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Abstract
The performance of Machine Translation (MT) systems varies significantly with inputs of diverging features such as topics,
genres, and surface properties. Though there are many MT evaluation metrics that generally correlate with human judgments,
they are not directly useful in identifying specific shortcomings of MT systems. In this demo, we present a benchmarking inter-
face that enables improved evaluation of specific MT systems in isolation or multiple MT systems collectively by quantitatively
evaluating their performance on many tasks across multiple domains and evaluation metrics. Further, it facilitates effective
debugging and error analysis of MT output via the use of dynamic filters that help users hone in on problem sentences with
specific properties, such as genre, topic, sentence length, etc. The interface can be extended to include additional filters such as
lexical, morphological, and syntactic features. Aside from helping debug MT output, it can also help in identifying problems

in reference translations and evaluation metrics.
Keywords: Machine Translation, Evaluation, Error Analysis

1. Introduction

The performance of Machine Translation (MT) sys-
tems may vary significantly across genres, topics, sen-
tence surface properties (ex. length, punctuation, POS
tags, etc.), and styles. Though much work has been
done on MT evaluation in terms of metrics and datasets,
performing error analysis efficiently is cumbersome
and time-consuming. In this demo, we present an in-
tuitive MT benchmarking interface for quantitatively
evaluating and debugging MT systems together or in
isolation along different properties of the text, such as
genre and topic, and using a variety of MT evaluation
metrics and evaluation test sets. Our proposed system
helps researchers and practitioners identify problem ar-
eas for their MT model and whether these problems
are specific to their models or shared by other mod-
els. Such can greatly simplify error analysis and help
guide further research and development efforts. Addi-
tionally, our system has a modular design that can be
extended to handle additional metrics and test set fea-
tures. Though not directly shown in the demo, users
can choose the test sets, metrics, and models of their
choice, and the system would perform benchmarking
per their preferences. When the benchmark results
are ready and stored in a database, the user can in-
teract with the evaluation results and perform system
debugging. In the online demo (https://bit.ly/
3IdHzBv), we show the capability of the system by
evaluating 6 commercial MT system on 2 language
pairs using 4 different test sets from OPU and 5 dif-
ferent evaluation metrics.

The contributions of this demo are as follows:

'For legal reasons, the system names are anonymized.
https://opus.nlpl.eu/

* We present an intuitive user interface that allows
users to filter MT results by model, metric, test
set, topic, or any other feature. Filtration allows
users to see worst (or best) performing sentences
that match specific criteria.

* The system allows users to compare an MT model
against other models and to identify sentences
where there is high or low variance between sys-
tems. In all such comparisons, users are allowed
to apply any of the aforementioned filters.

* We show also that the interface can help identify
mistakes in reference translations as well as short-
comings of evaluation metrics.

2. Related Work

Leaderboards and dashboards are becoming increas-
ingly common for comparing and evaluating perfor-
mance of various machine learning systems, includ-
ing MT systems. ((Coleman et al., 2017} |Olson et al.,
2017; Mattson et al., 2020; |Liu et al., 2021; |[Kiela et al.,
2021))). For proper comparison of MT systems, much
effort has been devoted to devising automatic metrics
for properly evaluating MT output with and without a
reference translation or translations. There are multi-
ple metric types that measure similarity to a reference
translation (ex. BLEU (Papineni et al., 2002)); mea-
sure post-editing effort (ex. TER (Snover et al., 2000));
or estimate human judgements with and without a ref-
erence translation (ex. COMET_DA and COMET_QE
respectively (Rei et al., 2020))). Though such metrics
quantitatively score MT in a manner that generally cor-
relates with human evaluation, they do not elucidate
why a particular MT output is better or worse than an-
other output or which types of errors are most common.
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Llitjos et al. (2005) proposed a classification of the
most common MT errors. Subsequent tools, such as
BLAST (Stymne, 2011), attempted to aid manual an-
notation of MT errors. Such tools can be configured to
handle a variety of error types. Kirchhoff et al. (2007)
attempted to correlate between MT evaluation metric
scores with input characteristics to ease error analysis.
Popovi¢ and Ney (2011)) proposed a method based on
word error rate measures in an effort to automatically
classify the error types. Further, other recent works
also focused on reliability and bias analysis (Liu et al.,
2021) as well as hardware and software performance
(Mattson et al., 2020). Though automation is impor-
tant, automatic classification is limited to a predefined
set of error types. In this demo, we present an interface
that easily shows the best/worst performing sentences
given a set of filters. It is extensible to handle any prop-
erty of the input or the output, allowing for fine-grained
segmentation of test cases. Further, it allows users to
quickly debug single MT systems or compare multiple
MT systems against each other.

