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Abstract
Medical data annotation requires highly qualified expertise. Despite the efforts devoted to medical entity linking in different
languages, available data is very sparse in terms of both data volume and languages. In this work, we establish benchmarks
for cross-lingual medical entity linking using clinical reports, clinical guidelines, and medical research papers. We present a
test set filtering procedure designed to analyze the “hard cases” of entity linking approaching zero-shot cross-lingual transfer

learning, evaluate state-of-the-art models, and draw several interesting conclusions based on our evaluation results.
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1. Introduction

Entity linking is the task of establishing correspon-
dences between free-form text mentions and a formal-
ized list of concepts (Shen et al., 2014} |Sevgili et al.,
2020). In this work, we consider medical entity linking
— the task where entity mentions are mapped against
a large set of medical concept names and their con-
cept unique identifiers (CUIs). The biomedical do-
main is characterized by extensive dictionaries of con-
cepts such as the Unified Medical Language System
(UMLS) (Bodenreider, 2004), Medical Subject Head-
ings (MeSH) (Coletti and Bleich, 2001), Systematized
Nomenclature of Medicine Clinical Terms (SNOMED-
CT) (Spackman et al., 1997), or Medical Dictionary for
Regulatory Activities (MedDRA) (Brown et al., 1999),
and a high variation of mentions.

Early models for biomedical entity linking commonly
used classification type losses (Rios and Kavuluru,
2018; Miftahutdinov and Tutubalina, 2019; [Lou et al.,
2020) that work well on narrow benchmarks but often
lead to significant performance degradation on other
domains and structurally different texts. Modern ap-
proaches usually employ similarity between embed-
dings (distributed representations) of words and con-
cepts. From classical #f-idf and word2vec embed-
dings (Aronson, 2001; |Ghiasvand and Kate, 2014;
Van Mulligen et al., 2016; Leaman and Lu, 2016
Dermouche et al., 2016), entity linking systems have
evolved to leverage vector representations constructed
by deep neural models that take advantage of self-
attention (Vaswani et al., 2017) and a BERT-like rank-
ing architecture (Zhu et al., 2019; |Sung et al., 2020; Tu-
tubalina et al., 2020). We especially note the Biomed-
ical Named Encoder (BNE) (Phan et al., 2019) and

BioSyn (Sung et al., 2020) — a Transformer model
based on BioBERT (Lee et al., 2020).

Along with the progress of embedding techniques and
neural architectures, the reported performance of state-
of-the-art entity linking models has been steadily in-
creasing over the past years. However, their evalua-
tion in many works remains limited. Oftentimes, mod-
els are evaluated in the single-terminology setting, on
the same kind of data they were trained on, and in a
very narrow domain devoted to a specific type of texts
and/or a specific set of diseases (e.g. oncological) sim-
ply divided into training and test parts. Moreover, stan-
dard train/test splits often contain data leaks where the
same terminology and even mentions of the same kind
leak from the training set into the test set, significantly
improving the scores and restricting fair evaluation of
transfer capabilities to other domains. [Tutubalina et al.
(2020) show that this effect leads to a significant posi-
tive bias in reported quality metrics and that such data
leaks do exist in biomedical datasets of English scien-
tific abstracts widely used for entity linking evaluation.

Lately, entity linking has started to shift towards the
zero-shot setting, where the test set contains only
novel concepts that have not been seen in the training
data (Logeswaran et al., 2019} [Basaldella et al., 2020;
Mohan et al., 2021} |Sevgili et al., 2020). This set-
ting is harder and can be considered more “fair” since
it mitigates many trivial linking cases. In this work,
unlike commonly used single-terminology evaluation,
where all concept names and CUIs from a target dic-
tionary are seen during training, we consider a cross-
terminology setting — a sophisticated version of zero-
shot: test sets contain novel concepts from a target
terminology, while another terminology is used during

4212


mailto:anton.m.alexeyev@gmail.com
mailto:ainesterov@gmail.com
mailto:sergey@logic.pdmi.ras.ru

training.

