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Abstract 
Understanding child language development requires accurately representing children’s lexicons. However, much of the past work 
modeling children’s vocabulary development has utilized adult-based measures. The present investigation asks whether using corpora 
that captures the language input of young children more accurately represents children’s vocabulary knowledge. We present a newly-
created toddler corpus that incorporates transcripts of child-directed conversations, the text of picture books written for preschoolers, 
and dialog from G-rated movies to approximate the language input a North American preschooler might hear. We evaluate the utility of 
the new corpus for modeling children’s vocabulary development by building and analyzing different semantic network models and 
comparing them to norms based on vocabulary norms for toddlers in this age range. More specifically, the relations between words in 
our semantic networks were derived from  skip-gram neural networks (Word2Vec) trained on our toddler corpus or on Google news. 
Results revealed that the models built from the toddler corpus were more accurate at predicting toddler vocabulary growth than the adult-
based corpus. These results speak to the importance of selecting a corpus that matches the population of interest. 

Keywords: Word2Vec, corpora, semantic networks, word-learning 
 

1.   Introduction 

In the field of first language learning, there has been an 
increasing interest in modeling lexical development as a 
way to both understand and predict language development. 
There is enormous variability in the vocabularies of 
toddlers in their second year of life, which makes it difficult 
to tease out possible patterns in vocabulary acquisition and 
resulting lexical knowledge. To model vocabulary growth, 
and to predict future growth, we must accurately represent 
children’s current word knowledge and how the words 
children know relate to each other. Most previous research 
attempting to model young children’s lexicons has relied 
on adult metrics to create semantic networks. But the 
knowledge adults have about  words may not be an accurate 
proxy for child knowledge. Further, advances in natural 
language processing techniques and network science 
provide the opportunity to create richer models than have 
previously been investigated. Thus, the main research 
question of this paper is whether the language samples from 
which we derive lexical representations matter for 
accurately modeling toddler vocabulary growth. Of 
additional interest is whether different distributional 
models of semantics provide richer representations that 
lead to more accurately capturing child development. To 
accomplish our goals, we will build and analyze networks 
representing the relationships between the words a typical 
English-speaking, American child knows at different ages 
between 16 and 30 months, investigating whether networks 
created using a toddler corpus more accurately represent 
and predict language growth compared to those created 
from adult corpora.  

1.1   Representing a Lexicon 

Networks are often used to model vocabularies. In these 
models, nodes typically represent the individual words in 
the lexicon, and edges, or the connections between nodes, 
represent how “related” those two words are to each other. 
Relatedness can be determined from co-occurrence, 
similarity in sound (e.g., cat-bat), or similarity in meaning 
(e.g. cat-dog), among other things (see Beckage & 
Colunga, 2016 for a review). In the network models 
considered in this work, we will limit ourselves to semantic 

networks. Thus, edges will represent semantic similarity. 
Edges can be weighted, here meaning the edge connecting 
two words that are more similar will have a higher value 
(weight) than the edge between two words that are less 
similar to each other. However, most networks used in 
vocabulary acquisition research treat edges as unweighted 
or binary, such that words are either connected (1) or not 
connected (0), implying that all directly connected words 
are equally similar.  
 
Considerable work investigating adults has established the 
utility of multiple metrics for representing adult lexical 
structure. For example, the strength of word association 
norms (first word that comes to mind when presented with 
the word “bat”) and feature norms (e.g., fish: has scales, 
swims, has gills) predict adult semantic processing speed 
(Nelson et al., 2009; McRae et al., 2005; Hutchison, 2003; 
Pexman et al., 2003). Researchers have also calculated co-
occurrence metrics from varying corpora to establish word 
relatedness, again showing such metrics relate to adult 
semantic processing (Lund & Burgess, 1996; 
Vankrunkelsven et al., 2018). However, creating semantic 
networks that accurately represent the vocabulary of a child 
may require relatedness metrics derived specifically for 
children. Previous work tends to use adult-derived metrics 
to model child lexicons, one reason being pure practicality. 
In the lab, unlike young children, adults are much more 
compliant during tedious long laboratory tasks. So, it is 
possible to have adults list features for hundreds of words 
(McRae et al., 2005) or make judgments on whether dozens 
of features apply to each of those words (Howell et al., 
2005). Further, there already exist very large adult-
produced and adult-directed corpora with which to 
compute distributional metrics, such as COCA (1 billion 
words), Wikipedia (1.9 billion words), and Google News 
(100 billion words). However, children’s and adult’s 
experiences are very different both quantitatively and 
qualitatively, and thus one would expect their semantic 
knowledge about the world to be different as well.  The 
associations an adult makes may not be readily obvious to 
a child, or even available at all based on the experience the 
child has had with words and their referents.  For example 
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a child might only understand the literal but not the 
figurative meaning of a word. Children may have absent, 
partial, or completely different semantic representations 
compared to those of adults. 

