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Abstract
Today, natural language processing heavily relies on pre-trained large language models. Even though such models are criticised
for poor interpretability, they still yield state-of-the-art solutions for a wide range of very different tasks. While many probing
studies have been conducted to measure the models awareness of grammatical knowledge, semantic probing is less popular. In
this work, we introduce a probing pipeline to study how semantic relations are represented in transformer language models.
We show that in this task, attention scores express the information about relations similar to the layers’ output activations
despite their lesser ability to represent surface cues. This supports the hypothesis that attention mechanisms focus not only on
syntactic relational information but semantic as well.

Keywords: ontology extraction, knowledge probing, semantic probing, explainable AI (XAI), language models inter-
pretation, bertology

1. Introduction
Present-day monopoly of foundation language models
in the majority of NLP tasks forces researchers and
practitioners to rely on popular large models without
genuinely understanding the models’ behaviour. The
development of such models, regardless of impressive
results on the existing benchmarks (Wang et al., 2019;
Shavrina et al., 2020), leads to an interpretability crisis
too. For example, general pre-trained models are often
criticised for memorising things instead of generalising
over the training knowledge.
To enlighten the mechanisms driving these black-box
models’ behaviour, a research area of models interpre-
tation has developed. Probing studies were conducted
outlining the limits to which the learned behaviour of
the existing language models agrees with those devel-
oped by research linguists (Conneau and Kiela, 2018).
The majority of probing works address grammar, while
semantic and factual knowledge remains largely under-
studied (Rogers et al., 2020).
Given the above, there is a gap in understanding of
how models capture factual and semantic knowledge.
By interpreting the models which link texts to the ex-
isting ontologies and databases, one could narrow this
gap: models are expected to use factual and semantic
knowledge to solve downstream tasks efficiently. The
interpretation of such a model, namely a Relation Ex-
traction model, is the key narrative of the present paper.
In this work, we introduce an approach to studying lan-
guage models’ factual and semantic knowledge repre-
sentations. We do so by constructing an intentionally
naive pipeline of Relation Extraction and then inter-
preting its steps. We choose the BERT (Devlin et al.,
2018) model as an object of our study, as it is the model
which is the most covered with interpretability works
and a reasonable baseline for the majority of current

downstream tasks. We employ a probing methodol-
ogy to study if the BERT’s intermediate inference steps
provide enough information to identify the WikiData
(Vrandečić and Krötzsch, 2014) relations over tokens
on the T-REx dataset (Elsahar et al., 2018). For this
end, we go beyond layer-wise probing and perform the
careful interpretability analysis of self-attention mech-
anisms, thus extending the existing knowledge (Koval-
eva et al., 2019) about the semantic abilities of these
core transformer building blocks.

We show that the results of the layer-wise self-attention
weights probing agree with those of the classical prob-
ing of layers activations. A closer analysis of prob-
ing classifiers reveals patterns which strongly overlap
with human clustering of such relations. We thus con-
tribute to the ongoing discussion (Bender et al., 2021)
on the transformer’s ability to meaningfully generalise
over the pre-training data.

Our contributions, therefore, can be summarised as
follows: (i) we provide the methodology for inspect-
ing the self-attention models’ linguistic knowledge. It
comprises building and then analysing a simple inter-
pretable algorithm which follows the core concepts and
a base model of the reasonable baseline for a linguis-
tically challenging task, (ii) we enrich the diagnostic
probing methodology with the ability to inspect re-
lational and primarily semantic relational knowledge,
(iii) we extend the existing knowledge about self-
attention semantic relations awareness by analysing
novel relation classes.

We make our experiments and results available at 1

1https://github.com/deepmipt/
kg-extracting-probing

https://github.com/deepmipt/kg-extracting-probing
https://github.com/deepmipt/kg-extracting-probing
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2. Related Work

2.1. Probing Literature

Several methodological branches can be seen in the
probing community. In our research, we employ di-
agnostic classification techniques. At the same time,
our research is strongly related to the body of atten-
tion interpretation papers — we took our inspiration
in Hewitt and Manning (2019), and our results extend
the findings presented in Kovaleva et al. (2019). To
keep probing studies reliable, the notion of selectivity
and control tasks was introduced in Hewitt and Liang
(2019), which we employ in our study.