A recent systematic literature survey (Kersloot et al.,
2020) reviews the current state of the development
and evaluation of NLP algorithms for mapping med-
ical text fragments onto ontology concepts. The au-
thors study 77 works, and only 17 (22%) of them per-
form the evaluation on non-English datasets, includ-
ing Italian (Combi et al., 2018)), Portuguese (Duarte
et al., 2018), Japanese (Usui et al., 2018), and Ko-
rean (Kang et al., 2008). Although those datasets do
not always contain entity linking annotations, there
is an imbalance of English/non-English data. More-
over, prior art with cross-terminology evaluation has
been restricted to the single-language setting. In this
work, we make another step towards the fair evalua-
tion of medical entity linking models across languages.
We unite these two directions, providing both cross-
terminology and cross-lingual evaluation on real-life
biomedical and clinical texts.

We test the transfer capabilities of recently proposed
models for medical entity linking across languages,
taking care to avoid leaks from training to test parts
of the datasets used. We seek to answer the following
research questions:

RQ1: Do test sets of current benchmarks in English,
Spanish, French, German, and Dutch lead to an
overestimation of performance?

RQ2: What is the fair evaluation strategy?

RQ3: What is the potential of a model trained on a cor-
pus in English to generalize for the zero-shot clin-
ical entity linking in other languages?

RQ4: What types of word representations can be used
for cross-lingual clinical entity linking (state-of-
the-art contextual word representations, sparse
representations)?

We show that filtering the test sets to avoid leaks
proves to be crucial for a fair evaluation and provides
new interesting and sometimes unexpected conclu-
sions: sparse baselines consistently outperform BERT-
based models, domain knowledge is very important for
the quality, and fine-tuning on medical datasets can sig-
nificantly improve the results, an effect that is not no-
ticeable in common benchmarks without filtering.

2. Data

We construct a full-scale multilingual evaluation
benchmark from several real-life clinical and biomed-
ical datasets. Table [I] summarizes basic statistics of
these datasets: number of concepts, number and the
average length of entity mentions, percentage of men-
tions with numerals. Examples of dataset instances are
presented in Table

2.1. CodiEsp

The CodiEsp dataset was presented at Clinical Case
Coding in Spanish Shared Task at the CLEF 2020
evaluation forum (Miranda-Escalada et al., 2020b).
It contains structured information (clinical records)
with entities mapped against the ICD-10 vocabu-
lary (CodeBooks, 2016); we use the CodiEsp Diagno-
sis (CodiEsp-D) subset and the dictionary provided in
CodiEsp.

2.2. Cantemist

Cantemist (CANcer TExt MIning Shared Task on Iber-
LEF 2020 (Miranda-Escalada et al., 2020a)) is a man-
ually annotated text corpus of tumor morphology men-
tions in Spanish mapped to the latest Spanish version
of the oncological ontology, which is a part of ICD-
O (World Health Organization, 2013); we use the dic-
tionary from (Lépez—Ubeda et al., 2020).

2.3. MCN

MCN (Medical Concept Normalization) (Luo et al.,
2019) is a large-scale manually annotated corpus in
English for clinical concept normalization produced
from a corpus released for the 4th i2b2/VA shared
task (Uzuner et al., 2011) with a dictionary of concepts
from SNOMED-CT extracted from the UMLS 2020
AA release.

2.4. Mantra

Mantra GSC (Kors et al.,, 2015) is a collection of
biomedical text units such as drug labels and patent
claims manually cross-labeled by several annotators
in five different languages: English, French, German,
Spanish, and Dutch. The Mantra terminology is a sub-
set of UMLS with concepts from MeSH, SNOMED-
CT, and MedDRA extracted from the UMLS 2020 AA
release; we use DISO entities (UMLS semantic group
“Disorders” (Bodenreider and McCray, 2003)).

2.5. Other Datasets

Other available clinical datasets do not suit our needs.
The German clinical guidelines dataset (Borchert et
al., 2020) does not have concept-level annotations.
English, Spanish, and Portuguese texts in Multi-
NEL (Ruas et al., 2020) are synthetic. The Portuguese
clinical notes dataset (Peters et al., 2020), the Japanese
dataset of patient complaints (Usui et al., 2018), the
Korean clinical dataset (Kang et al., 2008), and the Ital-
ian drug reaction corpus (Combi et al., 2018) are not
publicly available yet. The dataset of death certificates
in Portuguese does not contain annotated entities and is
not publicly available (Duarte et al., 2018)).