3. System Description

3.1. System Design

The demo interface is based on two primary compo-
nents, namely a back-end database and a front-end
business intelligence visualization toolkit. For the
back-end database, we used mySQLEl, which is a pop-
ular open-source relational database management sys-
tem. For a given test sentence, we stored the follow-
ing information: sentence ID, test set name, topic, lan-
guage pair (source and target language), source sen-
tence, reference manual translation, translations from
all the providers, values of all evaluation metrics for all
providers along with mean and standard deviation for
each metric, and sentence length. To speed up search,
we designed an entity-relationship schema, where dif-
ferent tables store subsets of the information and tables
are linked together using primary and foreign keys. For
example, we have a table that contains general informa-
tion about each sentence such as source sentence, refer-
ence translation, and topic, and another table that con-
tains all the translations from all the different providers.
The two tables are linked using sentence IDs. For the
front-end visualization tool, we used Metabasqﬂ which
is an open-source business intelligence tool, which con-
nects to a back-end database and creates plots based
on the results of SQL queries. The SQL queries are
allowed to have custom “WHERE” statements, which
allows for optional and dynamic filtration on different
column values. Using such filtration, users of our inter-
face can filter on a variety of features such as test set,
topic, metric, translation provider, and sentence length
to identify the sentences with the best/worst transla-
tions. Figure [I] shows a sample SQL statement with
the corresponding output plot.

Shttps://www.mysql .com/
‘nttps://github.com/metabase/metabase

Average Scores by Metric grouped by topic

circle_ MT ® triangle MT ® square MT ® pentagon MT @ hexagon MT ® septagon MT

SELECT Avg(data_metrics.metric_value), data_metrics.provider,
data_main.category
FROM data_main
JOIN data_metrics on data_metrics.sentence_id = data_main.sentence_id
WHERE
[[AND data_main.language_pair = Language_P. 11
[[AND data_main.category = Topic}}]]
[[AND data_main.corpus = {{corpus}}]]
[[AND data_metrics.metric_name = {{n 1]
[[AND data_main.source_length < 1 gth}}1]
[[AND data_main.source_length > in 3th}}]]
GROUP BY data_metrics.provider, data_main.category|

Figure 1: Sample plot with associated SQL statement.
Optional conditions are put between square brackets.

3.2. Metrics

We used three types of MT evaluation metrics, namely
reference similarity metrics, human evaluation estima-
tion metrics, and referenceless metrics.

Reference similarity metrics measure the similarity be-
tween a reference translation (or translations) and ma-
chine translation output, with higher similarity leading
to higher scores. They range from ones that strictly
use the surface forms, such as BLEU (Papineni et al.,
2002) and character n-gram F-Score (chrF) (Popovic,
2015)), to ones that use semantic similarity, such as
BERTScore (Zhang et al., 2019). In the demo, we uti-
lized BLEU and chrF.

Human evaluation estimation metrics attempt to learn
the scores that a human would have provided to ma-
chine translation outputs. These are generally con-
sidered among the most robust measures of machine
translation quality. For this type of metrics, we used
COMET_DA (Rei et al., 2020), which reportedly cor-
relates better with human scores compared to BLEU,
chrF, and BERTScore.

Referenceless metrics attempt to compare/rank ma-
chine translation outputs in the absence of a ground-
truth reference translation. They rely on multilin-
gual embeddings to compute the similarity between the
source sentence and machine translation outputs. They
are considered less reliable than metrics that utilize ref-
erence translations. We used two such metrics namely
COMET_QE (Rei et al., 2020) and MTQuality, which
we developed internally and uses cosine similarity be-
tween source sentence and machine translation output
using Language-Agnostic BERT Sentence Embedding
(LaBSE) (Feng et al., 2020).

3.3. Test sets

For the demo, we used 4 test sets for two language
pairs namely English—German (EN-DE: 12,500 sen-
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tences) and German—English (DE-EN: 12,491 sen-
tences). The test sets were sampled from 4 different
test sets from OPUS?]> which is a large public database
of translated texts. The 4 sets and sample sizes are as
follows:

Test set | EN-DE | DE-EN
OpenSubtitles” | 2,293 | 2,291
TED2013/] 2,857 | 2,856
TED202(f 4,786 | 4,786
Europar ﬂ 2,564 2,558

We translated all the sentences in the test sets using
6 different commercial translation providers. For le-
gal purposes, we are anonymizing their names and
using the following names instead: circle_ MT, trian-
gle_MT, square_MT, pentagon_MT, hexagon_MT, and
septagon_MT. For topic classification, we used a pub-
licly available BERT model that is fine tuned on the
Yahoo! Answers datase(!’]