1.2   Child Language and Networks 

Building a model of a child’s lexicon involves determining 
the words a child knows and approximating the relationship 
between these words. Through parent vocabulary 
checklists, we can see which words any one child knows at 
that given time, rather than relying on adult age-of-
acquisition norms to guess the words children might 
produce. As a proxy of early vocabulary, many researchers 
have used the MacArthur-Bates Communicative 
Development Inventory (CDI) as the basis for early 
lexicons. The CDI is a 680-word parent checklist and has 
been found to be reliable, related to child performance 
language measures, and has been normed across children 
from the United States (Fenson et al., 1994).  
 
Work using the CDI as a basis for modeling children’s 
lexicons has led to important insights about language 
development. This includes insights into the relationship 
between lexical development, syntax, and processing speed 
(Moyle et al., 2007; Fernald & Marchman, 2012), lexical 
variability based on language mastery (MacRoy-Higgins et 
al., 2016; Kim & Yim, 2018), and even how the words in a 
child’s vocabulary shape how they learn new words 
(Gershkoff-Stowe & Smith, 2004; Perry & Samuelson, 
2011; Colunga & Sims, 2017). CDI-based networks are 
usually unweighted and sparse, and show evidence of 
small-world structure, seen in high local clustering and 
short average path lengths (Beckage et al., 2011). Research 
using these networks shows that across multiple languages, 
children tend to learn words that are highly connected in 
these networks earlier than words with smaller 
neighborhood densities (Fourtassi et al., 2020; Hills et al., 
2009; Hills et al., 2010). Further, different growth 
algorithms have been compared using CDI-based 
networks, including preferential attachment, preferential 
acquisition, and lure of associates (Steyvers & Tenenbaum, 
2005; Hills et al., 2010; Beckage et al., 2011; Beckage et 
al., 2015; for review see Beckage & Colunga, 2019), with 
their findings suggesting that different populations might 
be more accurately modeled using different growth 
algorithms. In short, the work using a child-based 
vocabulary to model early word learning has been fruitful 
for understanding the mechanisms of vocabulary growth. 
However, these different studies have utilized different 
similarity information to model the semantic similarity 
between each word and finding an accurate metric to model 
child semantic networks is crucial.  
 
Though using the CDI allows us to approximate which 
words a child knows, previous work often still models what 
the child knows about each word using adult semantic 
measures. Steyvers and Tenenbaum  (2005) showed that 
networks created from adult word associations, thesaurus 
entries, and WordNet all share the same structural 
properties. Further, networks with edges determined using 
adult association norms show this connectivity drives 
vocabulary growth, particularly preferential acquisition 
(Fourtassi et al., 2020; Hills et al., 2009). Networks created 
using adult-determined perceptual feature norms fared less 
well when predicting child language growth, though they 

still perform significantly better than chance (Beckage et 
al., 2020; Beckage et al., 2015; Beckage & Colunga, 2019; 
Hills et al., 2009; McRae et al., 2005). Jaccard similarity 
has also been used to relate children’s comprehension and 
production networks (Kim & Yim, 2018).  
 
A noted exception to all this work using adult-derived 
metrics is the use of CHILDES (MacWhinney, 2000), a 
repository of caregiver-child conversations contributed by 
many researchers, as a way to approximate the linguistic 
environment of a young child. Using co-occurrence 
statistics on the CHILDES corpus, scholars have created 
networks to compare the lexical structure of children with 
different levels of vocabulary knowledge (i.e. typically 
developing vs. late talkers), revealing structural differences 
between the two populations (Beckage et al., 2011; Jimenez 
& Hills, 2017). Hills et al. (2010) produced networks with 
characteristics that closely align with age-of-acquisition 
data by using a window size of five to calculate co-
occurrences in the CHILDES database.  
 