An important recent work presented the XL-BEL
cross-lingual biomedical entity linking task (Liu et al.,
2021) that allowed to test domain transfer across lan-
guages. However, XL-BEL does not allow for cross-
terminology transfer evaluation and basically repre-
sents WikiMed (Vashishth et al., 2020) aligned across
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Dataset Lang | # in Avg. % with Split Filtering
full lenin numer- |Train Test| Trainset | Dictionary
corpus chars als Filt. Filty, | Filt. Filtg o

Entity mentions
CANTEMIST | es [10031 18.73 6.92 6396 3635| 998  711|3268 3040
CodiEsp-D es |10874 1584 1.05 7209 3665|1386 1167|3449 3347
MCN en |13609 1236 1.54 6684 6925|3204 2819|3386 2304
Mantra de |201 17.62  0.50 - 201 - -1 107 62
en |452 1642 1.11 - 452 - -1 126 66
es |166 19.67 2.41 - 166 - - 65 38
fr 222 17.64 045 - 222 - -1 99 50
nl [127 16.06 0.00 - 127 - -1 65 44
Concepts

CANTEMIST | es |657 - - 493 386| 332 279| 364 321
CodiEsp-D es |2206 - - 1767 1143| 841  750|1142 1050
MCN en |3792 - - 2331 2579{2000 1834|1631 1195
Mantra de |169 - - - 169 - -1 97 53
en |373 - - - 373 - -1 119 61
es |147 - - - 147 - -1 69 35
fr | 185 - - - 185 - -1 83 39
nl |117 - - - 117 - -1 62 42

Table 1: Statistics of the datasets in English (en), Spanish (es), French (fr), German (de), and Dutch (nl).

ten different languages via Wikipedia, so the cri-
tique above fully applies to XL-BEL as well. We
note an important difference between datasets such as
WikiMed (Vashishth et al., 2020) and medical texts
such as clinical health records or scientific abstracts.
The usage of medical terms is very different between
Wikipedia and other texts, so entity linking results may
not transfer well. In this work, we use a disease-centric
approach to data collection, with a broad collection of
datasets with real medical texts.

2.6. Filtering Strategies

We present a novel test set filtering strategy to avoid
train/test leaks and provide a fair and more challenging
comparison in the cross-terminology setting. We con-
struct a reference set of terms from concept names in an
entity dictionary (thesaurus) and filter out from the test
set all instances, in which mention surface forms match
any term in the reference set (filtering by a dictionary).
We also perform the evaluation in a less challenging
setting suggested by Tutubalina et al. (2020) where the
reference set for filtering is constructed from the entity
mentions in the training dataset (filtering by a training
set). For a reference set of terms/entities, we provide
the following evaluation types:

e Full: compute metrics on the test set as provided
in the dataset itself;

e Filtered: remove from the test set all entities that
are already present in the reference set (exact
match, e.g., we remove all instances of “depres-
sion” from the test set if it is already present in the
reference set);

e Filteredy o: remove from the test set all entities
where the character-based Levenshtein distance to

the nearest neighbor in the reference set is under
0.2 (e.g., we remove “depressed” if “depression”
occurs in the reference set). This complicates the
task even further since a model cannot rely on
word similarity and have to use more sophisticated
contextual features. The bigger the threshold the
harder the evaluation setting.

Table 1| shows how many concepts and entity mentions
remain in the test sets of each of the datasets after the
corresponding filtering method is applied. Note that fil-
tering significantly reduces the number of entity men-
tions in test sets across all datasets, and the difference
is especially striking for training set filtering. This indi-
cates a large number of train set leaks that we discussed
in Section[T]

3. Models for Medical Entity Linking

For entity linking, we use a ranking model based on
embeddings of a mention and a possible concept. Each
entity mention and a concept name is passed first
through a model that produces their embeddings and
then through an average pooling layer that yields a
fixed-sized vector. The inference task is then reduced
to finding the closest concept name representation to
entity mention representation in a common embedding
space, where the Euclidean distance can be used as the
metric. Nearest concept names are chosen as top-k
concepts for entities.

3.1. Entity and Concept Representations

We compare the following mention/entity vector repre-
sentations:

* Tf-idf: standard sparse tf-idf representations con-
structed from character-level unigrams and bi-
grams;
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Dataset Lang | Name

CUI Mention

CANTEMIST es “Neoplasia maligna”

“Neoplasia metastdsica”

..malignos o de malignidad intermedia...

..compromiso metastdsico, y tras presentarse...

