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Abstract
Transformer models have achieved significant improvements in multiple downstream tasks in recent years. One of the main
contributions of Transformers is their ability to create new representations for out-of-vocabulary (OOV) words. In this
paper, we have evaluated three categories of OOVs: (A) new domain-specific terms (e.g., “eucaryote” in microbiology), (B)
misspelled words containing typos, and (C) cross-domain homographs (e.g., “arm” has different meanings in a clinical trial
and anatomy). We use three French domain-specific datasets on the legal, medical, and energetical domains to robustly analyze
these categories. Our experiments have led to exciting findings that showed: (1) It is easier to improve the representation
of new words (A and B) than it is for words that already exist in the vocabulary of the Transformer models (C), (2) To
ameliorate the representation of OOVs, the most effective method relies on adding external morpho-syntactic context rather
than improving the semantic understanding of the words directly (fine-tuning) and (3) We cannot foresee the impact of minor
misspellings in words because similar misspellings have different impacts on their representation. We believe that tackling the
challenges of processing OOVs regarding their specificities will significantly help the domain adaptation aspect of BERT.
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1. Introduction
The most recent NLP models based on neural net-
works, such as Long-Short Term Memory (LSTM) net-
works (Peters et al., 2018), attentive convolution (Yin
and Schütze, 2018) and Transformer models (Vaswani
et al., 2017), are trained and evaluated on general-
domain datasets. Pre-trained Transformer models such
as BERT (Devlin et al., 2018) have proven their ef-
fectiveness in adapting to multiple NLP tasks and do-
mains. Among the specificities of this architecture, its
capacity to adapt to out-of-vocabulary (OOV) terms is
a crucial element of its success.
The pre-trained models rely on a Unigram tokenizer
algorithm (e.g., SentencePiece or WordPiece) (Kudo
and Richardson, 2018) or on the Byte-Pair Encoding
(BPE) algorithm (Sennrich et al., 2015), which allows
the splitting of a word into multiple sub-words. The
main idea of dividing words into sub-words is to re-
duce the vocabulary size by computing frequent sub-
units in OOVs. Unfortunately, these tokenization algo-
rithms are purely statistical and lead to semantic infor-
mation loss when dealing with domain-specific terms.
Bostrom and Durrett (2020) showed that BPE is sub-
optimal for language models pre-training, as it did not
align well with morphology compared to Unigram for
English and Japanese. It suggests that sub-units do
not contain semantic or syntactic information and that,
consequently, the words are poorly represented in the
embedding space. In this study, we study the impact of
tokenization on the representation of OOV terms.
On top of that, the models have to address user-
generated noisy text (e.g., content from social media

or e-mails). Typos (e.g., character insertion), smileys,
and abbreviations are the most common noise. Accord-
ing to Park et al. (2016), OOVs can be categorized
into multiple categories when working on social me-
dia (e.g., foreign words, spelling errors, internet slang).
Using their typology as inspiration, we will evaluate
the robustness of Transformer models for three types
of OOVs:

• new domain-specific terms (e.g., “protozoon” and
“eucaryote” in microbiology);

• misspelled words containing typos (e.g., “infrac-
tus” instead of “infarctus” in medicine);

• cross-domain homographs (i.e., words that are
spelled alike but have different meanings) of
words existing in the general language (e.g.,
“arm”, either an anatomical part in the general lan-
guage or a sub-part from a cohort of patients in
clinical trials).

By examining these issues, we move towards a deep
understanding of the robustness of Transformer models
regarding OOVs processing. In particular, we make the
following main contributions:

1. We define a statistical measure to quantify how
much the tokenization process impacts the posi-
tion of OOVs in the embedding space. We show
that our measure leverages the semantic informa-
tion shared between clusters of words to evaluate
if the OOVs are segmented into coherent units.
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2. We evaluate several methods in the literature to
help process the semantics of OOVs (i.e., fine-
tuning the language models, adding morpho-
syntactic information before the encoding, and
concatenating the output with external represen-
tation). We demonstrate that adding morpho-
syntactic context improves the representations for
the three categories of OOVs studied in this pa-
per. We conclude that to better process OOVs
with Transformer models, adding structural infor-
mation is more effective than adding semantic in-
formation into the embeddings (e.g., with fine-
tuning).