Different metrics have been shown to have different 
predictive power when it comes to capture early vocabulary 
development. Beckage et al. (2020) used neural network 
models that had access to different types of information to 
predict future word learning, resulting in a comparison of 
six models representing word knowledge in different ways. 
From the simplest model utilizing child demographic 
information such as age, sex, CDI percentile and 
vocabulary size, to models with information like perceptual 
features, phonology, semantic category, to a final model 
including semantic feature vectors derived from Word2Vec 
(a skip-gram neural network). Beckage and her colleagues 
found that predicting actual toddler vocabulary growth with 
a neural network using Word2Vec embeddings 
outperforms the other representations, indicating semantic 
feature vectors trained using skip-gram models may be 
particularly useful, especially for children with small 
vocabulary sizes.  
 
To go one step further than Beckage et al. (2020), taking 
the cosine similarities between the Word2Vec embeddings 
offers a richer range of similarities compared to the binary 
similarity associations used from sliding window co-
occurrence statistics and other previous methods. 
Word2Vec models arguably offer a richer semantic 
representation by not only considering words similar if they 
appear together, but also if they appear in similar contexts, 
something co-occurrence models miss. However, many 
researchers, if using Word2Vec or similar neural network 
embeddings (GloVe, FastText), use the readily-available 
vectors that were trained on adult corpora (e.g., Beckage et 
al., 2020). In previous work using the pre-trained 
GoogleNews Word2Vec vectors to create semantic 
network representations of children’s language, we have 
noticed that some words are misclassified due to multiple 
senses of words, with one or more of those meanings not 
being one that a child would likely have in their own 
representation. For example, the GoogleNews word2Vec-
based networks have chair and head strongly connected, 
with chair not connected to other instances of furniture 
such as table and couch.  Presumably, this is because of the 
two senses of chair as head of a committee or a department 
vs. chair to sit on. Only one of these senses is likely to be 
known by a 2-year-old. Further, Word2Vec networks used 
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in the past also threshold the similarities, thus treating 
similarity as a binary connection; either two words are 
related or they are not. To our knowledge, the only other 
instance of research to utilize Word2Vec embeddings 
derived from a child corpus investigated the semantic 
network’s ability to form categories, but did not directly 
investigate true toddler vocabulary growth, as we do here 
(Asr et al., 2016).  
 
To summarize, our main research question is: Can we 
understand early language development better by better 
approximating the language a young child might actually 
encounter? A secondary question is whether we can use a 
predictive neural network model to derive more accurate 
network representations than sliding window co-
occurrence models. Once we accurately model toddler 
vocabulary growth, we can then apply this knowledge to 
model possible future growth trajectories.  

2.   The Corpus 

Our first goal was to use a broader range of toddler 
language input than has been seen in other language 
modeling studies. Thus, in the current paper we strived to 
create a richer, more representative, corpus to derive 
semantic networks from. Specifically, we focused on North 
American English-speaking children, to avoid confounding 
cultural and language differences within our work. No 
matter how exact the language processing technique is that 
derives word similarities, if the resource used initially is 
unrepresentative, the final product will be too.  
 
Though some past work has utilized a corpus of child 
language input (CHILDES) previously, young children 
receive language input in many other forms besides 
conversations with caregivers. Nowadays, young children 
experience many forms of media, including movies, TV 
shows, music, and more. TV or movie input, though 
perhaps not as rich as in-person conversation, still provides 
children with rich, grammatical language and contextual 
scenes to capture the child’s attention. In fact, toddlers 
exposed to child-directed programming had better 
outcomes at age four than those that viewed adult-directed 
TV (Barr et al., 2010). Further, video viewing can be 
related to both better receptive and expressive vocabularies 
(Linebarger & Walker, 2005). Children also receive input 
during story time. Most parents report reading storybooks 
with their children, many daily (Sénéchal & LeFevre, 
2002). We also know shared storybook reading is a 
significant predictor of later language skills, and children 
receive different types of language than they would during 
normal conversation (Sénéchal & LeFevre, 2002; Fletcher 
& Finch, 2015). Parents also treat story time as an 
opportunity to model new vocabulary and ask children 
vocabulary-related questions (Flack et al., 2018). In other 
words, the language in story books geared towards young 
children most likely has a large influence on toddlers’ 
current vocabulary. In short, children receive language 
from multiple sources involving multiple media, and their 
input from these varied sources has been shown to have an 
impact on a child’s vocabulary development.  
 
