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M. A. Tuğtekin Turan1, Dietrich Klakow2, Emmanuel Vincent1, and Denis Jouvet1
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Abstract
In recent years, voice-controlled personal assistants have revolutionized the interaction with smart devices and mobile
applications. The collected data are then used by system providers to train language models (LMs). Each spoken message
reveals personal information, hence removing private information from the input sentences is necessary. Our data sanitization
process relies on recognizing and replacing named entities by other words from the same class. However, this may harm LM
training because privacy-transformed data is unlikely to match the test distribution. This paper aims to fill the gap by focusing
on the adaptation of LMs initially trained on privacy-transformed sentences using a small amount of original untransformed
data. To do so, we combine class-based LMs, which provide an effective approach to overcome data sparsity in the context
of n-gram LMs, and neural LMs, which handle longer contexts and can yield better predictions. Our experiments show that
training an LM on privacy-transformed data result in a relative 11% word error rate (WER) increase compared to training on
the original untransformed data, and adapting that model on a limited amount of original untransformed data leads to a relative
8% WER improvement over the model trained solely on privacy-transformed data.
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1. Introduction
Spoken dialogue systems aim to identify users’ intents
expressed in natural language and then to satisfy the
corresponding requests. In the first step of any system,
the input utterance is recognized with an automatic
speech recognizer (ASR). State-of-the-art data-driven
ASR models are trained on large amounts of speech
data collected from the users (Tang et al., 2004).
With the growing public awareness exemplified by the
European Union’s General Data Protection Regulation
(GDPR), storing the user data raises serious privacy
concerns (Nautsch et al., 2019). The user data might
even contain critical information such as passwords,
credit card numbers, or even health status. Therefore,
spoken messages which contain sensitive information
about the user characteristics should not be centralized
in a single place.

This paper uses a data sanitization approach that
removes personal information relating to persons,
locations, and organization names. These named
entities are identified using an automatic named entity
recognition method (Li et al., 2020). Then they are
hidden using word-by-word replacement by random
named entities from the same entity class. Adelani et
al. (2020) prove that this word-by-word replacement
strategy provides formal privacy guarantees in terms
of differential privacy.

The challenge is to ensure that, despite the sanitization,
the performance of an ASR system trained on the
sanitized data remains (almost) as good as that of an
ASR system trained on original untransformed data.

Unfortunately, hiding private information leads to
less accurate ASR language models (LMs), due to
the fact that the distribution of named entities in the
privacy-transformed data does not match that in the
original untransformed data. In this paper, we propose
a method how to recover from the performance loss
incurred when training LMs on sanitized data. To do,
we employ a mixture of neural and word-based LMs
alongside with class-based LMs, where each named
entity category corresponds to one class (Brown et al.,
1992).

Class-based LMs have proved their success for
training on small datasets for fast LM adaptation
(Samuelsson and Reichl, 1999; Naptali et al., 2012).
By grouping words with similar distributional behavior
into equivalent classes, class-based LMs have fewer
parameters to train and can make predictions based
on longer histories (Axelrod et al., 2015). This
makes them particularly attractive in situations where
word-based n-gram coverage is low due to a shortage of
training data. Moreover, it has been found that neural
and word-based contributions are complementary to
each other and interpolation between these models
usually leads to the best results (Gangireddy et al.,
2016). In this paper, we also integrate long short-term
memory (LSTM) based LMs, which have the ability to
model longer temporal dependencies than n-grams and
vanilla neural LMs (De Mulder et al., 2015).

LMs are ideally trained on a text corpus with a similar
distribution to the target test data, however this is
rarely feasible in practice. To circumvent this issue,
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adaptation attempts to adjust the parameters of any LM
so that it will perform well on target data. To do so, the
LM is adapted using a smaller held-out dataset whose
distribution matches that of the test data (McGraw et
al., 2016). This typically yields a decrease in both
perplexity (PPL) and word error rate (WER) (Chen
et al., 2015). In this work, we focus on adapting an
LM trained on sanitized data to the distribution of the
original (untransformed) data, for which only a small
amount of adaptation text is available. Specifically for
word- and class-based LMs, we study fast marginal
adaptation (FMA) by combining adapted unigrams
with trigrams trained on a background corpus (Klakow,
2006). For the LSTM-based scheme, we implement a
”pre-train and fine-tune” methodology as an adaptation
strategy (Ma et al., 2017). Despite their simplicity,
these methods provide a substantial improvement and
are suitable in fast adaptation scenarios that use as
few resources as possible. Applying the class-based
idea, we were able to represent anonymous data better
via named entities. Owing to linear interpolation over
the adapted LMs, it is possible to recover some of the
performance lost because of data sanitization.
The structure of the rest of the paper is as follows.
In Section 2, we introduce the proposed method. In
Sections 3 and 4, we describe the experiment setup and
the results. We conclude in Section 5.