3. We analyze the specificities of three types of
OOVs (i.e., domain-specific terms, misspelled
words, and homographs). We show that if the
representation of new OOVs can be improved us-
ing various methods, modifying the representa-
tion of existing words (homographs) remains chal-
lenging. Fine-tuning the models with specific
hyper-parameters combined with data augmenta-
tion could help resolve this issue.

2. Related Works
2.1. Tokenization into sub-words
Tokenizing texts into sub-tokens / sub-words has re-
ceived much attention in recent years with the rise of
NLP models based on deep learning to generate lan-
guage models (Pires et al., 2019). For instance, phar-
macological entity detection is complex because drugs
often recombine independently existing words. Each
sub-unit has a singular semantic (e.g., “hydroxychloro-
quine” may be tokenized into “hydr”, “oxy”, “chloro”,
“quine”). Finding the rare recombination in a large cor-
pus can be difficult with a regular tokenizer. However,
using the correct sub-words may enhance the process-
ing of the semantics of the words. Gage (1994) and
Sennrich et al. (2015) introduced Byte-Pair Encod-
ing (BPE), which relies on a pre-tokenizer that splits
the training data into a set of unique words and their
frequency. Then, BPE creates a vocabulary consist-
ing of all symbols in the training data and represents
each word with its corresponding sequence of charac-
ters, plus a final symbol representing the end of the
word. BPE then counts the frequency of each pos-
sible symbol pair and picks the symbol pair that oc-
curs most frequently. Each merge operation produces a
new symbol, which represents a character n-gram. The
most frequent character n-grams – which may corre-
spond to whole words – are merged into one symbol.
The vocabulary size of the model (i.e., the symbol vo-
cabulary + the number of merges) is a hyperparame-
ter to choose before the training. Unigram is a sub-
word tokenization algorithm introduced by Kudo and
Richardson (2018) which initializes its vocabulary to
a large number of symbols. Next, the algorithm it-
eratively trims down every symbol to reduce its size.

For instance, the initial vocabulary could correspond to
all pre-tokenized words and their most frequent sub-
words. The unigram tokenization method is not used
directly by the models but exists in conjunction with
SentencePiece. The specificity of SentencePiece is that
it includes the space in the symbol vocabulary before
using Unigram to construct the vocabulary. Doing so
allows languages that do not use space as a word de-
limiter to build a suitable vocabulary.

2.2. Impact of Noise on Tokenization

Sun et al. (2020) studied the robustness of BERT to-
wards adversarial inputs containing keyboard typos and
demonstrated that BERT has unbalanced attention to-
wards the typos. They also showed that BERT is not
robust towards noise on question answering and sen-
timent analysis tasks. Bagla et al. (2021) further
demonstrated that BERT’s performance on fundamen-
tal NLP tasks like sentiment analysis and textual sim-
ilarity drops significantly in the presence of simulated
noise (spelling mistakes, typos).

3. Transformer Models

In this paper, we will compare two French Trans-
former models: CamemBERT (Martin et al., 2020)
and FlauBERT (Le et al., 2020) which are trained on
large French corpora. We use the standard version (i.e.,
“Base”) for both models containing 12 layers, 12 bidi-
rectional self-attention heads, and 768 hidden units.
We provide details about both models in Table 1. We
compare the native models with the following varia-
tions, aiming to correct OOVs semantic processing:

Fine-tuned CamemBERT/FlauBERT We first fine-
tune the language models on the three datasets sepa-
rately by pursuing the training of the models on new
texts. We perform vanilla fine-tuning to compare the
models without hyper-parametrizing the models too
much.

Concatenation with ELMo We combine a pre-
trained contextual embeddings model (Peters et al.,
2018) with Transformers to add more context into the
embeddings, as suggested by Polatbilek (2020). We
use the French pre-trained model provided by Che et
al. (2018), with embeddings of dimension 512. We
concatenate the representations of ELMo and Trans-
former models (i.e., CamemBERT or FlauBERT) for
each word, obtaining a dimension of 1230.