Using publicly available resources, we created a new 
corpus using caregiver input. Specifically, transcripts of the 
language said by MOTHER or FATHER (but not, for 

example, siblings, experimenters, or the child themselves), 
were taken sentence by sentence from the CHILDES 
database, limiting to conversations with children less than 
five years old (MacWhinney, 2000). The reasoning was 
two-fold. First, we wanted to retain transcripts that supplied 
the most naturalistic type of language representative of 
typical input, and many experimenter transcripts were 
related to scripted surveys and tasks. Second, many of the 
transcripts supplied by siblings and the children themselves 
are telegraphic in nature, lacking the necessary 
grammaticality to pull good quality semantics from using 
distributional models. Further, these transcripts also 
contain a large number of unknown words, further 
complicating the type of semantic content that would be 
found using our models.  
 
Transcripts of popular young children’s picture books were 
transcribed in the lab, separated by sentence, and G-rated 
movie transcripts created by fans for public use were also 
used for the corpus. All the books included featured full 
sentences, rather than, for example, word books, which lack 
the necessary sentence structure to pull semantic vectors 
from. The average sentence length was between nine and 
ten words. Books were chosen if they were geared toward 
young children and toddlers (roughly ages one to five) and 
were considered widely available. These books were 
transcribed for in-lab use. As more children’s books are 
published, more transcripts may be added, especially to 
include those geared toward minority communities.  
 
Movie transcripts were scraped from parent-geared online 
sites and were created by fans. Sites include 
foreverdreaming.org and fandom.com. Because they are 
not original scripts, small errors may be present. Only 
spoken language within each movie was used, including 
songs. We excluded any visual cues (“[character] walked 
down the street”) and speaker designations, as this is not 
spoken within the movie itself and so not language a child 
would hear while watching the movie. All movies were 
rated G and in English, with most being created in the 
United States. Though most were animated, some were live 
action. Future expansions will likely include TV shows as 
well. As with the children’s books, we hope to expand the 
representation within our dataset to include minority-
geared media for future work. 
 
Though there are other possible sources of linguistic input 
to a child, the sources compiled here covered a range of 
input that North American children growing up in English-
speaking families typically receive. Corpus statistics are 
shown in Table 1.  
  

CHILDES Books Movies 

Number many 1,039 81 

Sentences  1,105,870 54,213 92,919 

Tokens 4,716,063 510,312 507,625 

Types 27,337 5,895 5,822 

Table 1: Toddler Corpus Statistics 

 

Though there are large variations in the amount of screen 

media, book, and conversational exposure toddlers receive, 

we attempted to create a corpus representing that of the 

average North-American two-year-old. Here, we wanted 

this to represent the demographics of the children whose 
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data we were modeling, which were for the most part, 

middle to upper middle class monolingual English-

speaking children. As our results will show, the match 

between the population being modeled and the assumed 

linguistic environment is important. In the future, it will be 

important to expand this toddler corpus to other 

populations, as well as to diversify the demographics of our 

laboratory samples. In addition, future iterations of this 

work may also investigate different relative contributions 

to represent, for example, children with more movie and 

less book exposure, or less conversational exposure. 

3.   The Similarity Metric  

Not only are the contents of the corpus important, the 
technique or algorithm used to calculate similarity statistics 
from that corpus could be as well. Here, we posit advanced 
language processing models (specifically neural networks) 
can provide richer similarity metrics with which to model 
semantic network structure, as compared to metrics used in 
previous work. 
 
Though some past research investigating child semantic 
networks area has used CHILDES over adult-created 
measures, these studies only pulled sliding window co-
occurrence statistics as the similarity measure (see Hills et 
al., 2010; Beckage et al., 2011). Hills et al. (2010), in 
particular, built networks by connecting any pair of words 
that had co-occurred (within a 5-word window) at least 
once in the corpus. Predictive neural networks designed to 
learn embeddings based on both context and co-occurrence 
may better capture semantic similarity. We used the cosine 
similarities between embeddings from skip-gram neural 
networks to quantify the degree of similarity between any 
two words. Using the created toddler corpus, we trained a 
Word2Vec model using the python gensim package, to 
compare against the pre-trained embeddings from the 
popular GoogleNews Word2Vec model, using all the same 
training parameters. The GoogleNews model has been used 
to find similarities in other child language studies utilizing 
skip-gram models (see Beckage et al., 2020). GoogleNews 
will be considered adult content versus the child content in 
our toddler corpus. Finally, the embeddings from the 
GoogleNews model were used to create a new Word2Vec 
that we then continued training using the toddler corpus. In 
other words, we wanted to fine-tune the adult model using 
toddler data. Because the GoogleNews Corpus is 100 
billion words (as compared to ~5 million), this combined 
model may combine the breadth gained from such a large 
corpus with the depth, or context, of the toddler corpus.  

