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Abstract
In recent years, natural language inference has been an emerging research area. In this paper, we present a novel data
augmentation technique and combine it with a unique learning procedure for that task. Our so-called automatic contextual
data augmentation (acda) method manages to be fully automatic, non-trivially contextual, and computationally efficient at
the same time. When compared to established data augmentation methods, it is substantially more computationally efficient
and requires no manual annotation by a human expert as they usually do. In order to increase its efficiency, we combine
acda with two learning optimization techniques: contrastive learning and a hybrid loss function. The former maximizes
the benefit of the supervisory signal generated by acda, while the latter incentivises the model to learn the nuances of the
decision boundary. Our combined approach is shown experimentally to provide an effective way for mitigating spurious data
correlations within a dataset, called dataset artifacts, and as a result improves performance. Specifically, our experiments verify
that acda-boosted pre-trained language models that employ our learning optimization techniques, consistently outperform the
respective fine-tuned baseline pre-trained language models across both benchmark datasets and adversarial examples.
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1. Introduction
Inference has historically been a central topic in arti-
ficial intelligence, and recently so in the natural lan-
guage domain. The so called natural language infer-
ence (NLI) task is to determine whether a natural lan-
guage hypothesis h can justifiably be inferred from a
natural language premise p (MacCartney and Manning,
2008). This is a challenging task due to the complex na-
ture of natural language which entails informal reason-
ing, lexical semantic knowledge and structure as well
as variability regarding linguistic expression.
In recent years, there has been a considerable amount
of research in this particular area. The Stanford Natu-
ral Language Inference (SNLI) (Bowman et al., 2015)
corpus and the Multi-Genre Natural Language Infer-
ence (MNLI) (Williams et al., 2017) corpus have pro-
vided robust benchmark datasets as they contain a large
amount of annotated data. Furthermore, the advance-
ment of pre-trained language models has contributed to
the increased effectiveness of proposed solutions.
Although many of these solutions appear promising, as
they report high accuracy on validation data, the task of
natural language inference remains a work in progress.
Recent research calls into question the learning which
results from pre-trained language models in datasets
such as SNLI and MNLI because it either predicts the
right answer when it shouldn’t, as it is the case with
hypothesis-only baselines (Poliak et al., 2018), or pre-
dicts the wrong answer if minor modifications are made
by utilizing contrast sets (Gardner et al., 2020), check-
list sets (Ribeiro et al., 2020) or adversarial attacks (Jia
and Liang, 2017). These observations all stem from

1The authors contributed equally to this work.

the fact that a model may achieve high performance on
a dataset by learning spurious correlations, which are
called dataset artifacts, but it is then expected to fail in
settings where these artifacts are not present.
In our work, we identify dataset artifacts and propose a
data augmentation and learning optimization approach
in order to achieve a higher and more robust perfor-
mance than the respective fine-tuned pre-trained base-
line language models from the Hugginface Transform-
ers repository (Wolf et al., 2019). Specifically, our
contributions can be summarized as follows. First, we
propose acda, a novel data augmentation approach for
the construction of adversarial examples to enrich the
dataset for the purpose of enhancing the learning pro-
cess. Compared to established data augmentation tech-
niques such as TextAttack (Morris et al., 2020) and
Checklist (Ribeiro et al., 2020), acda is substantially
more computationally efficient and, moreover, fully-
automatic as it requires no manual annotation by a hu-
man expert as these packages do. Furthermore, we
propose a hybrid loss function which allows the acda-
boosted models to learn the nuances of the decision
boundary, thus providing results that are considerably
more robust than those of the default NLL loss function
of the fine-tuned baseline pre-trained language models,
which is solely based on the maximum likelihood es-
timation (MLE) criterion. In addition, we make use
of contrastive learning (Dua et al., 2021) which max-
imizes the benefit of the supervisory signal generated
by acda and further increases performance. Finally,
we perform a systematic comparison and demonstrate
experimentally that the acda-boosted pre-trained lan-
guage models which employ our learning optimization
techniques, consistently outperform the respective fine-
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tuned baseline pre-trained language models across both
the SNLI and the MNLI datasets. In order to further
demonstrate the effectiveness of our approach, we also
provide a set of multiple hand-annotated adversarial ex-
amples where the acda-boosted models exhibit a con-
siderably more robust behavior and performance than
the fine-tuned baseline models.