CamemBERT/FlauBERT-POS (Benamar et al.,
2021) Like the original setup, we added morpho-
syntactic features into the models, as presented in
Figure 1. Part-of-speech (POS) tags are used to add
morpho-syntactic context into the representations. The
authors believed that structural context was essential
to improve the semantic processing of OOVs.
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Figure 1: Encoding example with BERT-POS for the
sentence J’ai un problème de facturation, which could
be translated as ”I have a billing problem” and tagged
as ” I prop have verb a det billing noun problem noun
. punct”

Model Tokenizer *Vocab.
Size

CamemBERT-Base SentencePiece 30 522
FlauBERT-Base BPE 30 145

Table 1: Transformer Models’ description ; *Number
of tokens in the vocabulary

4. Datasets
In this section, we present the three datasets used for
our experiments1. Our objective is to analyze the ro-
bustness of the methods to enhance the processing of
OOVs in various domains and compare the results with
a qualitative evaluation. To provide an in-depth analy-
sis, we analyze the results in three domains: medical,
legal, and energy. We provide a descriptive analysis of
the datasets in Table 2. We present the distribution of
POS-tags in the datasets in Figure 6 and the number of
tokens obtained with the pre-trained models (i.e., de-
tailed in Table 1) in Table 6.

Dataset Domain #Docs. #Sents.
Med-Gallica Medical 942 912 209
DEFT-Laws Legal 363 721 364 498
EDF-Emails Energy 79 916 250 923

Table 2: Datasets’ description

Med-Gallica The dataset has been collected on the
French digital library GALLICA. GALLICA contains a
large amount of digitized historical documents such as
books or press articles and offers to download the doc-
uments after OCR. We selected French documents with
plain text access for this experiment and dated between

1The datasets DEFT-LAWS and MED-GALLICA

are provided at https://github.com/
alexandrabenamar/evaluating_tokenizers_
oov

1887 and 1900. Each document contains metadata, in-
cluding publication date, author(s), title, and other cat-
egories. The dataset consists of medical news extracted
from the French medical journal “Journal de Microbi-
ologie”. We segmented the long documents into sen-
tences before cleaning them from the noise (whole cap-
ital sentences, encoding errors, header removal). All
the cleaning has been handmade. The OCR errors cre-
ated many misspellings in the dataset, which generated
OOVs. We will study the impact of OCR errors on the
representation of the OOVs.

DEFT-Laws The second dataset consists of concate-
nated laws extracted from the DEFT’06 training cor-
pus (Azé et al., 2006). After the original extraction of
the texts, we observed many misspelled words. The
most frequent error is that many accents have disap-
peared from the original documents.

EDF-Emails The Electricité de France (EDF) emails
corpus is a private and anonymized corpus of French
customer emails collected between October 2018 and
October 2019. We applied the same cleaning tech-
niques as the corpora extracted from Gallica. There
are orthographic and syntactic errors (e.g., wrong word
order and conjugation errors), smileys, abbreviations,
and Energy-specific terms.

5. Evaluation Metrics for Sub-Units
In this paper, we aim to measure the similarity between
two words based on their segmentation into sub-words.
We propose the two metrics detailed below: Dice co-
efficient adapted to sub-units and Dice-SU coefficient.
We use the notations detailed in Table 3 to define the
metrics.

Notation Description
X, Y X = x1, . . . , xk and Y =

y1, . . . , yl are strings of length k
and l, respectively, composed of
symbols of a finite alphabet.

nX , nY number of n-grams in X and Y .
nZ number of common n-grams be-

tween X and Y

tM (X), tM (Y ) tokenization function for X and
Y , using the Transformer model
M .

ntM (X),ntM (Y ) total number of sub-words ob-
tained after the tokenization of X
and Y .

ntM (Z) total number of common sub-
words between X and Y .

|tM (X)i|,|tM (Y )i| total number of characters in the
ith sub-word of X and Y .

|tM (Z)i| total number of characters in the
ith common sub-word between X
and Y .