4.   The Lexical Networks  

Now that we have accurate representations of the words 
children might know, we need to create networks 
representing the connections between these words, or the 
child’s lexical structure. There are many ways to use the 
posited cosine similarity metric to create these networks. 
As noted previously, most studies investigating lexicons 
this way threshold, or only connect two words if their 
similarity score is above a certain value. Then each 
connection in the network is represented as binary, or 
unweighted. However, to utilize the richness Word2Vec 
embeddings, we were interested in creating fully 
connected, weighted networks. In other words, every node 

(or word) will be connected to every other node with a 
specific value representing how similar the two words are. 
Though we cannot feasibly know every word a child 
knows, we can get a subset of common words that a child 
knows using the CDI. From this checklist, we were able to 
pull word embeddings and calculate  cosine similarities for 
640 of the 680 words. Excluded words include words that 
appear on the CDI as both a verb and a noun, which are not 
differentiated in skip-gram models, multi-word phrases (we 
do not believe the sum or average of these multi-word 
phrases were equivalent to their whole meaning) or were 
stop words the GoogleNews corpus removed. The 
networkx package in python was used to create the 
semantic network. This fully connected, weighted network 
consists of 204,480 edges. There are three semantic 
networks, one using similarities derived from the toddler 
corpus (T), one from the adult or GoogleNews corpus (G), 
and one using the combined embeddings (C).  
 
Finally, to investigate if skip-gram (Word2Vec) models 
characterize semantic similarity more richly than the other 
prevailing language processing technique in child network 
science, sliding window co-occurrence algorithms, we 
gathered co-occurrence statistics using a window size of 
five for the toddler corpus only (for reasoning, see Beckage 
et al., 2011). The network created from the resulting co-
occurrence matrix was neither fully connected or weighted, 
but rather two words were connected within the network if 
they both appeared within the same five-word window at 
least once throughout the corpus or were not connected 
otherwise. This follows the work of previous researchers 
(Hills et al., 2010; Beckage et al., 2011). This network 
consists of the same 640 words and contains 84,035 edges. 
All network measures will be calculated similarly to the 
other networks, but without considering edge weight in the 
calculations (e.g., weighted degree vs. degree). The five-
gram co-occurrence network (5) will only be compared to 
the toddler (T) network, as the other two networks cannot 
be directly compared to this one.  

4.1   Network Measures 

There are many different measures we can use to examine 
network structure, though not all can be performed on a 
fully connected network. We are not only interested in 
visualizing differences between the networks, but also if we 
can use network measures to predict words a specific child 
is ready to learn next. Further, we want to compare this 
predictive ability between the networks, assuming their 
structures are in fact different. At any point in time, a 
child’s lexicon contains a subset of the network; there is 
that subset as well as the rest of the full network of words 
and connections the child does not know, based on their 
CDI. Based on the idea that children may be more ready to 
learn words that complement, or are more similar, to words 
they already know, some of the measures chosen took 
advantage of the connections between “known” and 
“unknown” words.  
 
The first measure is each unknown word’s, or node’s, 
weighted degree. However, this is not the word’s overall 
weighted degree in the full network, but rather that 
unknown word’s weighted degree if it was connected in the 
child’s subset of the network. A higher weighted degree 
means that word is more likely to be learned by the child, 
as it is more similar to those words already in the child’s 
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network subset. Hence, this measure is named “To-Known-
Node Weight”. Similarly, the five-word window network 
used simple degree (and could be considered “To-Known-
Node Degree”). The highest weighted nodes are then taken 
in accordance with the number the child actually learned by 
the next timepoint, to calculate accuracy.  
 
The second measure also utilizes edge weight, by sorting 
every edge between a known node and an unknown node 
by its weight. To use this as a predictive measure, the 
algorithm goes through the sorted list, from highest weight 
to lowest, choosing that edge and in turn the unknown node 
associated it with it if that node hadn’t been chosen 
previously. This ensures the algorithm doesn’t pick the 
same node multiple times, and predicts the same number 
the child in question actually learned, so predictive 
accuracy can be calculated. This measure is simply named 
“Edge Weight”. This measure cannot be calculated for the 
unweighted five-word model.  
 