2. Background and Related work
Textual entailment is the relationship between a natural
language premise p and a natural language hypothesis
h. It is positive when the truth of p requires the truth
of h, that is, when a human annotator reading p would
infer that h is most likely true. Likewise, it is negative
when the truth of p contradicts the truth of h, that is,
when a human annotator reading p would infer that h is
most likely false. The absence of textual entailment is
the lack of any relationship between p and h and in this
case, the human annotator reading p would infer that
the truth of p neither entails nor contradicts the truth of
h. Thus, the goal of the natural language inference task
is to determine whether h can justifiably be inferred
from p. Specifically, based on the textual entailment
relationship between p and h, there are three labels: En-
tailment (ENT) for positive textual entailment, Neutral
(NEU) for the absence of textual entailment and Con-
tradiction (CON) for negative textual entailment. Three
examples from SNLI are presented in Table 1 below:

Premise Hypothesis Label
A soccer game
with multiple
males playing.

Some men are
playing a sport.

Entailment
(ENT)

An older and
younger man
smiling.

Two men are smil-
ing and laughing at
the cats playing on
the floor.

Neutral
(NEU)

A man inspects the
uniform of a figure
in some East Asian
country.

The man is sleep-
ing.

Contradiction
(CON)

Table 1: Three examples (entailment, neutral, contra-
diction) from the SNLI dataset.

Since the publication of the Stanford Natural Lan-
guage Inference (SNLI) (Bowman et al., 2015) and
the Multi-Genre Natural Language Inference (MNLI)
(Williams et al., 2017) datasets, there has been a con-
siderable progress in the field of natural language in-
ference due to the large amount of annotated data that
these datasets provided. Numerous approaches based
on recurrent neural networks, such as LSTM-based
approaches which often utilize attention mechanisms,
have produced decent results (Rocktäschel et al., 2015),
(Chen et al., 2016), (Sha et al., 2016), (Munkhdalai
and Yu, 2017), (Ghaeini et al., 2018). More recently,
pre-trained language models have managed to provide
an even higher performance on many tasks related to

natural language, including natural language inference
(Radford et al., 2018). Specifically, well pre-trained
contextual language models such as ELMo (Peters et
al., 1802) and BERT (Devlin et al., 2018) or BERT-
based approaches (Zhang et al., 2020) are among those
which achieve the highest performance for the SNLI
and the MNLI datasets.
However, recent research shows that even though these
pre-trained language models achieve high performance
on benchmark datasets, they do so by learning spurious
correlations, also called dataset artifacts. The models
are then expected to fail in settings where these arti-
facts are not present, which may include real-world test
sets of interest. The usage of contrast sets (Gardner et
al., 2020), checklist sets (Ribeiro et al., 2020) or other
adversarial sets (Jia and Liang, 2017), (Wallace et al.,
2019), (Bartolo et al., 2020), (Glockner et al., 2018),
(McCoy et al., 2019) makes performance plummet and
thus highlights this issue.
In recent years, there has been a considerable effort in
order to combat dataset artifacts in the natural language
inference domain. Learning seems to be more robust
when it focuses on hard subsets of data or data where
the gold label distribution is ambiguous through dataset
cartography (Swayamdipta et al., 2020) or other meth-
ods (Yaghoobzadeh et al., 2019), (Nie et al., 2020),
(Meissner et al., 2021). Another approach is to train
on sets of adversarial data such as challenge sets di-
rectly (Liu et al., 2019), (Zhou and Bansal, 2020) or ad-
versarial sets generated by data augmentation (Ribeiro
et al., 2020), (Morris et al., 2020). In our work, we
propose our own novel method for creating adversarial
sets through automatic contextual data augmentation
(acda) which, when compared to the aforementioned
data augmentation techniques, has the advantage of be-
ing substantially more computationally efficient and, at
the same time, fully automatic as it requires no manual
annotation by a human expert.
Finally, contrastive learning (Dua et al., 2021) is a
learning optimization method which takes inspiration
from contrastive estimation (Smith and Eisner, 2005)
and extends the technique to supervised reading com-
prehension by carefully selecting appropriate neigh-
bourhoods of related examples. In the original paper,
it is used in the context of question answering and re-
quires bundles of closely related question answering
pairs which the authors call instance bundles. In our
work, we show that the same technique can also be
successfully used in natural language inference. In par-
ticular, our novel acda method displays great synergy
with contrastive learning as it offers a natural way of
creating multiple instance bundles of language infer-
ence examples that are both contextually closely re-
lated and of arbitrary size, which grows exponentially
with the length of the hypothesis sentence. We also
retain the authors’ original technique of combining a
Cross Entropy Loss with Maximum Likelihood Esti-
mation (NLL Loss) through our proposed hybrid loss.
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3. Analysis of Dataset Artifacts
The first task in solving the issue of dataset artifacts
is to identify them. For this purpose, we conducted
an exploratory analysis on the SNLI dataset and cre-
ated our own set of hand-annotated adversarial exam-
ples. Note that these are examples that an original fine-
tuned model classified correctly, but when the hypoth-
esis is perturbed, even slightly, the prediction accuracy
notably suffers. A subset is presented in Table 2 below:

Premise Hypothesis Label Pred
1 Two women

are embracing
while holding
to go pack-
ages.

One of the
women is
holding take-
away pack-
ages.

ENT CON ✗

2 . . . The packages
contain food.

ENT CON ✗

3 . . . The women
have bought
food.

ENT CON ✗

4 . . . The women
have bought
lasagna.

NEU CON ✗

5 A man in
a blue shirt
standing in
front of a
garage-like
structure
painted with
geometric
designs.

A man is
wearing black
trousers.

NEU CON ✗

6 . . . His shirt fea-
tures geomet-
ric designs.

CON ENT ✗

7 A young boy in
a field of flow-
ers carrying a
ball

He is carrying
one ball.

ENT CON ✗

8 . . . Ball in field. ENT CON ✗

9 Two doc-
tors perform
surgery on
patient.

The two doc-
tors are per-
forming brain
surgery.

NEU CON ✗

10 . . . The patient is
having heart
surgery.

NEU CON ✗

11 A white dog
with long hair
jumps to catch
a red and green
toy.

It is not a
brown dog.

ENT CON ✗

12 Kids are on
a amusement
ride.

Kids ride
joyously an
amusement
ride.

ENT CON ✗

Table 2: A sample of hand-annotated adversarial ex-
amples and the predictions of the highest perform-
ing fine-tuned baseline pre-trained language model
(ELECTRA-Small).