2. Methodology
Our methodology consists of a two-stage adaptation
scheme. After getting sanitized data, the first part
performs generic LM training with several models.
Then, the next stage performs LM adaptation using
a small amount of original (untransformed) data.
Figure 1 provides a general overview of the proposed
adaptation approach. The following subsections
present the major components of our methodology.

2.1. Privacy-Transformation
Since LM adaptation depends critically on the quality
of the background data, we first review how the
background data is sanitized. Following the named
entity recognition of the CoNLL’s shared task (Sang
and De Meulder, 2003), we consider sanitization of
text data annotated with these four labels: persons
(PER), organizations (ORG), locations (LOC), and
miscellaneous named entities such as date or time
(MISC). We do not identify demographic attributes
like gender, age, and ethnicity of individuals, or any
other potentially private information.
The sanitization is performed using the word-by-word,
same-type transformation strategy of Adelani et al.
(2020). Each identified named entity is kept unchanged
with a certain probability. Otherwise, it is replaced
by another random named entity of the same class
(person name, location, or organization name). With
this approach, even when the named entity recognizer
has failed to detect a relevant word occurrence, an
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Figure 1: Block diagram of the proposed adaptation
scheme. (a) corresponds to initial generic LMs using
privacy-transformed text data; (b) corresponds to the
adaptation to the target distribution using a limited
amount of original (untransformed) text.

attacker cannot easily distinguish whether these words
are the result of an actual transformation or not.

Individual LMs are trained on the privacy-transformed
text (i.e., the sanitized data). To train class-based
language models, we first find named entities in the
training text data and replace them with their category
tags like LOC or MISC. This yields a more realistic
scenario in real-world applications. In other words,
named entities are presented to the class-based LM in
an unsupervised manner.

2.2. Modeling Word Classes
In this paper, we employ a class-based strategy into
our fast LM adaptation framework. In the context of
text sanitization described above, a sanitized group of
words under a particular entity-tag can be considered
close to each other compared to their inter-class
relations. If we can successfully assign words to
classes, it may be possible to make more reasonable
predictions for histories that have private information
by assuming that they are similar to other histories that
we have seen.

Given the sanitized input text, the class-related
probabilities can be estimated by the maximum
likelihood principle which simply counts the number
of occurrences of the words divided by the total
number of word occurrences in that class. Moreover,
conditional class probabilities can be calculated
similarly. The only difference is that the word
sequences used for training must be converted to class
sequences.

Specifically, we propose a general way of incorporating
class-based LMs with sanitized word-to-class mapping
into the finite-state transducer (FST) framework.
FST composition allows us to handle a class-based
LM in the first decoding pass. A class-based LM
can be represented by a composition of two FSTs,
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namely class-map and n-gram of the class sequence.
In other words, we can replace the word-based LM
by cascading class-maps on word-classes instead of
words.
As done by Horndasch et al. (2016), we first train
an LM transducer with class entries mapped to
non-terminal string identifiers like <LOC> or <PER>.
Then, sub-language models for each word-class
are trained. At the final stage, we insert these
sub-language model WFSTs together to acquire the
final LM transducer.

2.3. Adaptation of Language Models
After training the individual LMs at Stage (a) depicted
in Figure 1, we apply two different adaptation strategies
at Stage (b). For word- and class-based LMs, we
focus on using unigram LMs to adapt trigrams. This
approach combines unigram and trigram information
inspired by the fast marginal adaptation (FMA) idea
of Kneser et al. (1997). As an initial distribution, it
uses the trigram trained on the background corpus. The
desired trigram has to satisfy that its marginal is the
unigram trained on the adaptation data. For a given
word, w, with a history, h, the adapted LM, PA(w|h),
satisfies the following constraint:

PA(w|h) =
1

Z(h)

(
PA(w)

PB(w)