8000/3 malignidad

8000/6 metastasico

CodiEsp-D es “otros trastornos especificados de musculo” M62.89 hipertrofia del psoas
“adenomegalia localizada” R59.0 Adenopatias inguinales
MCN en “Gastritis”, “Gastric catarrh”, etc. C0017152  gastritis

..was negative for gastritis ,
“Empirical therapy (procedure)”
..was started on empiric treatment...

stricture or ulcer...
C1299597  empiric treatment

Mantra (DISO) de

“Arthralgie”, “Gelenkschmerz”, etc.
...Ubelkeit, Arthralgien, niedrigem Blutdruck...
“Lumbalgie”, “Unterer Rueckenschmerz”, etc.

..und mittelstarken Kreuzschmerzen kommen...

C0003862  arthralgien

C0024031 kreuzschmerzen

.. .Neumonia~x,

en “Nausea (disorder)”, “Feeling queasy”, etc. C0027497 nausea
“Arthralgia”, “Pain in joint”, etc. C0003862  arthralgia
..reactions, nausea, arthralgia, low blood pressure...
es “Inflamacién pulmonar”, “Neumonia”, etc. C0032285 neumonia

infeccidén de vias respiratorias...

“Infeccion de los senos”, “Sinusitis”, etc. C0037199  sinusitis
..respiratorias altas, sinusitis, candidiasis oral...
fr “Anoréxique”, “Anorexie”, etc. C0003123 anorexie
..incluent fieévre, anorexie (perte d’ appétit)...
“Irritabilité”, “Humeur irritable”, etc. C0022107 irritabilité
..vomissements, diarrhée, irritabilité, somnolence...

5

“weefsel infiltratie”

nl “blaasneoplasma”, “neoplasma blaas”, etc.
..classificatie van blaastumoren en de behandeling...

...de oppervlakkig infiltrerende tumoren...

C0005695 blaastumoren

C0332448 infiltrerende

Table 2: Data samples from test sets (with fragments of original source texts where available). Each contains a
mention (e.g. “sinusitis”) and a concept ID (e.g. “C0037199”). Note that identifiers come from different sets.
“Names” are taken from: “valid_codes.txt” (a list of codes and names provided by the competition organizers) for
Cantemist, “codiesp_codes” (a list of valid CIE10 codes provided by the CLEF2020 eHealth track organizers as a
dictionary for the corresponding task) for CodiEsp, SNOMEDCT _US part of UMLS for MCN and Mantra-En, the
rest are taken from MedDRA in German, Spanish, French, and Dutch, respectively.

e BERT: multilingual BERT embeddings with no
fine-tuning (Devlin et al., 2019); this is a cross-
lingual baseline that has not been trained on
biomedical texts;

e BETO: Spanish BERT embeddings (Canete et al.,
2020);

* BioBERT-esp: BioBERT embeddings fine-tuned
over Spanish clinical data (Villena, 2021} (we test
BioBERT-esp and BETO on Spanish datasets);

* SapBERT: a BERT-based metric learning frame-
work that generates hard triplets based on the
UMLS for large-scale pre-training (Liu et al.,
2021a)) and also allows for a cross-lingual vari-
ant (Liu et al., 2021b) trained on XL-BEL (Liu
etal., 2021).

3.2. Fine-tuning

To fine-tune SapBERT models, we use synonym
marginalization and iterative candidate retrieval as sug-
gested in a recent state-of-the-art model BioSyn (Sung
et al., 2020). We compare the following versions:

* SapBERT+target with fine-tuning on the target
train set;

* SapBERT+mcn with fine-tuning on the MCN En-
glish train set;

» SapBERT+mcn-fz4 and SapBERT+mcn-fz10 on
the MCN English training set with freezing the
first four and ten layers, respectively.

