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Abstract 
 
Spelling correction utilities have become commonplace during the writing process, however, many spelling correction utilities suffer 
due to the size and quality of dictionaries available to aid correction. Many terms, acronyms, and morphological variations of terms are 
often missing, leaving potential spelling errors unidentified and potentially uncorrected. This research describes the implementation of 
WikiSpell, a dynamic spelling correction tool that relies on the Wikipedia dataset search API functionality as the sole source of 
knowledge to aid misspelled term identification and automatic replacement. Instead of a traditional matching process to select candidate 
replacement terms, the replacement process is treated as a natural language information retrieval process harnessing wildcard string 
matching and search result statistics. 
 
The aims of this research include: 1) the implementation of a spelling correction algorithm that utilizes the wildcard operators in the 
Wikipedia dataset search API, 2) a review of the current spell correction tools and approaches being utilized, and 3) testing and validation 
of the developed algorithm against the benchmark spelling correction tool, Hunspell. The key contribution of this research is a robust, 
dynamic information retrieval-based spelling correction algorithm that does not require prior training. Results of this research show that 
the proposed spelling correction algorithm, WikiSpell, achieved comparable results to an industry-standard spelling correction algorithm, 
Hunspell.   
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1. Introduction 

Spelling correction algorithms have become commonplace 
in many day-to-day applications. Although robust, the 
downfall of many spelling correction algorithms is the 
training set that is required or the annotated data sets for 
many algorithms to function (Hládek et al., 2020). To 
generate these, manual intervention and labelling is often 
required by domain experts (Hagen et al. 2017). The 
common spelling correction process can be broken into 
three defined steps. The first of these is the error detection 
process, where given an input string is validated and 
individual misspelled words are identified. The second step 
is to generate a candidate list of terms that can be a suitable 
replacement for the identified error. The final step in the 
process is the ranking of individual candidate terms that can 
be used for automatic replacement, where no user 
intervention is required, and manual replacement, where a 
user is presented with a collection of replacement terms to 
choose from. 

Brill and Moore (2000) described spelling errors as 
belonging to one of two categories: typing errors and 
cognitive errors. Gong et al. (2019) defined four common 
spelling errors as character insertion, permutation, 
replacement, and removal. As a solution to limited 
dictionaries and corpora, Wikipedia is an ever-evolving 
resource with modifications to articles and the inclusion of 
new articles, and the updating of existing articles is a daily 
occurrence (Lagunes-García et al., 2020). Previously, 
Wikipedia has be harnessed for a number of different 
information retrieval tasks such as search query 
enhancement (Goslin and Hofmann, 2017), cross-language 

 
1 https://www.mediawiki.org/wiki/API:Search 

information retrieval (Cheon and Ko 2021), and question 
answering (Chen et al. 2017). 

This research describes a novel approach to the automatic 
identification of misspelled terms by identifying co-
occurrences in samples retrieved from the Wikipedia 
search functionality facilitated by the WikiMedia platform 
API.1 Candidate replacement terms are identified through 
an information retrieval process based on string patterns 
that utilise available wildcard matching.2  

In this paper, Section 2 outlines the related work, 
describing the variation that exists in spelling errors and the 
limitations to approaches that are currently utilised. Section 
3 describes the overall methodology followed for this 
research. Section 4 describes the implementation of the 
proposed algorithm, outlining tuning parameters available 
and subsets of data that are available for manipulation 
during retrieval. As the process of testing spelling 
correction varies between implementations, Section 5 
outlines the experimentation setup and procedures 
followed during testing. Section 6 outlines and analyses the 
results of the testing process. Finally, Section 7 concludes 
this research and outlines the key findings after the 
implementation of an information retrieval-based spelling 
correction algorithm. 

2. Related Work 

Spelling errors can exist in many forms. Examples of this 
include terms that have obvious misspellings (Gupta et al., 
2019), terms that are correct although in the wrong context 
(Mays et al., 1999), and phonetic spelling errors that are 
typically performed by children (O’Neill et al., 2020). 
Spelling correction algorithms are highly dependent on 

2 https://en.wikipedia.org/wiki/Help:Searching 
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having a quality source of language specific corpora to 
utilize to function correctly, which for less widely used 
languages becomes an issue as they often do not exist in a 
complete form (Etoori et al., 2018).  As a solution to this, 
spelling correction algorithms have been created that utilize 
dynamic corpora such as Wikipedia for many languages as 
the list of correct terms is never complete and always 
growing (Beeksma et al., 2018). In addition to this, 
grammatical error and correction corpora have also been 
generated for spelling correction tasks (Grundkiewicz and 
Junczys-Dowmunt, 2018). 