By observing the 12 examples of Table 2, we can con-
clude that the highest performing fine-tuned baseline
pre-trained language model, despite achieving a very
high accuracy in the SNLI and the MNLI datasets, does
not manage to classify any of our 12 hand-annotated
adversarial examples correctly. This confirms the mag-
nitude of impact dataset artifacts can have on perfor-
mance. Specifically, we can make the following obser-
vations regarding dataset artifacts from the adversarial
examples of Table 2.
First, the model’s errors are mostly located around
two particular classes, the neutral and the entailment
classes. One of the potential artifacts at work here is
a distance function between the premise and the hy-
pothesis which the model learns instead of actual com-
prehension, and makes a prediction based on that dis-
tance artifact. Because the neutral class in particular
cannot be adequately expressed by distance, or more
accurately, the distance of hyponyms in embedding
space can be very large and confuse the artifact’s cri-
terion, the result is that the model classifies these large
distances as contradictions, which causes a substantial
drop in performance.
Second, the model might perform well against trivial
augmentations, such as introducing a negation in the
form of adding a “not” word in the premise, but when
adversarial examples use words which are further apart
in embedding space from the premise words, results are
much worse. Thus, the model clearly relies on learned
artifacts instead of learned language comprehension.
Apart from the distance function discussed above, an-
other artifact is the set of words in the hypothesis that
the model associates with a specific label regardless of
context, only because it has observed those words ac-
companying that label multiple times during training.
Recent research (Wallace et al., 2019) confirms our ob-
servation and discusses it in detail, providing examples
such as “not” and “least” for the entailment class, “joy-
ously” for the neutral class, and “nobody” and “never”
for the contradiction class.
Specifically, in Table 2, we can observe, how the phrase
“to go” is a synonym for words such as “takeaway” or
“food”, and yet the model produces an incorrect pre-
diction for our adversarial examples 1, 2 and 3, which
display a small and natural shift in language, the mere
use of a synonym. The model also fails at example
4 where a more specific word is introduced, such as
“lasagna”, which is a hyponym of “food” and shifts the
gold label to the neutral class, but the model perceives
this as contradicting the premise. Furthermore, we can
observe how in examples 9 and 10, even slight changes
in context (specificity) cause the model to choose the
contradiction class while the neutral class should have
been appropriate. While this shows the effect of the
distance function artifact, the most definitive example
of the distance function artifact is likely to be example
6. We can observe how the model, by seeing the same
phrase in both the premise and hypothesis, predicts en-
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tailment and is unable to differentiate what the pattern
is in reference to language. Reading comprehension
would require that it can differentiate between “struc-
ture” and “shirt”, and in such a case, the model would
most likely make the correct prediction.
In conclusion, it is clear that while maintaining high
performance on benchmark datasets remains an impor-
tant indicator of performance, models should also be
tested against adversarial examples, which are some-
times similar to real world sets, in order to ensure that
their high performance is not a product of dataset arti-
facts. Thus, in our work, evaluation is carried out in re-
gard to the prediction accuracy for both the benchmark
datasets (SNLI, MNLI) and the hand-annotated adver-
sarial set, a subset of which contains the 12 adversarial
examples of Table 2 as they were presented and dis-
cussed above.

4. Our approach
We propose an approach which comprises three tech-
niques towards mitigating dataset artifacts: a novel data
augmentation procedure, contrastive learning, and a
hybrid loss function. In what follows, we introduce our
novel data augmentation technique, which we call au-
tomatic contextual data augmentation (acda), and dis-
cuss its methodology as well as its benefits. We also
present our learning optimization techniques of con-
trastive learning and hybrid loss, discuss their benefits
and emphasize their synergy with acda in particular.

4.1. Data Augmentation
By referring to the adversarial examples as presented
in Table 2, our observations naturally lead to an ap-
proach where contextual augmentation based on word
groups could incentivise the model to learn the actual
decision boundary instead of relying on dataset arti-
facts. That could happen if more hypotheses that are
closely related with each other, such as our adversar-
ial ones, were made available to the model, but which
also included substantial contextual shifts, such as the
ones the model fails at. In this case, there could be
a benefit in performance. Moreover, we require that
this augmentation procedure is fully automatic, i.e. it
does not require a human expert to manually anno-
tate each example, because otherwise the resources re-
quired would make the procedure infeasible. We de-
vised such a data augmentation procedure that gener-
ates new examples which on one hand are non-trivial
(as opposed, for example, to adding a “not” ahead of
the hypothesis), while at the same time being robust
in labelling the newly generated example correctly. To
achieve non-trivial augmentation we employed Word-
Net (Miller, 1995) synsets and generated a new hypoth-
esis, while leaving the premise as it is. This was done
by replacing one word in the hypothesis with either a
synonym, an antonym, a hyponym or a hypernym. In
order to ensure that the labelling of the new example
is sensible, we created and employed the set of rules
shown in Table 3 below:

Old Label Word Swap New Label

ENT Synonymn-Hypernym ENT
ENT Antonym CON
ENT Hyponym NEU
NEU Synonymn-Hypernym NEU
NEU Antonym UNK
NEU Hyponym UNK
CON Synonymn-Hypernym CON
CON Antonym UNK
CON Hyponym CON

Table 3: Label generation rules for augmented exam-
ples using WordNet synsets.