Table 3: Definitions and Notations

Dice coefficient Dice coefficient is a popular word
similarity measure to calculate the ratio of the num-

https://github.com/alexandrabenamar/evaluating_tokenizers_oov
https://github.com/alexandrabenamar/evaluating_tokenizers_oov
https://github.com/alexandrabenamar/evaluating_tokenizers_oov
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ber of n-grams shared between two strings and the total
number of n-grams in both strings:

Dice(X,Y) = 2× nZ

nX + nY
(1)

We adapt the Dice coefficient by replacing the n-grams
with the sub-words (generated during tokenization):

Dice(X,Y) = 2×
ntM (Z)

ntM (X) + ntM (Y )
(2)

Dice for Sub-Units (Dice-SU) coefficient Dice co-
efficient is very effective to compare the sub-units
between two words. However, generating small
sub-words during tokenization can be suboptimal,
as some of the sub-tokens might be too small to
retain semantic information. For instance, if we
measure the Dice coefficient between the words
snakes, snake and cars, tokenized respectively into
“snake+s”, “snake” and “car+s”, we obtain close re-
sults between Dice(snakes, snake) = 0.67 and
Dice(snakes, cars) = 0.5, due to plural markers
rather than semantic information. We propose the Dice
for Sub-Units (Dice-SU) coefficient, a variant of the
Dice coefficient, which penalizes the small sub-units
during tokenization. The higher the value, the bigger
the sub-units shared between two words. We propose
the following formal definition:

Dice-SU(X,Y ) =

2×
ntM (Z)∑
i=0

|tM (Z)i|
ntM (X)∑

i=0

|tM (X)i|+
ntM (Y )∑
i=0

|tM (Y )i|
(3)

Back to the example, we obtain 0.91 of similar-
ity with DICE-SU(snakes, snake) and only 0.2 for
DICE-SU(snakes, cars). We manage to better esti-
mate the shared level of semantic between two words.

6. Experiments
In this paper, we use the partition of OOVs in three
categories, as detailed in Section 1.

6.1. Domain-specific OOVs classified into
new words

We aim to evaluate the representations of new
domain-specific terms generated by CamemBERT and
FlauBERT. We conduct this experiment on two do-
mains: legal and medical. We do not use EDF-Emails
in that section since these types of OOVs are not fre-
quent in the corpus. We selected ten frequent domain-
specific OOVs in DEFT-Laws2 and Med-Gallica3. We
computed the five closest associates of each OOV using

2allegation, fraudulent, minutes of proceedings, delib-
erate, rule, appearance, discriminatory, regularized, trans-
feree, national, regularized, registered, sealed, and affixed

3incubation, bacteriological, epileptic, prophylactic, tu-
berculosis, cauterization, bacillophage, sepsis, hyperesthe-
sia, and anorexia

cosine similarity. Next, we tokenized the OOVs and
their associates using a Transformer model (Camem-
BERT or FlauBERT). We measured and averaged the
Dice coefficient and the Dice-SU coefficient between
the OOVs and their associates. The complete proce-
dure is detailed in Algorithm 1. We present the re-
sults obtained on DEFT-Laws and Med-Gallica in Fig-
ure 2. We observe the distributions of Dice coefficients
and Dice-SU coefficients obtained for the OOVs with
each model. A detailed example of the results obtained
for the word ”discriminatoires” on DEFT-Laws is pre-
sented in Table 8.

DEFT-Laws We observe that the Dice coefficient
is on average higher with CamemBERT than with
FlauBERT by 20%. Consequently, the OOVs
representations are more affected by the tokeniza-
tion with CamemBERT than FlauBERT. Moreover,
adding morpho-syntactic information drastically re-
duces the tokenizer’s impact on the OOVs represen-
tation. FlauBERT-POS is averaging 0% of similarity
between the sub-units, meaning that the sub-units of
the associates of OOVs are utterly different from the
sub-units of the OOVs. Finally, Dice-SU coefficient is
globally inferior to 0.5%, meaning that the neighbors
share small sub-units with the OOVs. Consequently,
we assume that the shared sub-units do not hold much
semantic information. We note that the fine-tuning did
not change the representation of the OOVs. However,
adding contextual information (with ELMo or POS)
reduced the impact of the tokenizer, especially when
adding morpho-syntactic context.

Med-Gallica We obtained similar tendencies on
Med-Gallica, except that there are more shared sub-
units between the OOVs and their associates. The
Dice-SU coefficient is higher, with the averaged sim-
ilarity score comprised between 50% and 70%. In the
medical domain, the coverage between the sub-units of
OOVs and the sub-units of their closest associates is
high, meaning that even though the tokenizer has a sig-
nificant impact on the representation of OOVs, the se-
lected sub-units are probably full of relevant semantic
information.