)β

PB(w|h) (1)

where PB(w) denotes the background LM and β is a
weight parameter. An efficient way of calculating the
normalization factor Z(h) is provided by Kneser et al.
(1997). The general idea of this adaptation scheme
can be summarized as follows. The first scaling factor,
PA(w)
PB(w) , scales up or down the probability of the word
depending on whether it is more or less frequent in the
adaptation data than in the background corpus. If the
ratio is equal to 1, the probability remains unchanged
as expected.
Eventually, we can use the unigram on the adaptation
data, PA(w), as the starting distribution and then adjust
it using the ratio PB(w|h)

PB(w) to include history prediction.
The formal derivation proceeds like generating the
standard FMA using one iteration. Note that only the
roles of various distributions are changed. This yields

PA(w|h) =
1

Z(h)

(
PB(w|h)
PB(w)

)β

PA(w). (2)

Words w which are more likely after the particular
history h are now pushed up. The efficient calculation
of the normalization factor Z(h) can also be applied to
the updated variant of FMA with minor modifications
based on the algorithm given by Kneser et al. (1997).
For the neural LSTM-LM, we adopt a fine-tuning idea
where we first train a background LM on the entire
sanitized training set. Then, we use this converged
model to initialize the adaptation stage. The adaptation

is performed by fine-tuning the final softmax layer. In
other words, some layers are frozen and their weight
matrices are not updated during backpropagation. Only
the weights of the unfrozen layer get fine-tuned.

2.4. N-gram Approximation of Neural
Language Models

This paper uses an interpolated mixture LM for final
decoding. We use the Kaldi1 speech recognition toolkit
for all our experiments. The decoding can be easily
done for n-gram originated word- and class-based LMs
because of their ARPA-style format which is a default
format inside Kaldi. For LSTM-based neural LM, it
is possible to use it for lattice scoring (in a second
processing pass). However, rescoring experiments,
which are based on the extraction of lattices or N-best
lists, depend on the n-gram models used during
decoding. Therefore, we also evaluate an n-gram
approximation to use LSTM-LM into the single-pass
decoding to avoid introducing delay.

Adel et al. (2014) present several n-gram
approximation techniques. In our experiments, we used
an updated version of the probability-based conversion
technique which provided better performance (Singh et
al., 2017). For every word wi of the sanitized training
corpus and every associated history h corresponding
to unigrams, bigrams, or trigrams, we compute the
neural LM probability. Note that we do not assign
count-based probabilities to n-grams; instead, we use
the probabilities of our neural LM. To obtain these
probabilities, we extract the LSTM-LM probability for
every word wi of the training text and assign it to the
current unigrams, bigrams, and trigrams. Then, these
values are averaged (if multiple occurrences exist)
and normalized to obtain an approximated probability
distribution. At the final stage, we smooth the
distribution to provide probability mass for back-off.
By doing so, we produce an n-gram ARPA LM, which
is later used in the single-pass decoding.

3. Experimental Setup
We evaluate our proposed LM adaptation scheme using
the Augmented Multiparty Interaction (AMI) corpus
containing multi-hour meeting recordings. These
meetings were recorded as part of the AMI/AMIDA
projects2 co-directed by the University of Edinburgh
and Idiap. The AMI Meeting Corpus is a collection
of data captured in specially instrumented meeting
rooms, which recorded the multimodal signals (audio
and video) for each participant. We partition the AMI
data into training, adaptation, and test sets ensuring
that no speaker appears in more than one set. Also, we
only use speech data recorded with individual headset
microphones. Table 3 presents some statistics of the
data where the average utterance length is 7.5 words.

1Kaldi ASR: https://www.kaldi-asr.org
2AMI Consortium: http://www.amiproject.org

https://www.kaldi-asr.org
http://www.amiproject.org
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Set
Dur.

Uttr.
# of Words

(min.) Unique Occurence

Train 4,880 108,221 11,882 802,604

Test 580 13,059 4,145 94,914

Adapt. 531 12,612 3,913 89,635

All 5,991 133,892 13,079 987,153

Table 1: Some statistics of the training, adaptation and
test sets, from the AMI corpus. The overall duration is
100 hours, yet the unique vocabulary is limited because
of its dialogue nature.

In this split, the adaptation set represents around 12%
of the training data. Other splits are also investigated
in the experimental evaluations to measure the impact
of larger adaptation sets representing 15% and 20% of
the training data. Note that the size of the test set is the
same in all cases.