Our data augmentation procedure scans the hypothe-
sis sentence for nouns, and queries WordNet synsets
for a replacement word. It then swaps each one of
the nouns at a time and composes new examples using
the labeling generation rules in Table 3. Observe that
this procedure can be seen as replicating the generation
of adverserial examples that caused the model perfor-
mance to deteriorate. Therefore, the procedure yields
a high number of new training examples from the most
problematic areas of the decision boundary, which can
now be used as part of training to incentivise the model
against the reliance on artifacts.
The rules that result in the Unknown (UNK) label were
not used as part of the augmentation. Because of the in-
herent ambiguity when replacing a word in these con-
texts, the supervisory signal can be corrupted and lead
the model to learn nonsensical rules. Importantly, we
note that the remaining rules are robust, but they are not
infallible: there is still the possibility, however small,
that a newly generated example gets an incorrect la-
bel assigned to it. However, this was deemed accept-
able, because the inherent ambiguity in labelling any
hypothesis is already only partially correct, even when
done by human experts, as developed in detail in recent
published research which shows that, indeed, numer-
ous examples can be found in SNLI and other similar
datasets where human experts disagree on which label
to assign to a hypothesis (Dua et al., 2021). By keeping
only the more robust rules for augmentation we ensure
that the probability of generating a controversial exam-
ple will be similar to the one induced by human experts,
and will therefore not alter the undelying manifold of
the dataset that the model is trying to learn.
The resulting augmentation benefits from being both
fully automatic, as it does not require manual writ-
ing of new hypothesis or label annotation, while at the
same time being non-trivial. For example, we can ob-
serve that by using Rule 1 in the hypothesis “A couple
is playing with a dog outside”, the word “dog” might
be replaced by “animal” (a hypernym), which accord-
ing to the rule will retain the Entailment label. This
is logically correct, while at the same time produces
an example where the swapped word can have a vector
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of significant distance in embedding space, thus incen-
tivising the model to discover the correct relations in
the corpus and move away from the distance function
artifact. As another example, we can consider swap-
ping the same word with a hyponym such as “corgie”.
Because the original hypothesis label is Entailment, ac-
cording to Rule 3, the new hypothesis “A couple are
playing with a corgie outside” would get assigned the
Neutral label, which is again logically correct and a
valid datapoint for training a model.
We can further observe, that the number of possible
augmented examples that can be generated grows expo-
nentially with the length of the base hypothesis. This is
because any noun in the hypothesis could be swapped
by any word in its synset. In order to keep the training
time bounded, our implementation enforces an upper
bound of 10 augmented examples per hypothesis sen-
tence. As anticipated, this approach leads to a 10 times
larger dataset and training time also increases in a lin-
ear fashion. In our implementation, we use the map()
method of the Huggingface Trainer class. This has
the advantage of placing the augmented examples right
below the original examples, as a result keeping the re-
lated examples together. This is very beneficial for our
learning optimization techniques which we will discuss
in the sections that follow.

4.2. Contrastive Learning
Having acquired a 10 times larger training set through
acda, the question of taking maximum advantage of the
training examples becomes pertinent. We decided to
employ the recently published technique of contrastive
learning (Dua et al., 2021) to further incentivise the
model to learn the nuances of the decision boundary.
According to the conducted research, one technique to
achieve this is for the model to see instance bundles
during training, that is, examples that are close together
and belong to a specific area of the decision boundary
in the same training batch. This approach has been used
in unsupervised linguistic structure prediction (Smith
and Eisner, 2005) and supervised reading comprehen-
sion (Dua et al., 2021).
Since acda places the augmented examples right af-
ter each original one, the dataset batches provided
to the model in each iteration will consist of some
number of original examples and their augmenta-
tions. This way, we manage to have a dataset con-
sisting of multiple instance bundles and therefore, we
gain the maximum benefit from contrastive learning.
In our implementation, we disabled dataset shuffling
in our CustomTrainer class by overloading the
get train sampler() method in the Hugging-

face Trainer class.