6.2. Misspelled words
Misspelled words are challenging to detect with models
using sub-words such as FastText (Edizel et al., 2019)
or BERT (Nayak et al., 2020; Sun et al., 2020). At
word-level, such errors may result from incorrect in-
sertion, deletion, or substitution of a character or the
transposition of two adjacent characters. At sentence-
level, they can correspond to syntactic errors. We con-
duct this study on three specific types of misspellings,
one for each dataset:

• DEFT-Laws: we analyze misspellings on words
that exist in the vocabularies of CamemBERT and
FlauBERT (e.g., “xonditions” instead of “condi-
tions”).
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Algorithm 1 Unsupervised Evaluation of Tokenizer’s Impact in the Embedding Space of OOVs
Input: A domain-specific word w; a dataset containing a vocabulary V of size N ; a matrix of embeddings

X of shape (N ,length of embeddings); a Transformer model M ; a similarity measure sim(tM (W1), tM (W2))
between the words W1 and W2; a number n of closest associates to evaluate.

Step 1. Compute the n closest associates of w.
1: p← position of w in V
2: cp ← cosine similarity between Xp and X ▷ Similarity between w and the rest of the vocabulary
3: ai ← argmaxcp , i = 1, . . . , n ▷ Get the indices of the top n closest associates
4: Y ← V [ai]

Step 2. Tokenize w and its Y associates, and compute the similarity.
1: Sn = []
2: for yi in Y do
3: Si ← sim(tM (w), tM (yi)) ▷ Similarity between the sub-units of w and yi
4: end for
5: s← mean(Sn) ▷ Averaged similarity for the top n associates

Output: s
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Figure 2: Distribution of Dice coefficient and Dice-SU coefficient over 10 domain-specific OOVs on DEFT-Laws
(top) and Med-Gallica (bottom). We computed the averaged coefficients between each OOV and their five closest
neighbors (using cosine similarity). The boxplots contain the ten scores computed (one for each OOV) with a
model (e.g., CamemBERT, FlauBERT, etc.) and a metric (Dice or Dice-SU)

• Med-Gallica: we focus on misspellings of
domain-specific words not existing in the mod-
els’ vocabulary (e.g., “injoction” instead of “in-
jection”). OCR errors cause all the misspellings
in this dataset.

• EDF-Emails: we evaluate the processing of mis-
spellings on words that are specific to the structure
of emails and appear at similar positions in the
texts (e.g., “cordiallement” instead of “cordiale-
ment”, meaning cordially).

We randomly extracted 100 misspelled words from
each corpus to compare the handling of misspellings

by the models. Next, we associated the mis-
spelled words with their correct version. Fi-
nally, we computed the cosine similarity between
the pairs {wordcorrect, wordmisspelled}. The re-
sults are presented using heatmaps, where each
box represents the cosine similarity between a pair
{wordcorrect, wordmisspelled} (i.e., correctly written
and its misspelled variation). We present the results ob-
tained on DEFT-Laws, Med-Gallica and EDF-Emails
on Figures 3a, 3b and 3c respectively. Table 4 contains
the average similarity obtained for the 100 OOVs.
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CBERT
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FBERT-POS

(a) DEFT-Laws
CBERT

CBERT+FT
CBERT+ELMo

CBERT-POS
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FBERT-POS

(b) Med-Gallica
CBERT

CBERT+FT
CBERT+ELMo

CBERT-POS
FBERT

FBERT+FT
FBERT+ELMo

FBERT-POS

(c) EDF-Emails

Figure 3: Cosine similarity between 100 random misspelled general-domain words and their correct associate. The
x-axis contains the pairs wordcorrect, wordmisspelled. The redder the box, the higher the similarity between the
pair

Law Medical Emails
CBERT 0.19 0.39 0.27
+ELMo 0.32 0.54 0.44
+POS 0.63 0.66 0.92
FBERT 0.15 0.37 0.34
+ELMo 0.34 0.57 0.56
+POS 0.56 0.63 0.93

Table 4: Average cosine similarity results between the
100 random selected misspelled words and their correct
associates on all datasets