For the named entities, we use annotated tags given by
AMI named entity instructions which mainly follow
the hierarchical structure of the NIST task definition
(Chinchor et al., 1999). To identify the named entities
in the sanitized text, we utilized spaCy3, which also
comes with pre-trained pipelines. Eventually, we
obtained 2167 unique entity tags including 226 for
LOC, 489 for PER, 515 for MISC, and 937 for ORG.

During the experimental evaluation, we use word error
rate (WER) and perplexity (PPL) as objective metrics.
For all results presented in this paper, a matched
pairs sentence-segment word error (MAPSSWE)
based statistical significance test was performed at a
significance level of α = 0.05. The MAPSSWE test
is essentially a parametric t-test for estimating the
mean difference of normal distributions with unknown
variances (Gillick and Cox, 1989). The sc stats tool
from NIST4 was used to perform the MAPSSWE test.

In our experiments, we employ Kaldi’s chain model
based on a a time-delay neural network (TDNN)
acoustic model (AM) architecture. The TDNN-based
AM operates on 40-dimensional Mel-frequency
cepstral coefficient (MFCC) features extracted from
frames of 25ms length and 10ms stride, and is similar
to the model specified by Peddinti et al. (2015). The
speed-perturbation technique of Ko et al. (2015) is
also used with a 3-fold augmentation where copies of
training data are created according to factors of 0.9,
1.0, and 1.1.

3spaCy: www.github.com/explosion/spaCy
4NIST: https://github.com/usnistgov/SCTK

4. Results and Discussion

4.1. Baseline Performance
We first compare the generic LMs trained at Stage (a)
of Figure 1 without any adaptation or interpolation
methods. These individual LMs are the following:
(M1) 3-gram word-based LM in single-pass decoding;
(M2) 3-gram class-based LM in single-pass decoding;
(M3) 3-gram approximation of the LSTM-based model
in single-pass decoding; and finally, (M4) re-scoring of
the word lattice hypotheses with the LSTM-LM (the
lattices result from single-pass decoding using M1, a
3-gram word-based LM).
Table 2 shows baseline results where all these
evaluations are performed over the original
(untransformed) test data. The left part of this
table presents the performance obtained with generic
LMs trained over the sanitized input text, whereas the
right part (last two columns) presents the results when
using LMs trained on the original (untransformed)
training data (i.e., before applying the sanitization
process). For sanitized training data, the best results
are obtained using either the class-based LM M2
in first-pass decoding, or through re-scoring with
the LSTM-LM in M4. These experiments help us
understand the impact of the sanitization process. We
see a large degradation between the models trained
on original and sanitized data due to the privacy
transformation. For example, training the 3-gram
word-based model M1 on sanitized data leads to
around 11% relative WER degradation compared to
training on original data. The best results are obtained
when an LSTM-LM trained on original data is used in
a second pass for rescoring lattice hypotheses (M4),
but this increases the computational requirements and
induces an extra delay before getting the ASR output.

Model
Sanitized Data Original Data

WER [%] PPL WER [%] PPL

[M1] 32.3 121 28.8 82

[M2] 30.2 103 29.3 74

[M3] 32.9 137 29.1 88

[M4] 30.5 103 27.6 73

Table 2: WER and PPL corresponding to various
LMs trained on either privacy-transformed (sanitized)
or original (untransformed) data.

4.2. Effect of the Adaptation Data Size
Stage (b) of Figure 1 starts with LM adaptation over
untransformed adaptation data. For the results reported
in Table 3, the size of the adaptation split corresponds
to approximately 12% of the training split.

www.github.com/explosion/spaCy
https://github.com/usnistgov/SCTK
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Using a limited amount of untransformed data, we
observe the benefit of adapting LMs initially trained
on a large set of sanitized data. Both WER and PPL
results improves for each type of LM compared to
the baseline results in Table 2. The right part of the
table shows that the performance increases when the
amount of untransformed adaptation data gets larger
(for example 15% and 20%, instead of 12%). In all
cases, the class-based LM M2 outperforms all other
LMs.

