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Abstract
We evaluate two popular neural cognate generation models’ robustness to several types of human-plausible noise: deletion,
duplication, swapping, and keyboard errors, as well as a new type of error, phonological errors. We find that duplication and
phonological substitutions are the least harmful due to cognate training pairs acting as naturally occurring noisy training data,
while other types of noise are more harmful. We present an in-depth analysis of the models’ performance with respect to each

error type to explain the models’ predictions.
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1. Introduction

Consider the following scenario: a speaker of a low-
resource language, say Ilocano, is searching the web for
some information. Because there are relatively few
Ilocano web pages, the search engine may perform
query expansion by translating the query into a higher-
resource language like Tagalog. In many cases, this
higher-resource language is a language of wider com-
munication that the user may be familiar with (though
may not be fluent in), or is related enough that the user
can get the gist of results in that language.

Such a search engine should be robust to the user’s
query; humans are fallible and often make mistakes. In
this work, we examine different types of noise generated
by human errors and how these noisy inputs affect the
performance of cognate generation models, which can
be used to translate the user’s query. We investigate
typical errors such as typing errors as well as cognitive
errors, in which a user not fluent in the language may
make spelling errors such as replacing ¢ with d. These
errors include character deletions, duplications, swaps,
keyboard errors, and phonologically similar character
substitutions (Table 1).

Cognate generation models (Beinborn et al., 2013;
Wu and Yarowsky, 2018b; Lewis et al., 2020) trans-
late a single word (e.g. English fomato) into a cog-
nate (e.g. Finnish tomaatti), a related word that
has a common etymological parent (Nahuatl tomatl).
These models are typically based on neural character-
based sequence-to-sequence architectures and have also
been increasingly used in a variety of related appli-
cations, including language reconstruction (Meloni et
al., 2021), modeling etymological and morphological
forms (Wu and Yarowsky, 2020a; Vylomova et al.,
2020; Wu et al., 2021b), phonology (Wu and Yarowsky,
2021), grapheme-to-phoneme (Gorman et al., 2020),
and named entity transliteration (Merhav and Ash, 2018;
Wu et al., 2018; Wu and Yarowsky, 2018a). As these
neural models become more prevalent in NLP, it is im-

Error Input
Original hispana
Deletion hispan
Duplication hiispana
Swap hisapna
Keyboard hispan
Phonological  hispan

Table 1: Different types of character perturbations, with
the misspelled character in red. Notice in the phonolog-
ical error, the last a is actually a Cyrillic character.

perative that researchers and practitioners understand
how they perform outside of normal conditions.

In this paper, we investigate the robustness of two
sequence-to-sequence cognate generation models: an
LSTM encoder-decoder with attention (Bahdanau et al.,
2015) and a Transformer model (Vaswani et al., 2017),
which has achieved state-of-the-art on many NLP tasks.
We examine the performance of these models on noisy
input with errors that are plausibly made by humans.
Through in-depth analysis, we show that natural varia-
tions in cognate spelling across languages act as training
noise that makes the models more robust to certain, but
not all, types of errors.

2. Background

There has been a variety of work on cognate predic-
tion and generation. Modern cognate generation models
employ a character-based machine translation setup,
where the input and output are character sequences of
the respective cognates (Beinborn et al., 2013; Wu and
Yarowsky, 2018b; Lewis et al., 2020). In addition, suc-
cessful machine translation models, especially for low-
resource languages, have often employed the setup of
a single, large multilingual model trained on the con-
catenation of many languages’ data. These systems are
generally trained on manually curated cognate lists, or
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Figure 1: Languages with the most and least data in CogNet 2.0.

in some cases lists automatically extracted from lexical
resources such as Wiktionary.

In terms of robustness of systems to misspellings, sim-
ilar types of noise, also known in the literature as per-
turbations, have been investigated in a variety of NLP
tasks, e.g. machine translation (Bertoldi et al., 2010;
Formiga and Fonollosa, 2012; Belinkov and Bisk, 2018;
Niu et al., 2020; Takase and Kiyono, 2021) and machine
comprehension (Jia and Liang, 2017; Wu et al., 2021a).
There are existing works that investigate the robustness
of systems against adversarial misspellings (Gao et al.,
2018; Li et al., 2019; Pruthi et al., 2019). However,
in such work, perturbations are usually applied to the
entire word, and models are evaluated on whether a
change in one word affects the model’s understanding
of an entire sentence. In contrast, our work focuses on
cognate generation, where the input is an single word,
broken into characters, and perturbations are applied at
the character level.