DEFT-Laws CamemBERT performed slightly better
by than FlauBERT with 3% of difference between the
cosine similarity. While it could mean that the tok-
enization based on SentencePiece is slightly more ef-
fective than BPE in constructing semantic sub-words
for misspelled words, the difference between the results
of both methods remains too thin to validate the hy-
pothesis. Surprisingly, fine-tuning the language model
with part of the data did not change the results for
the selected misspelled words. Consequently, the mis-
spelled words were not selected during fine-tuning to
add to the vocabularies, neither with BPE nor Sentence-
Piece. Concatenating the output of Transformers with
ELMo improved the models, even though these words
are probably OOVs in the ELMo model since ELMo
was trained on generic data. However, ELMo appears
to regroup words with their misspelled versions, us-
ing the context of other words in the sentence. The
concatenated representation increases the similarity be-
tween the misspelled words and their correct version
by 19% of similarity with FlauBERT and 13% with
CamemBERT. Moreover, adding morpho-syntactic in-

formation into the embeddings improves the results
even more, with 44% of cosine similarity obtained with
CamemBERT and 41% on FlauBERT. We conclude
that to process OOVs more efficiently, the models need
to better understand the surrounding context without
incorporating the OOVs into their vocabularies.

Med-Gallica We observe similar results on the mis-
spelled domain-specific words in the Med-Gallica
dataset, corresponding to OCR errors. This task is
more complex than the previous one because first, the
models must process the domain-specific terms in the
first place. Second, they must process the misspelled
versions of the words and understand their proximity.
Nevertheless, the models have a better semantic under-
standing of these misspelled words than those in DEFT-
Laws. The results are higher than on misspelled words
of general-domain, obtaining 39% and 37% of simi-
larity, respectively, with CamemBERT and FlauBERT.
Even though we cannot compare the results obtained
on DEFT-Laws and Med-Gallica directly since the con-
text of the words are different and so is the type of the
OOVs, it is interesting to note the difference between
the OOVs. In the medical domain, the Transformers
performed poorly, averaging 38% of similarity between
the models, but still captured some semantic proximity
for the misspelled words compared to the results in the
legal domain.

EDF-Dataset On EDF-Dataset, we analyze the mis-
spellings on email-specific words. This study is differ-
ent from the others because the context of the words
surrounding the target will change drastically, but the
words’ positions in the sentences are similar. In Ta-
ble 3, we observe that the models perform similarly
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Figure 4: EDF-Emails dataset - Cosine similarity between the words “remboursement” (i.e., refund) on top, “cor-
dialement” (i.e., cordially) in the middle and “salutations” (i.e., greetings) at the bottom and their spelling errors’
variants. We distinguish between errors at the start, middle and end of the words (from left to right).
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Figure 5: Percentage of co-occurring words in the neighborhood of homographs between DEFT-Laws and Med-
Gallica. We compared the n=10 nearest neighbors of each word in both datasets

to other types of misspellings, except that the perfor-
mances after adding morpho-syntactic context OOVs
are even better. Indeed, we obtain 92% of cosine simi-
larity between the pairs {wordcorrect, wordmisspelled}
with CamemBERT-POS and 93% with FlauBERT-
POS. It represents 65% and 59% of the performance
gap, respectively, with CamemBERT and FlauBERT. It
is easy to explain why the method performs even bet-

ter on this task. Indeed, the addition of POS makes
it possible to add syntactic context without adding any
semantic information. We expect to bring together the
selected words thanks to their position in the texts,
so this method is effective. Nayak et al. (2020) hy-
pothesized that word-beginning spelling errors were
more severe than others because they affected tokeniza-
tion the most. To test this hypothesis, we use EDF-
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Emails because it contains users’ misspellings instead
of external tools-generated mistakes. We selected three
words for their high frequency in the corpora and their
high rate of misspelling errors: “cordialement” (cor-
dially), “remboursement” (refund) and “salutations”
(i.e., greetings). The results are shown in Figure 4,
where misspelled words are separated regarding the po-
sition of the error in the word (i.e., start, middle, and
end). We cannot observe significant differences be-
tween the misspelled errors for these words. However,
we state that not all errors of the same type are equiva-
lent. For instance, the word “cordialement” (tokenized
into cordialement with CamemBERT) has two simi-
lar misspellings: “dcordialement” and “ccordialement”
(tokenized into c,cord,iale,ment with CamemBERT),
but “dcordialement” (tokenized into d,cord,iale,ment
with CamemBERT) is the closest to the original word
with all the methods. It is interesting because it means
that misspellings can generate different sub-words and
that, even with the same tokenization and depending
on the characters, the misspelled words cannot be pro-
cessed similarly. This result is problematic because it
cannot be predicted when processing the sub-words.