The remaining network measures examined were centrality 
measures, the reasoning being that if a  word is more central 
to the network, based upon being more related to many 
other words in the network, it has a higher probability to be 
learned than those with smaller-weighted connections. 
Here, for every unknown word, that node is placed into the 
child’s known subset of the network, and every node’s 
centrality is predicted. This gives a sense of how central 
that word is not overall, but in specific relation to the 
child’s lexicon. Once every unknown node’s centrality was 
calculated, the algorithm chose the top most-central ones, 
choosing the same amount the child learned by the next 
timepoint, to calculate accuracy. The centrality measures 
used were “PageRank”, “Eigenvector Centrality”, and 
“Load Centrality”. Though other centrality measures exist, 
they were excluded because they too-closely aligned with 
the predictions of one of the considered measures (e.g., 
Eigenvector Centrality). All accuracies were compared to 

random selection of nodes. Random selection was 
performed multiple times, with average accuracy at each 
timepoint used for comparison. 

5.   Results 

5.1   Network Overlap 

A within-subjects ANOVA was conducted to compare the 
three Word2Vec networks’ edges for each combination of 
two nodes. Pairwise t-tests revealed all comparisons to be 
significant (TvG: t(408,59) = 43.57, p<.001; GvC: 
t(408,959) = 1719.6, p<.001; TvC: t(408,959) = 1497.2, 
p<.001). We could not directly compare against the five-
word network in this way. Additionally, over 200,000 
weights are too many to sort through and inspect by hand 
to find trends or patterns of differences. Instead, we 
calculated multiple centrality measures, which essentially 
assign each word a score representing how important, or 
central, that word is to the overall network. We calculated 
a subset of the different possible centrality algorithms to get 
a range of measures. Though the scores themselves were all 
significantly different in ANOVA’s, we were more 
interested in the overlap in the actual words ranked as 
highly important using these measures. From the scores, we 
gathered both the top and bottom 50 scoring words from 
each network, for each measure. Overlap between the 
networks can be found in Table 2. This overlap measures if 
any unique word appears in one of the other two corpora 
(or both), but the word does not have to appear in all three 
to be counted in this overlap measure. Expected examples 
of words that appeared in multiple top 50 lists include: 
monkey, balloon, cookie, blanket, puppy, and spoon. Some 
words were more unexpected, such as tractor, pumpkin, 
and rooster. These are surprising given more common 
animals (kitty), vehicles (car), and food (cheese, peas), 
were not common among the three networks. 

 

Top 50 Bottom 50 

Centrality Measure TvG TvC GvC Tv5 Centrality Measure TvG TvC GvC Tv5 

PageRank 3 9 7 7 PageRank 5 5 0 5 

(Weighted) Degree 6 9 7 0 (Weighted) Degree 5 3 0 0 

Clustering Coefficient 5 11 9 0 Clustering Coefficient 6 2 0 1 

Load Centrality 3 7 9 1 Load Centrality 4 9 2 10 

Eigenvector Centrality 5 11 9 0 Eigenvector Centrality 6 2 0 1 

Table 2: Overlap Between the Top 50 and Bottom 50 Ranked Words From Each Network 
 

  

5.2   Average Child Prediction 

In order to gain a sense of predictive power, we used the 
average of CDI’s collected in our lab to calculate accuracy 
on an “average child” from 16 to 30 months old. These  We 
have vocabulary data for each month. We investigated not 
just how accurate each network measure was, but how that 
accuracy compared between the created networks. First, we 
investigated how each network measure compared to 
random choice, within network.  
 
We first compared the Toddler network to random. 
Individual paired t-tests were Bonferroni-corrected for 
multiple comparisons. Over the 14-month period the lab 
has CDI data for, three prediction measures performed 

significantly better than random at accurately predicting the 
next words an average child would learn between months, 
and the other two performed marginally better. The 
accuracy rates per month can be seen in Figure 1.   
 
On average across months, random only accurately 
predicted 15.54% of learned words correctly. In 
comparison, PageRank was correct 19.81% (t(13)=2.47, 
p<.05), Edge Weight 23.38% (t(13)=2.85, p<.05), and To-
Known-Node Weight performed at 19.63% (t(13)=2.39, 
p<.05). Of the two marginal results, Eigenvector performed 
accurately 19.06% of the time (t(13)=1.93, p=.076), Load 
Centrality 19.38% (t(13)=2.07, p=.059). 
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Figure 1: Toddler Network Compared to Random 
 
Comparing random to the predictions associated with the 
GoogleNews network, we find one significant comparison, 
but in the wrong direction. Load Centrality (11.30%) 
actually performed worse than random at predicting 
learned words (t(13)=-2.90, p<.05). All other measures 
performed at an average of 15.24% to 18.66%.  
 