Diagnostic Classification Probing Diagnostic clas-
sification probing has gained its popularity for inter-
preting machine translation models (Alain and Bengio,
2016) and is now successfully applied to interpret the
language models.
With language models, a diagnostic classification study
consists of approximating the bond between objects’
embeddings and linguistic property values. Studies
are often conducted layer-wise, involving intermediate
layers’ embeddings, as opposed to downstream tasks,
which mostly rely on the final layer embeddings. Such
studies shed light on how well the linguistic knowl-
edge is captured by language models and how it is dis-
tributed across them.
In their SentEval tool, Conneau and Kiela (2018) intro-
duce ten probing tasks to study representations of lin-
guistic properties in language models. While the Sen-
tEval tool has been originally applied to the sentence
embeddings in the LSTM models, the tool has been
successfully ported to study transformer models as well
(Mikhailov et al., 2021). The authors of LINSPEC-
TOR (Şahin et al., 2020) toolkit extend the diagnostic
probing methodology to employ contextualised token
embeddings. The probing study of semantic awareness
of BERT has previously been conducted in Tenney et
al. (2019). Here, they introduce the ’edge probing’ ap-
proach, which uses embeddings of tokens of a span to
vectorise the relational linguistic structures.
While judging the models’ awareness of properties by
their behaviour on data, one should keep in mind that
this behaviour depends on the properties of both model
and dataset. To estimate the impact of these factors,
Hewitt and Liang (2019) introduce the selectivity term,
assigning the high selectivity score to the approaches
which highlight the impact of the model. To maintain
selectivity, the control tasks methodology has been in-
troduced. It can be illustrated by an example of a ran-
dom initialization control task. When probing both a
pre-trained and randomly initialised model, a selective
approach will show significant differences in scores
since only the pre-trained model has reliable knowl-
edge. Instead, a poorly selective approach will be bi-
ased by the impact of the dataset, which stays the same
in both experiments.

Probing for Relations in Attention Not only layers’
activations embeddings are involved in probing stud-
ies but self-attention weights too. In Hewitt and Liang
(2019), the authors propose a non-parametric approach
to restoring syntactic trees from attention maps. To do
so, for a given sentence, they treat tokens and their
respective self-attention weights as a weighted graph.
The deterministic procedure is then applied to build a
dependency tree from such a graph. The received trees
are shown to be interpretable from the linguistic point
of view, supposing that self-attention mechanisms cap-
ture relational knowledge at the syntactic level.
The semantic awareness of BERT models’ attention
weights has been studied in Kovaleva et al. (2019).
The authors provide an extensive study of self-attention
mechanisms behaviour in transformer language mod-
els, conducting qualitative and quantitative studies of
emerging self-attention patterns. They show that while
BERT shows relatively high probing scores when iden-
tifying frame-semantic relations, there is no evidence
of attention maps specialization on particular types of
relations. In their work, the authors highlight the neces-
sity to investigate a broader range of relations, which
we do in the present work.
In Wallat et al. (2021), the authors conclude that inter-
mediate layers of language models may contain knowl-
edge which is forgotten by the final layers. Thus, the
knowledge is distributed unevenly among the layers. In
order to learn to extract it from attention maps, we need
to study this distribution better. We address this curios-
ity by conducting a close study of individual attention
heads’ role in solving probing tasks.