6.3. Cross-domain Homographs
In this section, we aim to determine if terms specific to
a domain are treated contextually by the Transformer
models. More precisely, we seek to evaluate the im-
pact of the domain on the processing of homographs
specific to this domain. We recover four words with
different meanings when used in legal or medical con-
texts. Table 7 contains the definitions4 of these terms
in both contexts.
To evaluate if the semantics of the words are specific
to the specialty domain of the corpora, we recover for
each word and each domain the ten closest neighbors,
using cosine similarity. Next, the objective is to com-
pare, for each word, its neighborhood in the legal field
and the medical field. We compute the co-occurring
neighbors between domains using the formula:

similarity =
number of co-occurences

n
(4)

where n is the number of neighbors we use in the ex-
periments. In these experiments, we use n=10. We
motivate our approach by stating that the neighbors
of a word, when using embeddings as representation,
symbolize the semantic understanding captured by the
model. Therefore, the synonyms are supposed to be
close in the embedding space. The other words that
appear in the same context should also be close in the
embedding space. In our experiments, the homographs
appear in different contexts with different vocabularies.
Consequently, they should not share many neighbors.
Figure 5 presents the similarity we obtain for the four
selected words with all the models. We provide more

4Most of the definitions were taken from the TLFi dictio-
nary: https://www.cnrtl.fr/definition/

detailed results in Table 9 for the word “preuve”. We
observe that the words are similar in both datasets as
we obtain at least 50% similarity between their neigh-
bors for most of the methods. For instance, we ob-
serve a 90% similarity for the word “preuve” with
CamemBERT. Looking at the neighbors obtained for
“preuve”, we observe that apart from context-specific
words in law (e.g., testimonials, to convince, counter-
party), we obtain non-specific terms in the neighbor-
hood for both datasets. It may be because the training
data for CamemBERT and FlauBERT is generic. How-
ever, fine-tuning the language models with DEFT-Laws
and Med-Gallica did not improve the results. It is unex-
pected, considering that the context should have helped
the models process a better semantic of the words. We
hypothesize that while fine-tuning can improve the rep-
resentation of new words, such as specific terms or mis-
spelled words, it is not enough to change the represen-
tation of words existing in the initial vocabulary. In
this experiment, we used a vanilla baseline to provide a
general analysis of the models. Naturally, these results
could be improved by specific tuning of the hyperpa-
rameters. Then, we observe that neither the training
data of the models nor the tokenizers appear to impact
the results since CamemBERT and FlauBERT gener-
ate similar results. Finally, we show that no model has
continuously distinguished the semantics of the words
between the domains.

7. Conclusion and Discussion

In this paper, we aimed to evaluate the impact of the
tokenizers on the representation of OOVs.
We proposed a Dice-SU, a new metric for evaluating
the tokenizer’s impact on OOV representation. The
method is based on the shared sub-units between an
OOV and its neighbors in the embedding space. More-
over, it incorporates the notion of semantics inside
the sub-units and penalizes the small sub-units. We
demonstrated that we could not predict the represen-
tation of misspelled words since the models’ tokeniz-
ers are based on a statistic segmentation rather than a
linguistic one. It constitutes a significant issue consid-
ering that similar mistakes cannot be resolved the same
way. Moreover, we showed that it is easier to improve
the representation of new OOVs than for OOVs, which
exist in the general domain (homographs). Finally, we
demonstrated that adding information about the struc-
ture of sentences (i.e., POS tags) is far more effective
than learning new words (fine-tuning). In this paper,
we could not demonstrate the efficiency of fine-tuning
to improve the representation of OOVs. In future work,
we would like to apply our findings to a French e-mails
corpus to determine if adding morpho-syntactic infor-
mation improves the results of an automatic classifica-
tion task. Moreover, we will study the improvement in
downstream NLP tasks (e.g., sentiment analysis) using
the improved embeddings for OOVs.

