embd-
Obj model) (with the exception of using DBOW for DU
task). In contrast, models focusing on masking or en-
riching input text with LIWC (Embd-Repl and Embd-
Anno) outperform all the other models. These meth-
ods either replace word tokens by their corresponding
LIWC categories (Embd-Repl), or append LIWC cat-
egories as additional annotations for each word token
(Embd-Anno). For drug use prediction, these methods
outperform the baselines by an average ≈ .20 with a
max of ≈ .23 in AUC ROC. For delayed discounting
prediction, the average increase is ≈ .17 with a max of
≈ .21

6.3. Performance of Behv-* Models
The performance of different Behv-* methods are
shown in Table 3. It shows that, all the models incor-
porating LIWC improve over the base models that use
only user embeddings (except Behv-Obj using DBOW
for DD task). Particularly, using LIWC to augment
embedding features in early or late fusion (rather than
Behv-Obj method) yields better results with an increase
between ≈ .09 and ≈ .20 for DU prediction and ≈ .04
and ≈ .18 for DD prediction. This incidates that LIWC
scores provide the neural network with additional in-
formation not being captured using vanilla user embed-
dings. Secondly, for DU prediction, all the methods ex-
cept Behv-Late-Freeze fail to outperform the baseline

of using LIWC scores alone. The Behv-Late-Freeze
model outperformed all the other Behv-* methods for
both tasks. It also outperformed the embedding only
baselines with an average increase of ≈ .16 and ≈ .13
for DU and DD tasks respectively Comparing with the
LIWC only model, the average increase of Behv-Late-
Freeze is ≈ .03 and ≈ .15 for DU and DD respec-
tively. This method creates two parallel networks and
isolates the parameter training for each type of input
(user embedding and LIWC scores respectively). In
other words, it minimizes the interactions between the
two networks, which seems to benefit the modeling
process.

6.4. Performance of the Combined Models
The results of incorporting LIWC into both learning
stages is listed in Table 3. On DU task, the results of
this method outperform all other methods by an aver-
age of ≈ .14 increase compared to LIWC only, ≈ .27
increase compared to vanilla user embeddings and an
average ≈ .10 increase compared to the best methods
for each stage. For DD task, the results of this method
outperform all other methods by an average of ≈ .26
increase compared to LIWC only, ≈ .24 increase com-
pared to vanilla user embeddings and an average ≈ .07
increase compared to the best methods for each stage.
This method was constructed using the best methods
in each stage. Finally, the results are also significantly
better than the the only published results on the same
dataset for DD prediction. Our best model, Embd-Behv
with All-DBOW achieved a 0.88 ROC AUC comparing
to a 0.641 ROC AUC reported in (Ding et al., 2019).
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The results indicate that LIWC contributes differently
in each of the learning stage. When LIWC is incorpo-
rated in the embedding stage, it can help learn more ac-
curate embeddings for human trait and behavior-related
concepts and relations. In addition, When it is in-
cproated during the behavior prediction stage, it may
provide new features to help discriminate between tar-
get classes. As a result, when LIWC is injected in both
stages, the system can benefit from not only a better
representation of the concepts and relations that are im-
portant to trait and behavior analysis but also new fea-
tures with discrimitive power to help classification.
As a summary, here are some of the main findings
from our analysis: (1) injecting LIWC during user em-
bedding (Embd-Anno and Embd-Repl) works better
than injecting during behavior prediction (Behv-Early,
Behv-Late-NoFreeze, Behv-Late-Freeze). This indi-
cates that user embeddings based on text alone might
be too generic for behavior analysis and could greatly
benefit from psycholingustic knowledge captured in
LIWC; (2) when injecting LIWC during behavior pre-
diction (Behv-*), the best performing model (Behv-
Late-Freeze) minimizes the interactions between the
two sub-NNs. This suggests when in low resource sce-
narios, we may not have enough training data to train
one set of parameters to account for the mappings of
two different types of input to the target. Training each
sub-NN separately seems to be the best strategy; (3)
injecting LIWC in both stages greatly improves model
performance (Embd-Behv). This suggests that the in-
teraction of LIWC and text-based user embeddings
captured in the Embd-* models provides additional
power over the original LIWC features employed in
the Behv-* models for behavior analysis; (4) injecting
LIWC through input augmentation rather than reguliza-
tion in the form of multi-task learning is consistently
better in both stages (Table 3). Dataset size is likely the
reason where an additional knowledge source is more
valuable to the modeling process as a new input than
through knowledge transfer via neural network param-
eter sharing using multi-task learning; (5) We also ex-
perimented with different input granularities: AV-W2V
learns user representations from word embeddings, AV-
DM learns user embeddings from post embeddings and
All-DM learns user embeddings from all the texts au-
thored by the same user (Table 2). Our results indicate
that All-DM or All-DBOW outperform the other user
embedding methods. This suggests learning a user rep-
resentation from all the text is better than aggregating
embeddings learned from smaller text units (a word or
post).

7. Conclusion
In this work, we systematically explore novel methods
that incorporate a psychcolingustic dictionary LIWC in
neural network-based human trait or behavior analy-
sis. We have investigated different algorithm design
choices and assessed their impact on system perfor-

mance under low resource scenarios. Our best model
features (1) simultaneouly injecting LIWC in both self-
supervised user embedding and target behavior predic-
tion; (2) incorporating LIWC information as input aug-
mentation (e.g. as annotations to input text in user em-
bedding) instead of output regulaization; (3) employing
late fusion with freeze to minimize cross network pa-
rameter sharing and influence. The proposed method
significantly outperformed all the baseline models in
two tasks. Our best method achieved a 0.912 ROC
AUC versus the best NN-only baseline of 0.644 and
the LIWC only model of 0.756 on DU prediction and
achieved 0.880 ROC AUC versus the best NN-only
baseline of 0.643 and the LIWC only model of 0.602
on delayed discounting prediction task. It is also signif-
icantly better than a recent published result on the same
dataset for DD prediction (0.641). This paper presents
a step forward and further research can break down the
most useful LIWC categories for other behavior pre-
diction tasks for comprehensive understanding.
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