4.3. Hybrid Loss
Finally, as discussed above, the contrastive learning op-
timization technique re-focuses training in the locali-
ties of the current batch, but there lies the danger of
the model learning to overfit these localities, while not

being able to correctly classify examples that it has not
seen and are further apart in decision space. In this sce-
nario, the model is really learning many small multino-
mial classification problems, and misses out on larger
scale rules in the classification manifold. In order to
mitigate this, we decided to combine both the Cross
Entropy Loss (CE) and the NLL Loss, which uses the
Maximum Likelihood Estimation (MLE) criterion. We
call this new combined loss function Hybrid Loss and
define it as follows:

L(o, l) = α · LMLE(o, l)+ (1− α) · LCE(o, l) (1)

In the supervised setting, which includes our present
natural language inference application, MLE (through
the NLL Loss) is a much stronger training signal than
CE. This is because CE does not provide a learning
signal for the large space of alternative premises or hy-
potheses that are not in the neighbourhood of the cur-
rent instance bundle. On the other hand, CE provides
a much stronger signal for a small set of closely re-
lated and potentially confusing examples. Thus, the
supervisory signal involves a smaller area of the deci-
sion boundary, as it will be made up of a small number
of examples and their augmentations, all of which are
close in decision space, as opposed to a larger num-
ber of examples all over the decision space. However,
it will also be more complex in these locacilities, de-
manding a more fine-grained weight updating from the
model and forcing it to learn the local properties of the
decision boundary.
By combining both losses in a weighted average man-
ner, we manage to retain the advantages of both loss
functions. The Cross Entropy Loss ensures that part
of the loss signal will be directly relevant to the short-
comings of the model in the localities of the decision
boundary, enabling contrastive learning, while the NLL
Loss will incentivise generalization in areas that the
model has not seen, learning rules that can only be
inferred by looking at unrelated examples. With this
arrangement we ensure a balance between the large
number of examples in a small area of the decision
space, and a smaller number of examples all over that
space. Intuitively, this can be thought as the Hybrid
Loss using the NLL Loss to cause the largest mod-
ifications of the current decision boundary, affecting
more of the decision space, and the Cross Entropy
Loss to fine tune local areas according to the examples
of each batch. In our implementation, we overloaded
the compute loss() method of the Huggingface
Trainer class with our hybrid loss function as shown
in Equation 1, with a value of 0.5 for the α parameter.

5. Experimental Evaluation
In this section, we experimentally evaluate our com-
bined data augmentation and learning optimization ap-
proach on two benchmark datasets: SNLI and MNLI.
Specifically, we utilize the Huggingface Transformers
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Python package in order to train five models: four dif-
ferent BERT variants and the BERT-based ELECTRA-
Small model. Then, we compare the fine-tuned base-
line pre-trained language models with the respective
acda-boosted pre-trained language models for both
datasets. We select the best performing acda-boosted
pre-trained language model and carry out an evalua-
tion on our adversarial set in order to ensure that it suc-
cessfully mitigates dataset artifacts. Finally, we present
(Table 6) the outcome of our procedure on the same
subset (Table 2) of our adversarial dataset that we used
to demonstrate the influence of dataset artifacts.

5.1. Performance on Benchmark Datasets
We use SNLI and MNLI as our two benchmark datasets
in order to present a comparison between fine-tuned
baseline pre-trained language models from the Hug-
gingface Transformers repository, and their respective
acda-boosted pre-trained language models. Our goal is
to show that our approach consistently improves per-
formance regardless of model or dataset choice.