2.2. Relation Extraction Literature
Various recent neural networks use fine-tuned mod-
els to solve the task of relation extraction from a raw
sequence. For example, Liu et al. (2020) train an
attention-based joint model and use a supervised multi-
head self-attention mechanism to solve that task. In
Xue et al. (2019), the authors introduce a focused atten-
tion model and jointly train it on entity and relation ex-
traction tasks based on a shared task representation en-
coder which is transformed from BERT through a dy-
namic range attention mechanism, out-performing all
previous models on the task. Although such supervised
approaches appear to be very effective and solve the
task with high quality, they often lack interpretability.
In Wang et al. (2020), the authors propose a fully un-
supervised method of relation extraction — the MaMa
(Match and Map) approach. First, they obtain a set
of candidates through a beam search algorithm over
an attention matrix from the last layer (averaged over
heads). Then they filter the triplets using several con-
straints (e.g., empirically chosen threshold) and map
them to WikiData entities. The simplicity of the pro-
posed efficient method leaves room for certain stages of
improvement. See section 5 for relevant insights from
our experiments.
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In Cabot and Navigli (2021), the authors address
the Relation Extraction as a sequence-to-sequence
task, training a transformer (namely, BART-large)
model to translate input texts into a textual rep-
resentation of triplets. For example, the text
”This Must Be the Place” is a song by a new
wave band Talking Heads, containing the triplets
⟨This Must Be the Place, performer,Talking Heads⟩
and ⟨Talking Heads, genre, new wave⟩, will receive the
following translation:
<triplet> This Must Be the Place
<subj> Talking Heads <obj> performer
<triplet> Talking Heads <subj> new
wave <obj> genre.

2.3. Data Resources
In our work, we use the WikiData (Vrandečić and
Krötzsch, 2014), T-REx (Elsahar et al., 2018), and Do-
cREd (Yao et al., 2019) resources to evaluate and inter-
pret models.

WikiData The WikiData resource (Vrandečić and
Krötzsch, 2014) is a knowledge base with more than
90 million data items that are connected by properties
(semantic relations). This open graph contains facto-
logical knowledge from Wikipedia and other related re-
sources.

T-REx The T-REx dataset was introduced in (Elsa-
har et al., 2018). It consists of 11 million WikiData
triplets of tokens automatically aligned with about 3
million Wikipedia abstracts. For our experiments, we
sampled a sub-dataset of T-REx balanced by classes,
leaving only 95 sufficiently presented relations.

DocREd DocREd (Document-Level Relation Ex-
traction Dataset) (Yao et al., 2019) is a relation extrac-
tion dataset built from Wikipedia and WikiData. Since
the raw data for the dataset was provided by human
contributors, the dataset supplies extensive distantly su-
pervised data. We involve 2000 texts with 9852 triplets
sub-sample of the DocREd corpus for our experiments.

3. Methods
To study the semantic awareness of BERT, we employ
a two-stage workflow. We first build an easily inter-
pretable Relation Extraction model on top of BERT.
Then through the proxy of this model, we analyse the
BERT’s semantic knowledge.

3.1. Interpretable Relation Extraction model
Following (Wang et al., 2020), we formulate the Re-
lation Extraction task as identifying triplets of tokens
in text and labelling them with the respective relations
Ids. Each triplet represents one entry of particular se-
mantic relation (in our case, the relations are WikiData
properties) in a given text. Each triplet consists of head,
tail, and rel (in short, h, t, r). For example, the sentence
Moscow is the capital of Russia would have one anno-
tated triplet ⟨Russia, Moscow, capital⟩ with label P36

(capital). We only involve the triplets that have an ex-
plicitly expressed form of a rel token in the text. This
ignores the case when the relation between two enti-
ties might not be expressed in any token of the text at
all. Such opaque relation triplets are always filtered out
(e.g. from the T-REx dataset) in our study.
The algorithm works on a sentence level. To identify
the triplets, we employ a binary classifier which pre-
dicts whether a triplet encodes a relation in the sentence
or not. We select the triplets for further processing with
this classifier, heuristically filtering out the linguisti-
cally implausible triplets. These triplets are then fed
into a multiclass classifier which is trained to predict
the relation Id for the given attentions between tokens
of the triplet. The confidence of both classifiers was
used to filter out the unlikely relation triplets.