This type of research into robustness has not yet been
of interest to cognate researchers, perhaps because re-
search into cognates is a relatively niche topic. In addi-
tion, in the search engine scenario we described above,
users are often not maliciously attacking the system
but rather might simply accidentally make noisy in-
puts. Thus, in a real-world application, cognate gen-
erations systems should be robust to noise made from
non-malicious users. In contrast to previous adversarial
work, we also investigate cognitive errors that have not
been previously studied.

3. Data

For our experiments, we utilize CogNet 2.0 (Batsuren
et al.,, 2019; Batsuren et al., 2022), a large multilin-
gual database of over 3 million cognate pairs in 338
languages compiled using automated cognate extrac-
tion techniques over the Universal Knowledge Core
(Giunchiglia et al., 2018).

As with all multilingual datasets, it is important to ex-
amine the scope of the languages covered. Figure 1

shows histograms for the most and least common lan-
guages in the CogNet database. Perhaps unsurprisingly,
high-resource languages such as English, French, and
Portuguese have on the order of millions of cognate
instances. On the extreme side, languages such as Mari-
copa (mrc), Bororo (bor), and Ngarrindjeri (nay) have
less than 10 instances in CogNet. Thus, the CogNet
dataset comprises a wide range of languages around the
world, with varying language families, writing scripts,
and resourceness.

4. Experiments

To evaluate the robustness of cognate generation models
to different types of noise, we select two popular models
for cognate generation:

LSTM Encoder-Decoder (Bahdanau et al., 2015)
This is a two-layer LSTM encoder-decoder with 512
hidden layer size and 512 embedding size. These are
the default settings in OpenNMT-py (Klein et al., 2020).

Transformer (Vaswani et al., 2017) This model has
6 encoder and decoder layers, 8 heads, and 512 em-
bedding size. These are settings recommended by
OpenNMT-py.

For our experiments, we split the CogNet database into
80% train, 10% development, and 10% test sets strati-
fied by language, such that each set has the same pro-
portion of words in each language. Because cognacy
is a symmetric relation (A is cognate with B implies B
is cognate with A), the source-target pairs (A, B) and
(B, A) always exist in the same data split in order not to
pollute our splits.

Cognate generation is a sequence-to-sequence task,
where the input includes the source language, target
language, and characters of the word. The inclusion of
the target language in the input primes the model to gen-
erate the characters of a cognate in the specified target
language. The input and output format of the models is
as follows:
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4.1. Noise Models

At test time, we perturb the test data using various noise
models described below. We investigate several models
of plausible noise based on the scenario of human usage.
To test the robustness of the cognate generation systems,
we introduce noise by perturbing the spelling of the
input word. We distinguish between two types of noise:
Typing Errors, in which the user knows exactly what
they wish to type, but does not hit the correct sequence
of keys; and Cognitive Errors, in which the user does
not know exactly what they want to type and is guessing
at the spelling of the word. Specifically, we define the
following types of noise.

Deletion (Del) Randomly delete a character. This can
be a typing error or a cognitive error.

Duplication (Dup) Randomly duplicate a character.
This can be a typing error or a cognitive error.

Swap Swap a random adjacent pair of characters.
This is a typing error.

Keyboard (Key) Randomly replace an ASCII char-
acter with an adjacent letter on the keyboard. This is a
typing error.

Phonological Substitution (Phon) Randomly re-
place a character with a phonologically similar character
or character sequence. This is a cognitive error.

An example of each type of misspelling is shown in
Table 1.

4.2. Cognitive Errors

As cognitive errors have not been studied in the context
of robustness, we elaborate on how we generate these
misspellings. Cognitive errors can be caused by a user
who is not fluent in the language. When producing
the spelling of an unfamiliar word, the user may draw
upon their intuitions of spelling and phonology in their
target language as well as their native language. In
a similar vein, we generate plausible misspellings by
randomly replacing a character with a phonologically
similar character or character sequence. This process
works as follows.