SNLI Dataset The first evaluation dataset is the
SNLI, which is a collection of 570000 human-written
English sentence pairs manually labeled for balanced
classification (Bowman et al., 2015). We present the
comparison between the fine-tuned baseline pre-trained
language models and the respective acda-boosted pre-
trained language models for SNLI in Table 4 below:

Fine-tuned
Baseline Model

Acda-boosted
Model

BERT-Tiny 78.86 82.01
BERT-Mini 85.06 86.79
BERT-Small 87.27 87.90

BERT-Medium 88.92 89.01
ELECTRA-Small 89.02 89.82

Table 4: Comparison of fine-tuned baseline pre-trained
language models and their respective acda-boosted
pre-trained language models for the SNLI dataset.

Regarding the comparison results for SNLI, we can
notice that acda-boosted pre-trained language mod-
els consistently outperform the respective fine-tuned
baseline pre-trained language models. Specifically, we
observe that models with a smaller architecture such
as BERT-Tiny and BERT-Mini make the largest gains
when they make use of acda, as their performance is
increased by 3.15% and 1.73% respectively. The rest
of the models display a performance increase between
0.1% and 0.8%, while the best performing model is the
acda-boosted ELECTRA-Small with an accuracy of
89.82%. Therefore, we can conclude that our approach
consistently increases performance across all models,
particularly lightweight ones, for SNLI.

MNLI Dataset The second evaluation dataset is the
MNLI, which is a crowd-sourced collection of 433000
sentence pairs annotated with textual entailment infor-
mation. It is modeled on the SNLI corpus, but differs

in that covers a range of genres of spoken and written
text, and supports a distinctive cross-genre generaliza-
tion evaluation (Williams et al., 2017). We present the
comparison between the fine-tuned baseline pre-trained
language models and the respective acda-boosted pre-
trained language models for MNLI in Table 5 below:

Fine-tuned
Baseline Model

Acda-boosted
Model

BERT-Tiny 65.24 69.06
BERT-Mini 72.54 75.22
BERT-Small 77.02 78.57

BERT-Medium 80.20 80.39
ELECTRA-Small 81.16 81.53

Table 5: Comparison of fine-tuned baseline pre-trained
language models and their respective acda-boosted
pre-trained language models for the MNLI dataset.

Regarding the comparison results for MNLI, we can
notice that acda-boosted pre-trained language models
consistently outperform the respective fine-tuned base-
line pre-trained language models. Once again, we ob-
serve that models with a smaller architecture are the
ones that receive the largest performance boost, even
higher than the one observed for SNLI. Specifically,
BERT-Tiny and BERT-Mini increase their performance
by 3.82% and 2.68% respectively when they employ
acda. The rest of the models display a variable perfor-
mance increase between 0.19% and 1.55%, while the
best performing model is the acda-boosted ELECTRA-
Small with an accuracy of 81.53%. Therefore, we can
reach the same conclusion as before, that is, our ap-
proach consistently increases performance across all
models, particularly lightweight ones, for MNLI.

Computational Efficiency It is worth noting that we
initially implemented our data augmentation rules for
acda, as presented in Table 3, using the TextAttack
package (Morris et al., 2020), as well as the Check-
list package (Ribeiro et al., 2020). The result was a
×60 increase in training time, while we also confirmed
manually that they produced a smaller number of aug-
mented examples in each iteration. According to the
Huggingface training time estimator, this training pro-
cedure would take approximately 60 hours on Google
Colab Pro for ELECTRA-Small. On the other hand,
our own optimized implementation of acda only re-
quires 9 hours of training for the same task, thus high-
lighting its computational efficiency.

5.2. Performance on Adversarial Examples
After showing that acda-boosted pre-trained language
models provide a consistent improvement in perfor-
mance for both the SNLI and the MNLI datasets when
compared to the respective fine-tuned baseline pre-
trained language models, we continue our evaluation
by examining their behavior when facing adversarial
examples. For this purpose, we make use of our hand-
annotated adversarial set and specifically, the adversar-
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ial examples of Table 2, which we discussed in Section
3. We can recall that the predictions of Table 2 are those
of the best performing fine-tuned baseline pre-trained
language model, ELECTRA-Small. Despite having
a prediction accuracy of 81.16% and 88.92% for the
SNLI and MNLI validation sets respectively, the model
did not classify any of the 12 adversarial examples of
Table 2 correctly. We present the same 12 adversar-
ial examples with the predictions of the acda-boosted
ELECTRA-Small in Table 6 below:

Premise Hypothesis Label Pred
1 Two women

are embracing
while holding
to go pack-
ages.