4. Experiments
4.1. Experimental Setup

For monolingual evaluation, we leverage the train / test
splits provided with each corpus. As shown in Ta-
ble [T} only CANTEMIST, CodiEsp, and MCN have
a train/test split in our study: Mantra subsets are too
small for fine-tuning. For cross-lingual evaluation,
we train models on the MCN English train set with a
source dictionary and evaluate on the test sets of each
other corpora (i.e., the farget). Specifically, ranking
models retrieve the nearest concept name in a target
dictionary for a given mention representation at the in-
ference time. We note that cross-lingual evaluation pro-
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Dataset Model Full Filtered Filtered, -
Acc@1 Acc@5| Acc@1 Acc@5| Acc@1 Acc@5
CodiEsp Tf-idf 20.55% 39.24% | 14.21% 25.76% | 13.62% 24.51%
Diagnostico BERT 10.45% 15.58% | 6.49% 9.88% | 6.51% 9.68%
BETO 947% 15.09% | 5.92% 10.03% | 5.83% 10.03%
BioBERT-esp 10.07% 14.38% | 6.78% 11.98% | 7.11% 12.34%
SapBERT 47.83% 63.66% |32.61% 46.10% |31.62% 45.33%
SapBERT-+target 67.18% 76.23% | 47.62% 61.26% |45.42% 58.53%
SapBERT+mcn 48.27% 64.07% | 33.04% 47.69% |31.96% 46.19%
SapBERT+mcn-fz4 | 48.32% 63.68% | 33.48% 47.40% |32.56% 45.76%
SapBERT+mcn-fz10 | 49.14% 64.31% | 33.26% 47.76% | 31.62% 45.67%
MCN Tf-idf 59.00% 6591% | 52.12% 62.77% | 51.15% 61.58%
BERT 48.61% 52.16% | 36.64% 41.29% |36.64% 41.15%
SapBERT 66.28% 74.55% | 62.84% 71.99% |59.95% 69.03%
SapBERT-+target 69.36% 80.90% | 66.94% 74.42% | 63.64% 73.79%
CANTEMIST | Tf-idf 27.02% 47.92% | 20.24% 31.76% | 20.25% 32.07%
BERT 25.50% 34.69% | 8.72% 13.43% | 8.72% 13.50%
BETO 13.43% 19.17% | 9.82% 14.13% | 10.13% 14.77%
BioBERT-esp 1524% 23.41% | 11.72% 1894% | 11.81% 19.13%
SapBERT 57.47% 65.23% | 28.06% 36.47% |28.41% 36.99%
SapBERT+target 79.45% 87.76% | 53.31% 68.54% |51.48% 66.10%
SapBERT+mcn 61.29% 67.02% |29.06% 39.98% |29.54% 40.51%
SapBERT+mcn-fz4 | 61.60% 66.63% |29.66% 39.28% |30.10% 40.23%
SapBERT+mcn-fz10 | 57.47% 65.45% | 28.06% 37.27% |28.55% 37.41%

Table 3: Results of the evaluation with filtering by a training set.

vides a challenging setup for the standard supervised
models, especially for linking of mentions in another
language not encountered during training.

We evaluate the models in the information retrieval sce-
nario, where the goal is to find top-k concepts for every
entity mention in a dictionary of concept names and
their identifiers. Following previous works on entity
linking (Suominen et al., 2013} |Pradhan et al., 2014;
Wright et al., 2019; |Phan et al., 2019} Sung et al., 2020;
Tutubalina et al., 2020), we use the top-k accuracy as
the evaluation metric: Acc@k = 1 if the correct UMLS
concept unique identifier is retrieved at the rank < k,
otherwise Acc@Qk = 0.

For evaluation of methods that perform ranking without
fine-tuning, we leverage publicly available implemen-
tation from (Tutubalina et al., 202011_-] and the following
pre-trained models available in the Hugging Face (Wolf]
et al., 2020) repository:

e BERT-multilingual (Devlin et al.,,
bert-base-multilingual-cased;

¢ BETO (Canete et al., 2020): dccuchile/
bert-base-spanish-wwm-uncased;

* BioBERT-esp (Villena, 2021) fvillena/
bio-bert-base-spanish-wwm-uncased.

2019):

The implementation of the core SapBERT is
based on the publicly available repository (Sung
et al., 2020ﬂ The modifications are taken

'https://github.com/insilicomedicine/
Fair—-Evaluation—-BERT

“https://github.com/cambridgeltl/
sapbert

from the public BioSyn repositoryﬂ We fine-
tune various SapBERT models (Liu et al,
2021b) starting from the pre-trained checkpoint

SapBERT-UMLS-2020AB-all-lang-from—-XLMR,

which was constructed by the authors from
cross-lingual RoBERTa (Conneau et al., 2019),
xlm-roberta-base. The pre-training hyperpa-
rameters for SapBERT can be found in the original
work. We performed the fine-tuning with the following
hyperparameters: the number of top candidates k is
20, the mini-batch size is 16, the learning rate is le-5,
the dense ratio for candidate retrieval is 0.5.