There is no current standard approach to spelling 
identification and correction, leaving modern approaches to 
adopt a variety of implementations including language 
models, term co-occurrence statistics, and machine 
learning. Pirinen et al. (2014) described an approach based 
on weighted finite-states that utilised Wikipedia as a source 
of English terms. Their approach showed to be faster than 
the Hunspell3 algorithm that is widely used in tools such as 
LibreOffice4 and Google Chrome.5 Park et al. (2020) 
described Korean spelling correction using the sequence-
to-sequence model. They outline the problem of spelling 
issues as similar to that of translating from one language 
into another. 

Li et al. (2020) described an algorithm that utilizes a 
transformer-encoder that encodes spelling information and 
global context information in a neural network. Their 
solution outperforms the previous state-of-art result by 
12.8%. Their approach is designed to not introduce new 
tokens and the original structure is retained for future 
processing. Haldek et al. (2020) described the issue with 
deep neural networks is that they require annotated data 
sets that can be expensive to create.  

For the proposed algorithm, Wikipedia is used as the sole 
source of data. Wikipedia provides a wealth of information 
in both the utilization of content and available statistics. 
Examples of these content sources include harnessing 
pageviews for insights (Vardi et al., 2021), page content for 
the estimation of incidents (De Toni et al. 2021), and 
utilizing revision history to aid grammatical error 
correction (Boyd 2018). Based on these statistics, metrics 
can easily be derived including semantic relatedness 
measures (Karve et al., 2019), ranking and quality 
assessment (Lewoniewski et al. 2019) and semantic 
similarity (Hussain et al., 2020). Although Wikipedia has 
been used as a source of a priori, but not as a source of 
statistics to aid spelling identification and correction as 
described in this paper. 

There is currently not a standard approach for the testing of 
spelling correction algorithms as each utilize different test 
sets and result ranking approaches (Hládek etl al., 2020). 
Many papers utilise synthetic spelling errors to aid the 
testing process (Brill and Moore 2000; Hládek etl al., 
2020). To test the proposed algorithm, a benchmark was 
required. A gold standard of spelling correction in the 
English language is Hunspell which was used during this 
research. 

 
3 http://hunspell.github.io/ 
4 https://www.libreoffice.org/discover/libreoffice/ 

3. Methodology 

To test both Hunspell and the proposed algorithm, a 
synthetic test set of terms was designed to implement 
common spelling errors. These errors included the addition 
of one or two individual random characters for each term at 
any position in the string. These errors were introduced into 
the TREC 2009 Million Query Track 20001-60000 data 
set6  that contains 2,000 queries of varying length.  

This approach provided both an original query as a 
reference point and a modified error version of the query 
for testing. From this set, queries 20001 – 22001 were 
utilised. These queries contain common user queries to a 
search engine that include abbreviations, acronyms, and 
common phrases on a wide variety of topics. Table 1 
describes the number of occurrences for each query length 
in the set. 

Query length Number of occurrences 

1 372 

2 762 

3 552 

4 211 

5 80 

6 14 

>7 10 

Table 1: Length of original queries. 

 

For these original queries, 1,050 one letter spelling errors 
and 1,911 two letter spelling errors were introduced. Each 
error consisted of one random letter between the letters A 
and Z. 4,951 individual tokens were under analysis with an 
average of 1.67 spelling errors per query. Additional 
inserted characters represent the estimation of spelling that 
users often make or accidently insert when typing. Two 
was chosen as the max number of characters to insert as >2, 
the context of the original token can easily be lost. As the 
proposed algorithm is experimental, time was not 
considered as a factor of success due to the time associated 
to the information retrieval process.  

3.1 Error Correction Test Statistics 

For each query, precision, recall and accuracy were 
calculated as shown below: 

 
Precision is defined as:  TP / (TP + FP) 

Recall is defined as: TP / (TP + FN) 

Accuracy is defined as: (TP + TN) / (TP + FP + TN + FN) 

 

TP is defined as the number of words with spelling errors 
where the algorithm has given the correct suggestion. FP is 
defined as the number of words with or without spelling 
errors for which the algorithm made suggestions and they 
result is not needed or is incorrect. FN is defined as the 
number of words with spelling errors that the algorithm did 
not flag as having errors or did not give suggestions. TN is 

5 https://www.google.com/intl/en_ie/chrome/ 
6 https://trec.nist.gov/data/million.query09.html 
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defined as the number of correct words that the algorithm 
did not flag as having errors and no suggestions were made. 