The investigation of the combined network revealed similar 
results to that of the GoogleNews network. Again, Load 
Centrality (10.90%) performed significantly worse than 
random (t(13)=-2.23, p<.05). All other measures showed 
no significant difference from random, ranging from 
17.41% accuracy to 17.65%, though Edge Weight 
(22.08%) was marginally better (t(13)=1.84, p=.089). 
Significant and marginal differences for the Google and 
Combined networks can be seen in Figure 2.  

 

 

Figure 2: GoogleNews and Combined Versus Random 
 
Next, we compared network accuracies to each other, to 
find if one network and measure outperforms other child 
lexicon representations. As before, all p-values were 
Bonferroni corrected for multiple pairwise comparisons. 
Only significant differences will be discussed. 
Unsurprisingly, the toddler network’s Load Centrality 
accuracy was significantly better than that of both the 
GoogleNews and Combined networks’ (t(13)=2.97, p<.05; 
t(13)=3.18, p<.01, respectively). See Figure 3.  
 
None of the other measures’ predictions were significantly 
different between networks, though there were a few 

marginal differences found. The toddler network 
marginally outperformed the GoogleNews network on 
Eigenvector Centrality (t(13)=1.89, p=.081) and Edge 
Weight (t(13)=1.94, p=.075).  
 

 

Figure 3: Load Centrality Network Comparison 
 
Finally, we were interested in not comparing different 
training corpora but rather different similarity algorithms, 
specifically investigating an often used sliding window co-
occurrence approach. The predictions based on the five-
words window approach performed significantly worse 
than random on every measure investigated. PageRank was 
correct only 11.16% (t(13)=-3.21, p<.01), Eigenvector 
performed accurately 10.33% of the time (t(13)=-3.20, 
p<.01), Load Centrality 11.33% (t(13)=-3.09, p<.01), and 
To-Known-Node Weight (Degree) performed at 10.92% 
(t(13)=-3.25, p<.01). These results can be seen in Figure 4. 
 
In accordance with the previous results, the toddler window 
approach’s network also performed significantly worse 
than the toddler Word2Vec network on every measure 
(PageRank: t(13)=4/61, p<.001; Eigenvector: t(13)=4.49, 
p<.001; Load Centrality: t(13)=3.38, p<.01; To-Known-
Node Weight: t(13)=4.71, p<.001).  
 

 

Figure 4: Edge Weight Network Comparison 

6.   Discussion 

Overall, the present work provides evidence that using 
toddler input corpora, word embeddings and similarities 
drawn from neural network models such as Word2Vec, and 
fully-connected, weighted networks can provide a level of 
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accurate word-learning prediction better than random 
chance, embeddings trained on adult-language corpora, and 
toddler sliding-window co-occurrence similarities. Though 
further work is needed to generalize this work for use with 
individual children, it leads us one step closer to 
understanding the mechanisms underpinning vocabulary 
and semantic growth. In addition, the present research adds 
rich information that could be used to create individualized 
learning materials and inform interventions for at-risk 
children. More importantly for the language research 
community as a whole, this work highlights the need to pay 
particular attention to the language source used depending 
on the population of interest.  

6.1   Available Resources  

Moving to the creation of the toddler-input corpus, we 
expect that improvements to the corpus itself will be made 
iteratively as new data becomes available. The corpus is 
small by today’s standards. Possible future additions 
include TV show or YouTube video transcripts, music 
lyrics, PG-rated Movies, and possibly even learning 
materials or language used during game-play. Further, only 
readily-available resources were used in the current 
iteration of the toddler corpus. Future iterations could 
hopefully include data and resources collected from other 
child-development labs.  
 
As previously stated, our present work investigated an 
average North American, English-speaking, monolingual 
toddler. However, there is enormous variability in the 
amount and type of input even just American children 
receive. Future work can investigate the relative 
contributions of different types of input (e.g., movies 
versus storybooks). Though out of reach right now, 
individualized corpora based on reported child input could 
be used to model individual development. Further, future 
research should expand on these findings by including 
other cultures and other languages. Based on our 
conclusion that the corpora of language used in modeling 
studies does matter, materials representative of minorities 
should be included to model more inclusive samples, and 
similarly large toddler corpora in other languages need to 
be created in order to expand this research across 
languages. 
 