One of the
women is
holding take-
away pack-
ages.

ENT ENT ✓

2 . . . The packages
contain food.

ENT ENT ✓

3 . . . The women
have bought
food.

ENT ENT ✓

4 . . . The women
have bought
lasagna.

NEU ENT ✗

5 A man in
a blue shirt
standing in
front of a
garage-like
structure
painted with
geometric
designs.

A man is
wearing black
trousers.

NEU NEU ✓

6 . . . His shirt fea-
tures geomet-
ric designs.

CON ENT ✗

7 A young boy in
a field of flow-
ers carrying a
ball

He is carrying
one ball.

ENT ENT ✓

8 . . . Ball in field. ENT ENT ✓

9 Two doc-
tors perform
surgery on
patient.

The two doc-
tors are per-
forming brain
surgery.

ENT NEU ✗

10 . . . The patient is
having heart
surgery.

ENT NEU ✗

11 A white dog
with long hair
jumps to catch
a red and green
toy.

It is not a
brown dog.

ENT ENT ✓

12 Kids are on
a amusement
ride.

Kids ride
joyously an
amusement
ride.

ENT ENT ✓

Table 6: A sample of hand-annotated adversarial ex-
amples and the predictions of the highest performing
acda-boosted pre-trained language model.

Comparing the fine-tuned baseline pre-trained lan-
guage model results (Table 2) and the acda-boosted
pre-trained language model results (Table 6), we no-
tice a considerable improvement in prediction accu-
racy, and we can therefore conclude that the acda-
boosted pre-trained language model exhibits a robust
behavior against adversarial examples due to its re-
silience against dataset artifacts. Specifically, it man-
ages to classify 8 out of the 12 adversarial examples
correctly. We can attribute its success to the improved
training procedure having moved the model further
away from dataset artifacts and into greater reading
comprehension. This is further proven by the fact that
even when it comes to the adversarial examples which
the acda-boosted pre-trained language model classifies
incorrectly, we can manually confirm that, in the major-
ity of the cases, the classification probability towards
the gold label is significantly higher compared to the
one produced by the respective fine-tuned baseline pre-
trained language model.

6. Conclusions and Future Work
In this work we proposed a novel data augmentation
technique, acda, discussed its advantages with respect
to established data augmentation packages, and de-
scribed how it can be naturally combined with a learn-
ing optimization method which utilizes contrastive
learning and a hybrid loss function. We showed that
the employment of this combined approach by pre-
trained language models can lead to a consistent in-
crease in performance, while requiring minimal com-
putational cost regarding training time and resources.
In particular, acda-boosted pre-trained language mod-
els consistently outperform the respective fine-tuned
baseline pre-trained language models in benchmark
datasets related to natural language inference. Further-
more, the acda-boosted pre-trained language models
are also substantially more resilient to dataset artifacts
and as a result display robust behavior and high perfor-
mance against adversarial examples.
As a natural next step, we intend to further improve the
data augmentation process by introducing more sophis-
ticated rules. We believe that by expanding the rules in
a structured manner, we can generate more closely re-
lated examples and improve performance metrics sub-
stantially. This will likely require a formal-logical
treatment of the relationships between sentences when
a word is swapped in a controlled manner. Similarly,
coming up with a larger number of more complex rules,
such as ones based on conditionals, is also promising
as this would further increase the size of the training
set in a meaningful way and, given the computational
efficiency of our procedure, it would come at a mini-
mal cost, as no computational cost is added on top of
the training cost. Finally, we intend to create modified
variants of acda in order to expand our methodology to
other domains of interest within natural language pro-
cessing, where reading comprehension is vital.
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