4. Implementation 

This section describes the design and implementation of the 
proposed algorithm, WikiSpell, that utilizes the Wikipedia 
Search API 7 statistics and text results. 

4.1 Source of Candidate Terms 

The Wikipedia Search API results are used as a source of 
terms related to a single term in the original sequence of 
terms under analysis. For any given search result the article 
title and snippet were used as sources of terms for a given 
article. The summary of text is typically 25 terms. Number 
of results to return was set using srlimit=100 parameter to 
limit to a max of 100 results. To avoid overfitting of terms, 
for any sequence of terms they are tokenized and submitted 
separately broadening the results collection. 

4.2 Weighting Metrics 

In this algorithm, two core metrics for relevance are used. 
The first of these is the search result statistics. Given a 
string Q, the number of records returned relates to the 
number of Wikipedia articles where the string Q was found. 
The total hits were returned using srinfo=totalhits API 
parameter in the Search API. This statistic was used to: 

• Identify that a term has been used before in the 
English Wikipedia corpus. This also serves to 
show if the spelling is correct as the number will 
be higher than those incorrectly spelled in the 
English language corpus. 

• Identify if a sequence of terms has together been 
seen in context where the length of a sequence is 
> 1. The more frequent the use, the higher the 
chance the sequence is correct. 

The hypothesis of this metric is that terms shown in context 
together provide an indicator of being semantically correct 
and a viable replacement for incorrect term sequences. 
Terms that are not frequently shown together would 
indicate that terms are semantically not a good fit. In 
addition to this, the Levenshtein distance was also used for 
small sets of terms to identify if a given term is a good 
replacement for a candidate term. For a collection of terms 
{T}, the lower the score for a single term Tn indicates that 
the term is a closer match. 

4.3 Algorithm Implementation 

The process of identifying the incorrect spelling of terms 
and replacing each with the correct term is performed as a 
complete process in the proposed algorithm, not as 
individual steps. The algorithm is broken into two distinct 
steps: 1) the corpus generation process and, 2) the candidate 
generation and selection process. The core algorithm 
shown in Algorithm 1 is responsible for triggering this 
process. The algorithm takes a sequence of terms to process 
shown as S that contains terms t0 to tn separated by spaces. 
An arbitrary limit of ten terms per spelling correction run 
is applied to allow the algorithm to run in a timely manner. 

For each of the individual terms t inside the sequence S, a 
call is first made to the generateCorpus() function which 

 
7 https://en.wikipedia.org/w/api.php 

takes in the single term t as a parameter. This process is 
responsible for generating a collection of wildcard 
variations of the original term t with the intent of 
broadening the morphological variations of the term. This 
is done by passing each variation of the term to the 
Wikipedia Search API. The top 100 results returned are 
collected and stored as a local corpus that can be searched 
for selecting candidate terms. 

Once the corpus generation process has completed, a call is 
then made to the generateCandidateReplacement() process 
which takes a single parameter titled t. This function 
utilizes an array of functions to select the best candidate to 
replace a misspelled term with based on the local corpus 
collected in the previous step.  

 

Algorithm 1: Core process 

    S = Original terms (t0 .. tN) 
    for each t ∈ S do 
        generateCorpus(t) 
        generateCandidateReplacements(t) 

 

The first function in the algorithm is the generateCorpus() 
function as shown in Algorithm 2, which is passed a single 
base term t. The algorithm is responsible for generating 
four different permutations of the base term. For each 
different character position in the term t between 0 and the 
length of t the following operations are performed: 

• INSERT - A search wildcard is added which is 
represented by a single asterisk.  

• INSERT - Two asterisk characters are inserted. 
• REPLACE - A single character inside the string is 

replaced by a single asterisk. 
• REMOVE - A single character is removed from 

the original string. 

An example of these wildcard string generations for the 
term “John” can be seen in Table 2. All generated 
variations are prefaced with a single tilde, to encourage the 
Wikipedia Search API to output search results instead of 
redirecting to a single article related to the search string. 