Triplet Candidates Filtering Heuristics Since all
of the target triplets follow almost the same syntactic
patterns and are usually expressed by a limited group
of parts of speech, we use POS filtering to select the
triplets with plausible POS tags. Only noun groups and
pronouns are allowed to be head and tail candidates,
and only verbs and noun groups could be generated as
a potential rel token. We use the NLTK (Loper and
Bird, 2002) chunker to identify noun groups. 2

Triplets Vectorization Each triplet is represented
by a vector which we obtain by collecting attention
weights between the tokens of the triplet. The weights
from all layers and all heads of the BERT model are
taken and then concatenated into one vector. Since
there exist six types of pairwise weights for every
triplet of the tokens in every attention matrix (head-rel,
rel-tail, etc.), we end up having a vector of length 864
(6 types of attention × 12 layers × 12 heads). Thus, ev-
ery attention weight is treated as a feature of the triplet.
If a head, tail or rel token consists of multiple sub-
tokens after the BPE-tokenization step, their attention
weights were aggregated with mean pooling.

Binary Classifier uses logistic regression to identify
if there is a semantic relation between the tokens. Since
we generate many candidates for every input sequence,
we pay attention to the triplets which the model is most
confident of.
The model is trained on a balanced subsample inferred
from the T-REx. The original T-REx annotations serve
as a positive class, and the triplets for the negative class
are randomly sampled from the same sentences. This
sampling strategy assumes that all true triplets are an-
notated in the T-REx dataset. Carefully inspecting the
dataset, we find sentences lacking several triplets anno-
tation; thus, our classifier is trained on a slightly shifted
dataset.

Multiclass Classifier logistic regression is used to
further predict the relation Id for the chosen triplets.

2We have experimented with Spacy as well, with worse
overall performance
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The Complete Pipeline. The purpose of training two
separate classifiers is twofold: first, it simply increases
the overall predicting ability of the full pipeline; sec-
ond, distinguishing knowledge detection from its fur-
ther classification allows for more interpretation strate-
gies.
The whole pipeline is summarized in Figure 1.
During our experiments, we score the pipeline twice.
First, we evaluate the average F1-score for both clas-
sifiers on the respective previously held-out parts of
the training data. This evaluation allows estimating
individual stages’ performance in perfect conditions.
Second, we evaluate our whole Relation Extraction
pipeline on the golden standard data.

3.2. Using RE Model to Analyse BERT
The proposed Relation Extraction model can be used
to analyse the BERT’s semantic knowledge. The per-
formance of the binary classifier proxies the simplicity
of relation tokens identification. The study of general-
izations made by the multiclass classifier complements
the analysis of the whole pipeline. It approximates how
informative attention weights are from a more detailed
perspective. We inspect the multiclass model follow-
ing the diagnostic probing methodology and support
our experiments with the random initialization control
task.
The classifiers’ features importances provide us with
the mapping of relations onto the multidimensional
space. The attention heads induce the axes, and the co-
ordinates for every relation are these heads’ importance
weights. To better understand the behavioural patterns
of the attention heads, we inspect the relations group-
ings in this space and estimate the individual axes’ im-
portances for the RE task.

4. Results
4.1. Relation Extraction Performance
Classifiers Table 3 summarises the classifiers’ per-
formance on a test set (macro averaged by relations for
the multiclass classifier).

Probes Selectivity The randomly initialised BERT
shows poor score in our experiment (Table 3). The
probing models are unable to learn and generalise con-
nections between the tokens, suggesting that there is
neither hidden knowledge nor significant leakages of
dataset surface structure through the model layers. This
allows us to call our probes selective.

Triplets Extraction Scores and Threshold Parame-
ter Table 1 presents the results of our triplets extrac-
tion algorithm on a raw text with different confidence
thresholds applied. This experiment reveals that both
binary and multiclass models’ confidences are useful
to predict triplets.