Model
Size: 12% Size: 15% Size: 20%

WER PPL WER PPL WER PPL

[M1] 31.5 109 31.2 98 31.0 93

[M2] 29.9 94 29.8 91 29.7 86

[M3] 30.8 101 30.6 94 30.3 90

[M4] 30.1 95 29.9 91 29.8 85

Table 3: WER and PPL achieved when adapting
the LMs with various amounts of (untransformed)
adaptation data.

It is also interesting to evaluate the behavior when the
(untransformed) adaptation data is directly included in
the training data, along with the large set of sanitized
data. In Table 4, the larger untransformed adaptation
set yields better performance compared to Table 3.

Model
Size: 12% Size: 15% Size: 20%

WER PPL WER PPL WER PPL

[M1] 31.9 116 31.4 107 29.6 90

[M2] 30.2 96 29.8 93 29.3 84

[M3] 31.4 106 30.5 101 29.9 92

[M4] 30.3 98 30.0 94 29.5 81

Table 4: WER and PPL achieved with various amounts
of (untransformed) adaptation data used directly in LM
training (in addition to the sanitized training data).

On the opposite, for the smallest size of adaptation
data (12%) considered here, the performance of our
proposed LM adaptation schemes are better than those
achieved when the same amount of untransformed data
is directly used in addition to the sanitized training set
in a conventional LM training procedure.

4.3. Interpolation of the Adapted LMs
At the final stage, our methodology proposes a mixture
LM for a final decoding. Note that we utilize the
default adaptation split in Table 3 (corresponding
to 12% of the training size) for our interpolation
experiments. Thus, a linear interpolation of the

previously adapted LMs is employed with the best
weight combinations for 3-gram class- and word-based
LMs (λw = 0.3 and λc = 0.7). Table 5 presents the
results of this experiment on the first line. For both
single pass decoding (using a 3-gram approximation
of the LSTM-LM) and second-pass rescoring (with
the LSTM-LM) schemes, we utilize λn = 0.4 for the
LSTM-LM interpolation,

[(1− λn) ∗ (λw ∗ Pw
A + λc ∗ P c

A)] + λn ∗ Pn
A (3)

where Pw
A , P c

A, and Pn
A denote the adapted word-,

class-, and neural LMs.

We obtain the best results with the interpolation of
neural LMs at the final stage. However, it should be
noted that combining word- and class-based LMs in
the first place achieves only a modest improvment. We
believe that in larger and more challenging datasets, the
contribution of neural LMs will be greater.

Model Description WER PPL

[M1 + M2] word-& class-based 29.7 95

[M1 + M2 + M3] +LSTM (3g app.) 29.6 92

[M1 + M2 + M4] +LSTM (2nd-pass) 29.4 86

Table 5: The WER and PPL performances obtained
with the linear interpolation experiments of the adapted
LMs.

5. Conclusions
This paper proposes LM adaptation schemes over
the privacy-transformed text for an ASR task. The
sanitized text is obtained by applying data sanitization
techniques using the named entities. Our models
are evaluated on the AMI dialogue corpus, where
we partitioned the data by distinct training, test, and
adaptation splits.
We present an LM adaptation method using a
class-based formulation by modifying WFSTs over the
sanitized data. The word classes are determined by a
named entity recognizer in an unsupervised manner
and linearly interpolated with the word and neural LMs
together to achieve the best results. We also investigate
the adaptation of our LMs over a small amount of
untransformed adaptation data. Our results prove that
the adaptation is still effective with small amounts of
adaptation data. Although increasing the amount of
adaptation data leads to better performance in terms of
PPL and WER scores, it may not feasible to obtain a
large adaptation set in practical implementation.
When some relevant data is available as a-priori,
it is possible to apply supervised adaptation. In
our model, this style of adaptation has been shown
to be successful when applied to the language
model. However, if no prior in-domain text data is
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available, unsupervised adaptation may not be possible
under our formulation. In this paper, the proposed
strategy also shows that, when only small amount
of adaptation (non transformed) data is available,
the adaptation is more effective than introducing
the same amount of data in the training set directly
during the initial training. Eventually, we show that,
by hiding task-dependent named entities, we can
preserve the privacy of the speakers, and still achieve
comparable ASR performance with the ones before the
privacy-transformation.

As a future direction, the same ideas are also
extendable to a more challenging text with a large set
of entity modeling. One can evaluate the proposed LM
adaptation strategy to hide other private information
(e.g. gender), or other topics that span diverse domains
such as finance, healthcare, and politics.
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