One asterisk inserted. 
~*john 
~j*ohn 
~joh*n 
~john* 
 
Two asterisks inserted. 
~**john 
~j**ohn 
~joh**n 
~john** 
 

One character removed. 
~ohn 
~jhn 
~jon 
~joh 
 
One character replaced. 
~*ohn 
~j*hn 
~jo*n 
~joh* 
 

Table 2: Example Wildcard corpus generation output for 
input “john”. 

 

In the function, a global array titled generations is created 
that is responsible for holding each of the wild card 
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sequences that have been generated from the original term 
t. A variable titled currentPos is added that is responsible 
for holding the current position in the term t that is currently 
being processed. The variable titled wildcard holds a 
reference to the set containing the available wildcards to be 
entered. 

For each individual position in the string t from 0 to n, 
where n represents the length of the string, the wildcard 
insertion process is performed. This is started by selecting 
each wildcard from the set shown as wc. A variable titled 
newgen is then created which contains the original string 
from position 0 up to the current position is appended, 
followed by the character wc, followed by the current 
position in the string + 1, to the end of the string shown as 
|t|.  

This process is then repeated, for the next string titled 
newgen. The main difference is the omission of the +1, 
leading to an overwriting of an existing string position 
value in string t. Finally, from position 0 to curentPos+1 is 
appended to the newgen string followed by currentPos+|t|, 
removing a single character from the original string in the 
process. A single character can only be removed as more 
than one can easily loose the context of the original terms. 

Algorithm 2: Corpus generation process 

Input: t - Individual term from sequence S 

function generateCorpus(t) 

   global generations = list() 

   currentPos = 0 

   wildcard =  {*, ** } 

 

   for each position in t do 

    // Generate wildcards from set incrementally 

    for each wc ∈ wildcards do 

        // Insert 

        newgen = t[0..currentPos] + wc + [currentPos+1..|t| ] 

             generations.append(“~” + newgen) 

 

       // Replace 

       newgen = t[0..currentPos] + wc + [currentPos..|t| ] 

            generations.append(“~” + newgen) 

 

       // Removing single characters incrementally 

       newgen = t[0..curentPos+1] + t[currentPos+2…|t| ] 

            generations.append(“~” + newgen) 

 

    currentPos++ 

 

 

After the generation process of the sequences has been 
completed, the process of generating and selecting possible 
candidate replacement terms can be performed. Algorithm 
3 outlines the generateCandidateReplacements() function 
that takes each single term t from the original term 
sequence S and held for later comparisons. Then, for each 
of the individual wildcard sequences showed as seq stored 
inside the global generations array from the previous 
function a call is made to the Wikipedia Search API and the 
sequence is passed as the query string. The top 100 search 
results returned are stored as {R}. In the search results both 
the title of the article and the summary of the abstract are 
extracted. The terms are then tokenized and added to the 
local array {T}. 

Due to wildcards being used during the search process, the 
collection of results will have a marginal relevance to the 
original search term under consideration. To apply a 
relevance filter to the terms, a second loop is used to iterate 
over the terms stored in T. For each individual term, the 
Levensthtein distance is applied between the original query 
term t and the current term tn. Each of the terms and 
associated distance scores are appended to the simvals 
array.  The distances are then stored in descending order. 

During analysis the top five terms proved to be the most 
relevant to the initial term t. For this reason, a filter is 
applied to retain the top 5 terms from the generated 
collection of terms and distance scores. For this research 
n=5. For each of the retained terms, a query is made to the 
Wikipedia Search API and the current term under analysis 
is passed. The total number of search results is then 
returned. This is used as a metric to identify if the term is 
commonly used or not. If the term count is above 500, e.g., 
indicating that it has been used many times, the term is 
appended to the finalVals array for future processing. The 
results for a given term t are appended to the 
resultsPerTerm array at position t. 

Once all the terms in the original string have been 
processed, a second process is started to generate a 
collection of term sequences using the generated terms and 
identify the likelihood of the sequence being grammatically 
correct. To do this, two different variations are used, one 
which is for terms of length 1 and a second that is utilized 
for terms greater than 1. These two approaches were 
created as short queries of 1 term do not need the Cartesian 
product to be generated.  For queries of length 1, the 
resultsPerTerm array is accessed and the individual term t 
is passed as a reference. This returns a collection of terms 
and associated weights that are appended to the sequences 
array. 