Extraction Quality Analysis We find a significant
mismatch between the measured scores of the classifi-
cation models and the entire pipeline evaluation. While

Binary
Threshold

Multi
Threshold Pr* Rec* F1

0.7 0.2 0.135 0.279 0.176
0.8 0.2 0.145 0.241 0.174
0.9 0.2 0.169 0.178 0.163
0.7 0 0.096 0.366 0.149
0.8 0 0.108 0.291 0.155
0.9 0 0.136 0.202 0.155

Table 1: Results of the triplets prediction on a raw text
with different threshold parameters. The best extrac-
tion scores are in bold.

models operate with the triplets with a reasonably high
score, the metrics of the relation extraction on raw texts
are significantly lower.
As the number of tokens in a sentence increases, the
number of generated candidates grows exponentially
(see Table 2). In contrast, the number of the annotated
target triplets remains about the same. As a result, even
the classifier that predicts meaningful triplets with 0.86
accuracy on a balanced dataset ends up over-generating
triplets on the real data, worsened even more by the im-
balance of classes on the real data.

Size
Bucket

Mean
Candidates Pr Rec F1

(0, 10) 20 0.4328 0.4873 0.4584
(10, 20) 118 0.1628 0.3043 0.2121
(20, 40) 841 0.0611 0.2184 0.0954
(40, 70) 4169 0.0190 0.1570 0.0338
(70, 100) 17601 0.0057 0.1005 0.0108

(100, 150) 61166 0.0002 0.0104 0.0005

Table 2: Bucket statistics.

Attention Classifier Pr Rec F1 Acc*

BERT Binary 0.902
Random BERT Binary 0.498

BERT Multi 0.867 0.861 0.863
Random BERT Multi 0.026 0.024 0.018

Table 3: Classifiers test scores.

4.2. Comparison with the existing Relation
Extraction models

To calibrate the degree of belief in our model, we com-
pare its performance with another Relation Extraction
model, REBEL (Cabot and Navigli, 2021) (Table 4).
Both models are scored on two datasets, T-REx and
DocREd. On T-REx, our method outperforms REBEL,
primarily due to the ability to process pronouns. On
the DocREd, the performance of our method drops sig-
nificantly due to the over-generation described in 4.1.

*Pr stands for Precision, Rec stands for Recall, Acc
stands for Accuracy
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Figure 1: Summary of proposed relation classification pipeline. A potential triplet is encoded by concatenation of
attention scores between all components from the BERT model. Resulting feature vector is sequentially classified
by binary and multiclass logistic regression classifiers.

See Appendix A for the example of knowledge graphs
provided by both approaches for the exact text. On
both datasets we heuristically rank the output of binary
model according to the confidence.

Model Dataset Pr Rec F1

Our T-REx 0.220 0.534 0.312
REBEL T-REx 0.223 0.375 0.276
Our DocREd 0.259 0.175 0.208
REBEL DocREd 0.594 0.437 0.503

Table 4: Performances comparison with DocREd.

4.3. Self-Attention Types Importance
The existence of six attention weight types for each
triplet yields multiple available vectorization strategies,
simply allowing us to exclude weights of a particu-
lar type from pooling. We conduct 63 experiments
with all possible combinations of attention types to in-
spect which types of attention provide less information
than the others. Our experiments show that the setup
that uses all types of attention weights outperforms any
other weights combination. The increase in the atten-
tion types involved leads to the growth of the predic-
tion score. Table 5 shows top-5 attention types com-
binations without ranking candidates by confidence of
binary model.
Figure 2 depicts the importance of attention types for
the whole pipeline. Although the importance of all
types is slightly different, none of these can be ne-
glected, as there is no dramatic difference between
them.
Figure 3 depicts the extraction F1-scores for every se-
mantic relations for two attention feature combination
strategies. One includes weights between only head
and tail token and another between only tail and rel to-

Attention types Pr Rec F1

h-r r-t h-t r-h t-r t-h 0.135 0.279 0.176
h-r r-t h-t r-h t-r 0.133 0.274 0.173
h-r r-t r-h t-r t-h 0.132 0.267 0.170
h-r r-t h-t t-r t-h 0.132 0.26 0.169
h-r h-t r-h t-r t-h 0.126 0.261 0.164

Table 5: Top-5 best combinations of attention type by
triplets prediction scores.