3.4. Interface

The interface of the demo is composed of 4 main sec-
tions as follows:

 Figure E}a has available filters, which include lan-
guage pair, test set (corpus), topic, evaluation met-
ric, MT provider, and minimum and maximum
source sentence lengths. Filter values can be pro-
vided manually or by clicking on the items in Fig-
ure3]b as in Figure[2]

Figure[3]b includes general information about test
sets (size, language pair breakdown, test set cor-
pora breakdown, and topic breakdown), evalua-
tion metrics, and evaluation metric values (over-
all or for specific topics). Clicking on any of the
items (ex. language pair, topic, or metric) would
automatically update the filters and would update
the number of test sentences that match the filter
criteria and the sentences show in Figures [3]c and

Bld.

* Figure [Blc compares the different MT results
based on differences in standard deviation be-
tween the different results (for a specific evalua-
tion metric). Specifically, the tables show the sen-
tences with the lowest standard deviation (ranked
by lowest overall performance to show the sen-
tence where all the systems are not producing
good results) and by the highest standard devia-
tion (to show the sentences where some providers
are providing very good translations while others
are producing very poor translations). Identifying
sentences where all providers are failing can high-
light errors in the reference translations and uni-
versal issues that plague MT systems in general.

Shttps://opus.nlpl.eu/
Yhttps://huggingface.co/fabriceyhc/
bert-base-uncased-yahoo_answers_topics

Language Pair Breakdown

language_pair: en-de

count(data.source): 4,786
Percentage: 50%

3

Figure 2: Highlighting and selecting a value to filter on.

* Figure [3]d shows the worst and best performing
sentences for a specific provider as measured by a
specific metric and that match any filter that was
applied (test set, topic, or sentence length). The
ranking is done by metric value first and then by
metric standard deviation across all providers (in
descending order). Showing the worst and best
examples that match a user’s criteria can help the
user identify areas where their system is failing (or
succeeding) particularly compared to other MT
vendors.

4. System Debugging Using Our System

This section showcases sample scenarios with associ-
ated screenshots on how the system can used to debug
MT output.

Scenario 1 (Figure[d): This scenario shows the sub-
setting of the test set to see the impact of filters (lan-
guage pair: EN-DE; metric: COMET_DA; test set:
TED2020; sentence length between 10 and 50 charac-
ters) on different topics while showing how many sen-
tences match the filters. The Figure shows that “Com-
puters & internet” topic is performing the worst while
“Sports” where performing the best.

Scenario 2 (Figure[5): This scenario shows the worst
performing sentences for all systems and the sentences
where there is most variability between vendors (ap-
plied filters: language pair: EN-DE; topic: Society
& Culture; metric: BLEU). Looking at the sentences
where all the systems are performing poorly, there
seems to be mistakes in some of the reference trans-
lations. For the sentences with the most variability, the
output translations from different vendors are provided
in the interface.

Scenario 3 (Figure [6): This scenario shows the
worst and best performing sentences for a specific
provider (applied filters: language pair: DE-EN; met-
ric: COMET_QE; provider: square_MT). Looking at
the sentences where the system is performing poorly,
there seems to be some shortcomings of the evaluation
metric for some of the sentences, and in other cases the
machine translation system produced incorrect transla-
tions.
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Figure 3: Screenshot of interface.
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Figure 4: Subsetting the test set to see the impact of filters.
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Figure 5: Identifying sentences where all providers do poorly, or there is a large variance between translations.
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de-en Aa Corpus Aa Topic [’cometﬁqe x ] [squareﬁMT x ] Aa Min Length Aa Max Length
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Worst Performing Sentences

source reference translation [l
Sieb in bi ie wett das bringt nicht viel ein. ki i inis h, but it don't amount to much. They burn a little booze, they bet... but that doesn't pay much. s
Leben in M d v i indi legen L i ... don't know, wherever the hell you fat cats go . Living wherever such money bags like tolieinthe sun. s
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Figure 6: Identifying sentences where a single provider performs the best or the worst.
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5. Conclusion

In this demo, we show an intuitive interface that al-
lows user to debug and analyze MT systems in isola-
tion or against each other through the use of a vari-
ety of filters such as test sets, metrics, input sentence
properties, topic, etc. The interface can be extended to
include additional filters such as lexical, morphologi-
cal, and syntactic features. As the scenarios we pre-
sented suggest, the application of filters can help iden-
tify poorly performing topics, which my indicate gaps
in training data, mistakes in reference translations, and
even shortcomings in evaluation metrics. Other filtra-
tion scenarios may uncover other problems that may
be intrinsic to a specific MT system or common across
multiple systems. To access the complete platform and
other benchmarking services, aiXplaiIE-] membership
is required.

For future work, we plan to integrate correlations be-
tween features of input sentences and evaluation met-
rics. This would allow us to introduce more sophis-
ticated filters and sentence ranking functions, such as
showing the worst performing sentences across all MT
systems given the morphological feature that correlates
most with a given evaluation metric. Another interest-
ing direction entails providing additional filters such as
lexical, morphological, and syntactic features. We also
plan to integrate human-in-the-loop evaluation in our
platform to supplement our automatic metrics.
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