4.2. Results

Table [ shows the Acc@1 and Acc@5 metrics for
datasets with the training set used as the reference set
for filtering, while Table E] shows these variations with
the entity dictionary used as the reference set for filter-
ing. Table |3| does not contain the Mantra dataset be-
cause it is too small to reasonably use for fine-tuning.
The results of our evaluation suggest several important
and interesting conclusions.

First, Tables [3] and ] show a significant difference be-
tween evaluation strategies: on full test sets, there is
virtually no difference between SapBERT variations,
but on filtered datasets, fine-tuning on MCN or the tar-
get dataset brings a significant increase in accuracy.
For weaker baselines, the filtering effect can be drastic.
For example, note how the BERT-based model in Ta-
ble @] dropped from 48% top-1 accuracy to 12.5% and
6.2% on the MCN dataset after dictionary-based filter-
ing. This indicates that the most successful matches

*https://github.com/dmis-1lab/BioSyn
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Dataset Model Full Filtered Filtered, -
Acc@1 Acc@5| Acc@1 Acc@5| Acc@1 Acc@5
CodiEsp Tf-idf 20.55% 39.24% | 15.63% 35.49% | 15.45% 35.28%
Diagnostico BERT 10.45% 15.58% | 4.90% 10.35% | 4.75% 10.18%
SapBERT 47.83% 63.66% | 44.62% 61.44% |44.55% 61.14%
SapBERT+mcn 48.27% 64.07% | 45.09% 61.87% |44.19% 60.98%
SapBERT+mcn-fz4 | 48.32% 63.68% |45.14% 61.47% |44.25% 60.56%
SapBERT+mcn-fz10 | 49.14% 64.31% | 46.01% 62.13% | 38.54% 50.95%
MCN Tf-idf 59.00% 6591% | 33.82% 45.87% |24.61% 36.55%
BERT 48.61% 52.16% | 12.55% 19.46% | 6.21% 10.98%
SapBERT 66.28% 74.55% | 47.50% 59.08% |38.54% 50.80%
SapBERT-+target 69.36% 80.90% | 54.99% 67.13% | 46.14% 58.16%
CANTEMIST | Tf-idf 27.02% 47.92% | 18.85% 42.07% | 16.57% 28.01%
BERT 25.50% 34.69% | 17.17% 27.36% | 16.48% 26.55%
SapBERT 5747% 65.23% | 52.72% 61.32% | 51.12% 59.64%
SapBERT+mcn 61.29% 67.02% | 56.98% 63.31% |55.86% 61.61%
SapBERT+mcn-fz4 61.6% 66.36% |57.31% 62.88% |56.22% 61.05%
SapBERT+mcn-fz10 | 57.47% 65.45% | 52.72% 61.57% | 51.12% 59.64%
Mantra Tf-idf 73.63% 79.10% | 50.47% 60.75% |29.03% 45.16%
(German) BERT 59.20% 63.68% |23.36% 31.78% | 8.07% 16.13%
SapBERT 87.56% 95.52% | 76.64% 91.59% | 64.52% 88.71%
SapBERT+mcn 88.06% 95.52% | 80.30% 89.39% | 67.74% 87.10%
SapBERT+mcn-fz4 | 89.55% 95.02% | 80.37% 90.65% | 72.58% 87.10%
SapBERT+mcn-fz10 | 88.06% 95.52% | 77.57% 91.59% | 66.13% 88.71%
Mantra Tf-idf 86.06% 92.04% | 51.59% 73.02% |43.94% 62.12%
(English) BERT 78.54% 84.29% | 24.60% 45.24% | 16.67% 37.88%
SapBERT 93.81% 96.90% | 79.37% 90.48% |75.76% 90.91%
SapBERT+mcn 94.03% 96.90% | 80.16% 90.48% | 80.30% 89.39%
SapBERT+mcn-fz4 | 94.25% 97.12% | 80.95% 91.27% | 80.16% 90.48%
SapBERT+mcn-fz10 | 94.25% 96.90% | 80.95% 90.48% | 80.30% 90.91%
Mantra Tf-idf 71.69% 80.72% | 45.45% 62.34% |26.32% 44.74%
(Spanish) BERT 62.65% 69.28% |25.97% 38.96% | 10.53% 15.79%
SapBERT 83.73% 90.36% | 71.43% 83.12% |47.37% 68.42%
SapBERT+mcn 84.34% 90.96% | 72.73% 84.42% | 50.00% 71.05%
SapBERT+mcn-fz4 | 85.54% 92.17% | 75.32% 87.01% |52.63% 76.32%
SapBERT+mcn-fz10 | 84.34% 92.77% | 72.73% 87.01% |47.37% 76.32%
Mantra Tf-idf 77.03% 80.63% | 50.51% 57.58% |30.00% 38.00%
(French) BERT 65.32% 71.62% | 24.24% 37.37% | 2.00% 12.00%
SapBERT 82.43% 93.24% | 62.63% 84.85% | 46.00% 76.00%
SapBERT+mcn 83.33% 95.50% | 64.65% 89.90% | 54.00% 84.00%
SapBERT+mcn-fz4 | 84.23% 94.14% | 66.67% 86.87% | 54.00% 80.00%
SapBERT+mcn-fz10 | 82.88% 93.69% | 63.64% 85.86% |48.00% 78.00%
Mantra Tf-idf 73.23% 77.95% | 53.85% 61.54% |43.18% 50.00%
(Dutch) BERT 55.12% 58.27% | 18.46% 24.62% | 13.64% 20.45%
SapBERT 84.25% 87.40% | 73.85% 80.00% |63.64% 72.73%
SapBERT+mcn 85.83% 87.40% | 78.46% 80.00% |70.45% 72.73%
SapBERT+mcn-fz4 | 85.83% 87.40% | 78.46% 80.00% | 70.45% 72.73%
SapBERT+mcn-fz10 | 84.25% 87.40% | 75.38% 80.00% | 65.91% 72.73%