kens, with the red curve showing the performance of
the full six weight types-based model. This allows us
to observe how the role of different attention features in
the predictive ability of the pipeline. The model which
only uses the tail-rel attention feature outperforms the
head-tail feature model. The experiments with other
attention types support this. The models which rely on
the relation tokens attention weights (e.g. t-r, t-h) per-
form better than those that do not. This fact could be
explained by the fact that attention weights which fea-
ture relation tokens are the most significant in relation
prediction tasks as they carry more information about
the semantic relation between two entities. For exam-
ple, in the case when head and tail tokens are names of
people, triplets with relations like P22 (mother), P25
(father), P26 (spouse), etc., cannot be disambiguated
without the aid of a relation token.
Similar plots for all 63 experiments are provided in the
repository: https://github.com/deepmipt/
kg-extracting-probing/blob/main/
data/meta/attentions_all_cropped.pdf

4.4. Layers Importance
To see how the knowledge is distributed across the lay-
ers and how each of them affects the results of the Rela-
tion Extraction, we conducted 12 experiments, zeroing

https://github.com/deepmipt/kg-extracting-probing/blob/main/data/meta/attentions_all_cropped.pdf
https://github.com/deepmipt/kg-extracting-probing/blob/main/data/meta/attentions_all_cropped.pdf
https://github.com/deepmipt/kg-extracting-probing/blob/main/data/meta/attentions_all_cropped.pdf
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Figure 2: Feature importance values averaged by the attention type for the binary (left) and multiclass (right)
classifier.
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Figure 3: F1 stem plots for head to tail (h-t, top) and tail to relation (t-r, bottom) attention features for different
relations (x-axis), red line represents the baseline model with six features.

the attention weights for all layers except a particular
layer every time.

Figure 4 illustrates how the extraction and relation type
prediction scores change layer-wise for different types
of semantic relations. The layers are shown to differ
in terms of the ability to predict the relation type. Un-
like in (Tenney et al., 2019), we discover that not only
higher layers might be responsible for encoding the se-
mantic features of the sequence. For instance, both of
these plots show layers 4 and 10 to be notably semanti-
cally informative.

We also assess the classical diagnostic probing study
to compare the attention weights scores with those of
BERT layers units activations. Again, we perform the
experiment layer-wise. The BERT layers embeddings
achieve the performance of > 99%. Despite that, the

BERT layers probing (see Figure 6) reveals the same
pattern as the attention heads probing — the first layers
of the model are more semantically informative than
the last ones.

4.5. Clusterisation of Relations
To study the semantic relations hierarchy made by
BERT, we inspect the multiclass model which features
all six types of attention weights. The analysis of the
feature importance weights of the multiclass classifier
shows that semantically close types of relations have
similar weights in the logistic regression model (that
is, they are similarly encoded in the attention mecha-
nism). Furthermore, the hierarchy of these importance
vectors yields a data-driven semantic classification of
WikiData properties we used.
Figure 7 presents the results of agglomerative cluster-
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Figure 4: Attention layers probe. F1-scores for triplets extraction task on a raw dataset (left) and F1-scores of
relation label prediction for the extracted triplets (right).

ing with cosine distance. We observe that the rela-
tion types are logically organised into semantic groups,
which means that the complicated way of how knowl-
edge is structured inside language models is not purely
stochastic but can be interpreted. We find no strict map-
ping between the attention heads and the semantic re-
lation types.
Multilabel classifiers tend to make two types of mis-
takes. First, the performance on more abstract types
of relations (e.g. has part) is lower than on purely
factological ones (e.g. place of burial). Second, se-
mantically close types of relations such as writer, com-
poser and screenwriter are often confused. Figure 5
shows how the quality of relation label prediction in-
creases when joining the closest relation classes into
one based on relation vectors similarity yielded by ag-
glomerative clustering. As more classes get merged,
the score expectedly grows, though we never achieve
a perfect score. Notably, following the classes hierar-
chy provided by WikiData itself in the same experiment
leads to F1-score drop.
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Figure 5: Relation prediction F1-scores for different
number of classes after clustering.