We first compute character alignments over CogNet cog-
nates pairs by running fast_align (Dyer et al., 2013),
a popular word alignment tool. Next, we construct a
phrase table using these alignments. Table 2 shows
a small portion of this phrase table, along with align-
ment probabilities. Though the aligner has no notion of
phonological distance, it learns that the identity align-
ment (e.g. k aligned to k) is the most common alignment,
simply because these words are cognates and thus are
likely to have sound correspondences. After the identity
alignment, the most common aligned characters (or char-
acter sequences) are pretty much expected, based on our
knowledge of phonology. The aligner learns universal
character correspondences such as k/c which is common

src tgt  p(tgt | src)
k k 0.55
k ¢ 0.22
k K 0.07
k kk 0.02
u u 0.79
u o 0.05
u  uu 0.04
u oy 0.03

Table 2: Sample character alignments and their proba-
bilities computed on CogNet.

across many languages, and can even generalize across
characters with diacritics such as d/a. Notably, since
we performed alignment over all 300+ languages at the
same time, the aligner learns a correspondence between
different character sets, e.g. k and k. When we generate
phonological substitution misspellings, we randomly
replace a letter with one of the top three non-identity
aligned character in the learned phrase table.

This process is similar to the calculation of edit weights
in a weighted edit distance (Wu and Yarowsky, 2018b),
where some string edits have a lower cost because they
are close in phonological space (e.g. the substitution
of one vowel for another, or the substitution of letters
whose sounds have the same place of articulation, like
t/d and p/b).

5. Results

We first examine two evaluation metrics for the task of
cognate generation: accuracy and average character edit
distance. Figure 2 presents accuracy of the two models
over all the error scenarios. We measure 1-best accuracy
(is the top model prediction correct) and 10-best accu-
racy (is the gold in the top 10 model predictions). We
find that deletions, character swaps, and keyboard errors
lead to the greatest number of model errors, while char-
acter duplication and phonological substitutions result
in relatively fewer errors. We look at specific examples
in the next section.

Our results also show that evaluating these models on 10-
best accuracy shows over 2x improvement over 1-best
accuracy. In a web search scenario, it is not impera-
tive that a cognate generation model’s top prediction is
correct, because using these cognates for query expan-
sion, even with misspellings, can lead to higher recall
of relevant documents. Unsurprisingly, we find that
the Transformer model outperforms the LSTM encoder-
decoder model.

We also evaluate on average character edit distance
(CED) from the gold, shown in Figure 3. Performance
with respect to CED is basically an inversion of accu-
racy, though the differences are less drastic. Models’
performance on the best scenario (no error) and worst
scenario (swap) differ on average only by a single char-
acter. Thus, higher-performing models do not seem
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to make much of an improvement, on average. After
all, cognates tend to have similar spelling. Because of
this, we believe that low-performing cognate generation
systems can still be useful to allow users to access con-
tent in other languages. We would like to evaluate this
hypothesis on real users in the future.

6. Analysis

In this section, we look at specific examples to better
understand the effects of different types of noise on the
performance of cognate generation models. Because
the transformer model outperformed the LSTM model
in all error types, we analyze the predictions of the
Transformer model in the following paragraphs.

One possible interpretation of the contribution of each
type of error is that character deletions remove infor-
mation necessary for generating a cognate in related
languages, and character swaps and keyboard errors
introduce noise that distorts the spelling of the origi-
nal word, thus also removing valuable information. In
contrast, duplicating and substituting phonologically

similar characters do not remove information but rather
alter it in some way.

Deletion We just hypothesized that deletion errors
remove information necessary to generate cognates in
related languages. If we examine the converse, i.e. cases
where even with deletions, the model generates the cor-
rect cognate, we see that the following characters (in
decreasing order of correct predictions) are the least
harmful deletions: e, a, i, and 0. Notably, these are
vowels, and it is well known consonants play a more
important role than vowels in word recognition (Lee et
al., 2001). For example, Vietnamese uran — urn did
not affect the model’s correct prediction of aypan. Fur-
ther down the list, characters whose deletion are most
harmful include characters in abugida systems (each
character is a syllable) and Chinese characters (each
character is an entire morpheme). Thus, deletions in-
deed remove information, but the amount of information
removed is highly dependent on the character that was
deleted. Deleting vowels are the least harmful.