For queries with a length greater than 1, the Cartesian 
product of all results for terms t0…tn are calculated. All 
generated cartesian products are added to the sequences 
array. The sequence is then passed to the Wikipedia search 
API and the number of results is returned and stored. A 
weight by score is then applied to the applied to the results 
which are stored in the res array. To select the final terms 
to utilize, again two different approaches are utilized. One 
for short queries of length 1, which is based on the 
Levenshtein distance between the current sequence and the 
original term stored in S. For longer queries, the top 
weighted sequence is returned. 

 

Algorithm 3: Generate and select replacement 

Input: t (Individual term from S) 

function generateCandidateReplacements (t) 

    resultPerTerm = list() 

    for each seq ∈ generations do 

        make connection to Wikipedia Search API passing seq 

        {R} = Select 100 search results  

   {T} = terms from {R} 

 

         

        simvals = arr() 

        for each {T} related to t as tn 

            dis = levenshtein(t, tn) 



462

            simvals.append(n, dis) 

        sortDesc (simvals) 

        Select top n terms by weight 

         

       finalVals = arr() 

       for term in simvals do 

           count = total number of search results for t 

           if term > 500: 

               finalVals.append(term, count)                

       sortByWeightDesc(finalVals) 

       resultPerTerm[t] = finalVals 

               

// Generate sequences of possible replacements and score 

     sequences = array() 

     if length(S) == 1 

        for terms in resultPerTerm[t] do 

            score =  number of search results for t 

            sequences.append(terms, score) 

     else: 

        res = cartsianp(resultPerTerm[A x B x …. N]) 

        for seq in res: 

              score =  number of search results for seq 

              sequences.append(res, score) 

 

// Final generation of replacements 

vals = sortDesc(sequences) 

if length(S) == 1 

    res = levenshtein(S, vals) 

    return lowest(res) 

else 

     return vals[0] // Return first result e.g. top weighted  

 

 

The selected top terms are utilized as the replacement for 
incorrect terms in the original query Q. 

5. Experimentation 
 

The default en_US dictionary8 for Hunspell was utilised for 
testing, as used in previous studies. The first replacement 
term from the suggested list of terms for an identified 
misspelling was utilized. For the proposed algorithm the 
number of records during consideration was set to 5, the 
number of search results records included (max) = 100 and 
the threshold for relevance = 500. 

6. Results and Analysis 

 
Table 3 outlines the overall results for 2,000 queries 
corrected by both the Hunspell and the proposed algorithm 
providing an even baseline for comparison. As the queries 
contained a variable number of terms, on the left of the 
table, the number of terms added for each query size can be 
seen.  The most difficult terms to correct are those that do 
not contain any context, e.g., single tokens. The proposed 
algorithm achieved an average precision of 0.533 
compared to 0.386 achieved by Hunspell. Between two and 
five terms long, the results of both Hunspell and the 
proposed algorithm are comparable. Between six and 
greater terms, a visible drop can be seen in the precision for 
both algorithms. The proposed algorithm failed for six and 

 
8 https://github.com/elastic/hunspell/tree/master/dicts 

above terms, which can be expected as shrinking of the 
result set (e.g., Wikipedia articles) occurred during the 
information retrieval process that match to all word 
sequences in the generated search string. Although the 
precision and accuracy greatly improved for the number of 
terms added (where n=6), this can be attributed to the 
smaller number of queries being run (14) and the shrinking 
of the results that can occur for longer string matches. For 
this reason, shorter strings have shown to be more effective 
when finding replacement terms. 

 

 Hunspell Hunspell  WikiSpell WikiSpell 

#Terms Precision Accuracy  Precision Accuracy 

1 0.386 0.386  0.533 0.533 

2 0.567 0.674  0.563 0.634 

3 0.568 0.710  0.591 0.695 

4 0.506 0.689  0.571 0.670 

5 0.567 0.736  0.564 0.702 

6 0.596 0.761  0.0 0.0 

>=7 0.448 0.687  0.0 0.0 

Table 3: Precision and accuracy for each different query 
length. 

In Table 4, the average results for accuracy, precision and 
recall can be seen for the entire collection of 2,000 queries. 
Both Hunspell and the proposed algorithm have 
comparable results. 

 

 Accuracy Precision Recall 

Hunspell 0.636 0.527 0.654 

WikiSpell 0.631 0.559 0.656 

Table 4: Overall average accuracy, precision and recall 
from 2,000 results. 