https://www.cnrtl.fr/definition/
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Appendix
We provide a glossary of translations for the tables in
the Appendix :

Word Translation

arbitraire arbitrary
contradictoire contradictory
contraignant binding
discriminatoire discriminatory
exhaustives détaillée
inacceptables unacceptable
inefficaces ineffective
injustifiés unjustified
restrictives restrictive
néfastes harmful
monotone monotonous
souhaitables desirable
unilatérales unilateral
preuve evidence
convaincre to convince
particularité particularity
certitude certainty
vérité truth
témoignages testimony
enregistrement registration
vestiges remnants

Table 5: Translation of French words used in the Ap-
pendix

Dataset CamemBERT FlauBERT
Med-Gallica 21 156 35 517
DEFT-Laws 16 742 23 972
EDF-Emails 18 991 26 352

Table 6: Number of tokens for each dataset using pre-
trained models

We provide examples of the neighbors for the word
”discriminatoires” :
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Figure 6: Distribution of POS in the datasets

Word Legal Medical
Preuve (Proof or Evidence) Material element (e.g., contractual

document, certificate) which demon-
strates, indicates, proves the truth or
the reality of a situation of fact or law:
proof of a crime.

Scientific evidence is evidence used to
support or disprove a theory or hypoth-
esis in science.

Filiation (Filiation) Legal relationship between parents and
their children.

The continuity of the different forms of
life, resulting from each other.

Observation (Observation or Monitor-
ing)

The act of complying with a rule, a law,
a regulation.

The scientific process of investigation
consists of the careful examination of a
fact, of a process, intending to know it
better, understanding it, and excluding
any action on the phenomena studied.

Isolement Separation of an individual – or a group
of individuals – from other members of
society.

Bacteria and virus culture technique al-
lowing them to be separated within a
contaminated product.

Table 7: Definitions of homographs in a legal context and a medical context

Model Top candidates Dice Dice-SU

C-BERT discriminatoire, discrimination, restrictives, injustifiées, inacceptables 0.33 0.22
C-BERT + ELMo discriminatoire, souhaitables, restrictives, exhaustives, contraignants 0.53 0.25
C-BERT + POS discriminatoire, restrictives, injustifiés, arbitraires, unilatérales 0.53 0.25
F-BERT discriminatoire, non-discriminatoires, discriminations, non-

discriminatoire, discrimination
0.13 0.18

F-BERT + ELMo discriminatoire, non-discriminatoires, restrictives, non-
discriminatoire, inefficaces

0.13 0.18

F-BERT + POS discriminatoire, contradictoires, contraignantes, néfastes, monotone 0.0 0.0

Table 8: DEFT-Laws - Top 5 candidates for the word ”discriminatoires” (i.e., plural of discriminatory) using cosine
similarity. We averaged the Dice coefficient and Dice-SU coefficient obtained between ”discriminatoire” and each
of its five candidates
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Model Laws - Top candidates Medical - Top candidates
C-BERT preuves, confirmation, convaincre,

prouve, prouvent, prouvé, particularité,
démonstration, prouvant, certitude

preuves, preuveên, confirmation, conva-
incre, prouver, prouvent, prouvé, particu-
larité, prouvant, démonstration

+ELMo preuves, certitude, conclusion, confirma-
tion, justification, promesse, différence,
contrepartie, démonstration, possibilité

preuves, preuveên, certitude, conclusion,
démonstration, vérité, chance, trace, justi-
fication, particularité

+POS preuves, justification, mécanismes,
résultant, préservation, arguments,
démonstration, corrélation, témoignages,
certitude

preuves, mécanismes, justification, enreg-
istrement, arguments, démonstration, ves-
tiges, corrélation, témoignages, renforce

+FT preuves, confirmation, prouvent, prouvé,
convaincre, certitude, démontrer,
démonstration, prouver, prouvant

preuves, preuveên, convaincre, prouvé,
prouvent, prouvant, confirmation,
témoignent, particularité, prouve

Table 9: Example of associates for the word ”preuve” on DEFT-Laws (left) and Med-Gallica (right) with four
models: CamemBERT, CamemBERT+ELMo, CamemBERT-POS and CamemBERT+Fine-tuning
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