Duplication Duplicating characters were one of the
least harmful types of noise. The least harmful dupli-
cations are: a, i, e, 1, 1, t, 0, and s. In many languages,
duplicating a character only has the effect of lengthening
the sound, not changing the place of articulation. And
in some cases, duplicating a letter has no effect on the
phonology at all. An example is Spanish espariol — esp-
pariol, which did not affect the models’ predictions. As
with deletions, the most harmful duplicated characters
come from Sino-Tibetan languages, where modifying
a single character is often tantamount to changing an
entire word in an alphabetic language (thus duplicating
a character is in effect adding an additional word).

Swap Swapping characters overall is detrimental. The
least detrimental swapped characters by far are er. This
is exemplified in center/centre and theater/theatre, ex-
amples familiar to English speakers from different re-
gions of the world. Following er, the least detrimental
characters are ar, an, me, and en. We notice that /r/, /n/,
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and /m/ are all sonorant consonants. Future work can
shed further insight into the relationship between the
phonology of words and recognition errors.

Keyboard Keyboard errors, in which the user types
an adjacent letter on the QWERTY keyboard, are also
detrimental to the cognate generation process. The least
harmful keyboard errors are replacements with j, s, and
w, with the least harmful substitutions being i — j, z
— s, and e — w. Some examples of changes that did
not affect the model include Afrikaans reproduktief —
reproduktjef, and Adyghe disember — disembwr. We
notice that the least harmful keyboard errors correspond
to phonological substitutions.

Phonological Phonological mistakes, caused by cog-
nitive errors when the user is not familiar with the word,
are relatively harmless to the cognate generation models.
The least harmful substitutions are: a, i, e, o, d, u, and y.
Some example include Asturian tribal — tribal,! and
Turkmen yanwar — Yanuar. These misspellings can
also include vowel substitutions or accents variations,
such as d — a. The models’ robustness to this type of
noise can be explained in several ways. A change in
script (e.g. t — T) is present in a sufficient amount of
training data to be learned by the model. In some cases,
such as w — u, the substitution does not substantially
change the word’s phonology. The models are also ro-
bust to characters missing or adding diacritics. Some
languages, such as Spanish, use accents to mark stress;
removing this accent also does not drastically affect the
word’s phonology.

There are also other cognitive processes that can lead to
the same mistakes. Some languages, such as French, use
diacritics to indicate different sounds, but people may
omit accents when typing (e.g. frangais vs francais) for
a number of reasons, including lack of a French key-
board layout or plain laziness. Even in English, certain
borrowed words like résumé contain optional diacrit-
ics. Other non-standard spellings, such as eye dialect
(Wu and Yarowsky, 2020b) or slang, are purposeful mis-
spellings that still preserve most of the phonology of
a word. Cognate generation models should be able to
handle these types of spelling variation without much
difficulty.

7. Conclusion and Future Work

In this paper, we present experiments evaluating sev-
eral neural cognate generation models’ robustness to
several types of human-plausible noise. We experiment
with several standard noise models (deletion, duplica-
tion, swapping, and keyboard errors) as well as a new
type of error, phonological errors, finding that the natu-
ral variation in cognate spelling across languages have

"While it may seem somewhat unrealistic to substitute a
letter with another letter from a different character set, this is
actually not uncommon for bilingual speakers who regularly
type in multiple languages. Consider the scenario where the
user is in a hurry and simply forgot to switch keyboard input
methods.

trained the models to be robust to certain types of noise.
Duplication and phonological substitution are the least
harmful, while character swapping and keyboard errors
are more detrimental. We analyzed the models’ results
with respect to each error type to explain why these
models perform as they do. Code for reproducing our
experiment is available here.”

This study paves the way for future work on robustness
in human-AlI collaborations. We would like to experi-
ment with more diverse types of noise, perhaps using an
adversarial testing framework like TextAttack (Morris
et al., 2020) and involving model retraining to improve
robustness. Though since humans are generally not
adversarial, and we are more interested in the human
aspect of machine learning, we would like to investigate
additional human cognitive errors, such as misspellings
made by dyslexic people (Berget and Sandnes, 2015),
misspellings in datasets such as the Github Typo Corpus
(Hagiwara and Mita, 2020), or perhaps even mispellings
by users of alternate keyboard layouts such as Dvorak
or AZERTY or different input methods such as Pinyin.
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