Table 4: Results of the evaluation with filtering by a dictionary.

of these models come from training set leaks and very
simple cases of entity linking (surface forms). A fair
comparison requires filtering procedures such as the
ones we suggest in this paper.

Another result is that fine-tuning on additional medical
data is generally beneficial; e.g., we have found that
SapBERT fine-tuned on English clinical notes outper-
forms basic SapBERT consistently across all datasets
in our study. However, a separate experimental eval-
uation is required to find the best parameters for this

process: which layers to freeze during fine-tuning, how
many epochs of training to conduct, etc. Interestingly,
fine-tuning SapBERT improves results only after one
epoch (we show these in the tables), and then the qual-
ity begins to drop, probably signifying overfitting. We
also note that fine-tuning on the target dataset instead
of English MCN as expected helps to substantially im-
prove the quality.

Finally, the weaker baselines also provide new in-
sights. The sparse #f-idf baseline consistently outper-
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forms BERT-based ranking. Many recent works forgo
sparse baselines entirely, but our results suggest that
it may be premature. Both multilingual and Spanish
BERT consistently perform much worse than all com-
petitors, showing that biomedical domain knowledge is
crucial for solving this task.

5. Conclusion

We have presented the first cross-lingual benchmark for
clinical entity linking in English, Spanish, French, Ger-
man, and Dutch. We perform an extensive evaluation
of BERT-based models with state-of-the-art biomedi-
cal representations in two setups: with official train/test
splits and with filtered test sets. Our filtering strategy
keeps only entity mentions, which are dissimilar to en-
tries from the reference set. As the reference set, we
adopt a training set or a target entity dictionary. Our
evaluation shows the great divergence in performance
between official and proposed test sets for all languages
and models, answering positively to the RQ1 and sup-
porting the claim that fair evaluation requires the pro-
posed dataset filtering (the answer to the RQ2). Our ex-
periments with SapBERT show that cross-lingual train-
ing on the English MCN corpus substantially helps
to improve the performance on clinical datasets in
other languages, which answers the RQ3. Finally, an-
swering the RQ4, we note that general-purpose mod-
els without domain knowledge and fine-tuning are al-
most useless for the considered task, falling behind
even the simplistic tf-idf baseline. Our fair evalu-
ation shows that clinical entity linking requires pre-
training at least on the related biomedical corpora. The
constructed benchmark for cross-lingual clinical en-
tity linking is available at https://github.com/
ATIRI-Institute/medical_crossing.

Our study opens up new venues for further work. First,
we plan to extend this evaluation to more languages,
more corpora, and other types of entities (not only dis-
eases but, e.g., medical procedures or drugs). Sec-
ond, SapBERT receives a significant boost in the per-
formance by using synonymous relations, but in fact,
the concepts form a tree-like hierarchy, and taking it
into account may improve the results further. Third,
since our method of evaluation moves towards zero-
shot territory, we plan to apply other recently developed
approaches in zero-shot learning to the entity linking
problem.
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