5. Conclusion & Future Work
In this study, we introduce a novel approach to inter-
pretation of language models. In this approach only at-
tention scores are taken into account to encode BERT’s

1 2 3 4 5 6 7 8 9 10 11 120.990

0.992

0.994

0.996

0.998

1.000

Figure 6: Layer-wise probing. F1-scores for relation
label prediction on the BERT layers embeddings.

awareness of semantic relations. We build a two-stage
Relations Extraction downstream model, which shows
that attributing a relation to a particular triplet given at-
tention features can be performed quite easily. To im-
prove our extraction method in the future, we need to
analyse the syntactic nature of the relation triplets thor-
oughly.
We find that semantic relations of different types are
encoded with a combination of attention weights pro-
vided by different heads. We show that attention
weights are not as informative as layers’ units activa-
tions but provide a reliable, straightforward approach
to ranking the layers’ awareness of relational linguis-
tic features. The proposed interpretation methodology
is explicit and straightforward, as opposed to the edge
probing strategy (Hewitt and Manning, 2019).
We diagnose the impact of different attention weights
and layers on the model’s ability to predict the exact
type of a semantic relation. We conclude that none of
the layers and attentions must be neglected while devel-
oping an unsupervised approach to relation extraction.
This could be used to improve the unsupervised Re-
lations Extraction technique presented in Wang et al.
(2020), whose authors employ only the final layer at-
tention weights.
While inspecting the attention heads’ specialization,
we discover that there are no individual relation-
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Figure 7: Agglomerative clustering shows interpretable
hierarchical grouping of semantic relations.

specific heads, yet one could meaningfully group re-
lations by the heads’ relevance for them. While the
heads’ specialization patterns remain opaque, their
overall behaviour correlates with linguists’ judgements
about the semantics. We assume two main factors to
impact the specialization of attention heads. The first
of them is head and tail entities types (e.g. the upper-
blue branch in Figure 7 is composed of semantic rela-
tions which describe a person in time and space), the
second is the syntactic relation between head, tail and
rel tokens. We find no correlation between the model’s
ability to extract triplets and the syntactic distance be-
tween the involved entities. Nevertheless, the role of

syntax (e.g. the type of construction which the rela-
tion is usually expressed by) on the relation’s linkage
requires further investigation.
We were unable to reach the perfect score by contin-
uously merging the relations classes according to the
hierarchy proposed by WikiData. Although intuitive, it
might not coherently correspond to the way how lan-
guage models see semantic relations. Thus, our inter-
pretation mechanism might shed light on this differ-
ence and propose a way to figure out a new relation
classification to use in Knowledge Graphs. Similarly,
during the algorithms errors analysis, we discover that
the existing datasets are inaccurate in terms of precision
and recall, resulting in the evaluation scores flaw.
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A. Appendix
Figure 8 provides an example of our RE model inference compared with the golden baseline and the inference of
the REBel algorithm for the following text.
Trump and his businesses have been involved in more than 4,000 state and

federal legal actions, including six bankruptcies. Trump’s political
positions have been described as populist, protectionist, isolationist,
and nationalist. He entered the 2016 presidential race as a Republican
and was elected in an upset victory over Democratic nominee Hillary Clinton
while losing the popular vote,[a] becoming the first U.S. president with
no prior military or government service. The 2017{2019 special counsel
investigation led by Robert Mueller established that Russia interfered
in the 2016 election to benefit the Trump campaign, but not that members
of the Trump campaign conspired or coordinated with Russian election
interference activities. Trump’s election and policies sparked numerous
protests. Trump made many false and misleading statements during his
campaigns and presidency, to a degree unprecedented in American politics,
and promoted conspiracy theories. Many of his comments and actions
have been characterized as racially charged or racist, and many as
misogynistic.
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Figure 8: Knowledge graph for the Donald Trump media entry. Golden Standard (left), our algorithm (middle) and
REBEL (right) versions
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