6.1 Discussion 

During the testing process of the benchmark algorithm 
Hunspell, when the max number of synthetic errors were 
introduced, e.g., 2 additional characters the algorithm had 
an issue identifying the correct replacement. Given the term 
toilet represented as toiletzl, the suggested replacement was 
toilette. The brand name volvo was represented as volvno 
and replaced as volcano. The process of appending 
synthetic errors for the company name yahoo which was 
shown as yahoogc was correctly replaced as yahoo. 
Incorrect replacements were often seen when no error was 
present such as the term michworks being replaced with 
patchworks. A lack of terms in the corpus of Hunspell can 
be easily seen for brand names such as US airways which 
was represented as usairwaymi and corrected as stairway. 

For the website, titled digg, which no error was introduced, 
it was corrected as dig, outlining that it did not have 
knowledge about current brand or service names. Larger 
queries such as blount county sheriff department was 
corrected as bluepoint county sheriff department which is 
quite a close match. The larger the number of additional 
characters added to create an error, the more difficulty the 
algorithm had. When spaces where missing, the algorithm 
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functioned well to replace it which was be seen with the 
query flashyour which was replaced with flash your. 

The insertion process was also successful for the name club 
pengi which was replaced with club penguin. Other cases 
of estimation can be seen with the query Keflex for animals 
which was replaced with reflex for animals. The algorithm 
did not seem to notice that the spelling, Keflex, was in fact 
correct. The same can be seen for supermeds which no error 
was introduced but replaced with supermen. 

For the proposed algorithm WikiSpell, obama family tree 
represented as obama frvamily trdee corrected as obama 
family tree. This outlined that even when two thirds of a 
query were incorrect, the algorithm still performed well. 
The single term toilet described earlier represented as 
toiletzl was corrected as toilet successfully. The name 
Euclid was modified as euclidxf and corrected as Euclid. 
As estimation can be seen with the original query gmat prep 
classes that was modified as gmfat alprep classes and 
finally corrected as fat are classes. This shows the danger 
that a single character in an acronym can easily change the 
entire meaning of an original meaning.  

Two characters appended to the acronym djs was 
represented as djsjv and corrected as djs showing that terms 
appended to the end of a query pose less of an issue for the 
algorithm. The four term query orange county convention 
center was modified as dorange county convention centjrer 
and correctly fixed as orange county convention center. 
The three terms video game artist was modified as vidnoeo 
gamesv azvrtist and finally completely corrected as video 
game artists. With very little terms close to the name kodak 
when it was represented as kopdak it was successfully 
replaced as kodak. 

During the retrieval process of Wikipedia data for the 
proposed algorithm, individual terms were used as the basis 
for generation even when more than one term was in the 
original query. This proved to be the most acceptable 
approach as more than one token routinely returned small 
collections of results causing the algorithm to prematurely 
fail. Utilisation of search statistics and content have shown 
to be a robust solution to replace hand-crafted dictionary 
corpora as often content and statistics were available. A 
strong advantage of the proposed algorithm was the 
harnessing of context available from the source data for 
sequence validation which many current spelling 
correction algorithms lack. 

Due to the vast quantity of available English data, rare 
terms were often seen in valid sequences of terms that 
would not be correct if typical grammatical rules were 
applied. A core advantage is the availability to correct 
terms that have recently been added to Wikipedia and the 
English language which traditionally would be missed from 
existing corpora. 

7. Conclusion 

This research proposed the WikiSpell algorithm for the 
automatic detection and correction of spelling errors in a 
sequence of terms. Results from this research have shown 
that the Wikipedia Search API has shown to be effective as 
a source of candidate terms for spelling correction due to 

 
9 https://github.com/Kylegoslin/wikispell 

the variety of topics covered in the English Wikipedia. The 
utilization of Wikipedia English corpus search statistics 
such as the number of search results as a source for 
identifying term sequences has shown to be useful for 
spelling error identification and replacement. 

The algorithm proposed in this research, WikiSpell, has 
shown comparable results to the Hunspell algorithm when 
used for automatic spelling identification and correction. 
When working with short sequences of terms, an IR based 
approach to spelling correction was highly successful due 
to the dependency on context. 

The same code and dataset for this project is avilable on 
GitHub.9 

7.1 Future work 

To further aid the proposed algorithm, additional focus on 
the term selection process where a candidate is selected 
from a small group of terms (n=5) could be enhanced by 
replacing this with a more dynamic value depending on the 
collection size and the number of terms under consideration 
before final selection. 
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