In a similar vein, we can only include words from the CDI, 
which we know doesn’t fully capture a child’s lexicon. This 
is important because a child’s semantic knowledge or 
internal network may be quite different than the ones we 
are creating and using to model their language 
development. Though other routes may include using 
individual child data from CHILDES, or parent word 
diaries, these routes may still only provide a snapshot of a 
child’s total vocabulary, and can be time-intensive. 

6.2   Predictive Accuracy  

Readers may have noticed that even though above random, 
the predictive ability of the network measures for an 
average child only range around 15% to 20% accuracy, 
compared to what the child actually learned. However, we 
want to model what words a child is most ready to learn, 
based on how that word complements their current 
vocabulary. The CDI data used is purely observational, and 
cannot account for the environment that child is actually in. 
Though a child might have an easy time learning the word 

for another animal, there may be no opportunity during that 
month to see and actually learn a new animal name. Instead, 
that child may encounter and learn many clothing items. In 
other words, we do not expect these models to achieve very 
high accuracy on observational data; we simply want to 
know if these models are understanding something about 
language learning that is helpful. In the future, these models 
can be tested in the field, where we can initiate more 
controlled scenarios in which the children are actively 
taught the chosen words to compare against randomly 
selected words. 
 
Further, we have predicted only the trajectory for an 
average child as of now, based on aggregate data. Though 
aggregate data provided a simple preliminary analysis, it is 
possible the systematicity one might expect to see over time 
in a single child may not be present in aggregate data. Our 
ultimate goal is to predict what words any single child is 
ready to learn next.   

6.3   Future Work 

Currently, we are pursuing logistic regression as another 
predictive model, using longitudinal CDI’s collected 
monthly in the lab for typically-developing children 
between 18-30 months. Using the network measures 
discussed previously, as well as other child and network 
characteristics, we are in the process of gathering features 
and selecting ideal training parameters. Here, the goal is to 
predict whether any individual word should be learned by 
the child or not, based on collected features. Because we 
know a specific subset of words learned each month, this 
dataset is ideal for a predictive language model. 
Preliminary results suggest logistic regression is a 
promising avenue for node-by-node prediction, regardless 
of the child the data comes from. 
 
Once more fine-tuned, this new predictive model will be 
compared to the other prevailing growth model used in the 
field of language modeling, preferential attachment 
(Steyvers & Tenenbaum, 2004; Hills et al., 2010; Beckage 
et al., 2011). Instead of choosing each node individually, 
this algorithm successively chooses unknown nodes to-be-
learned with probability proportional to their degree. 
Multiple iterations are averaged, which start by randomly 
choosing one of the known nodes in the network. Then an 
unknown node connected to this node is chosen, and an 
unknown node connected to that node is chosen, and so on. 
The theory behind this algorithm hinges on the notion that 
all successive nodes’ ability to be learned depend on its 
previous counterpart being learned. New growth models 
with different approaches may perform better.  
 
The ultimate goal is to create a generalizable, predictive 
model. It is highly possible that children at different ages, 
even month to month, require different model features and 
parameters to predict growth. Further, we are interested in 
predicting vocabulary for children who are at risk of 
language disorders, or bilingual children who must learn 
two lexicons. We know that a significant proportion of 
children who have relatively small early vocabularies will 
continue to have persistent language delays and even 
poorer language skills through adolescence (Manhardt & 
Rescorla, 2002; Rescorla, 2009). We think this work can 
inform targeted interventions tailored specifically to the 
individual, to support such children. However, the 
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underlying mechanisms by which children who lag in 
vocabulary growth learn new words may be quite different 
than that of monolingual, typically developing children and 
models that capture the learning of children in these 
populations will have to be developed and refined. 

7.   Conclusions 

The present work shows multiple improvements over past 
work. We not only showed that similarity measures based 
on toddler corpora perform better than random while adult 
or even combined models do not, we also showed that using 
Word2Vec skip-gram similarities over sliding-window co-
occurrence similarities provide richer and more accurate 
predictions (compare to Beckage et al., 2011 or Hills et al., 
2010). This improvement can also be attributed to the use 
of  a fully connected, weighted network. The sliding-
window, and most other semantic models, threshold and 
binarize their networks, whereas here we utilize the range 
of similarities provided by Word2Vec. We do not know of 
any other research that utilized skip-gram embeddings to 
create weighted networks using cosine similarity for 
modeling vocabulary growth, though some work has 
suggested utilizing Word2Vec embeddings in predictive 
neural networks or calculating cosine similarities from 
LSA (Beckage et al., 2020; Steyvers & Tenenbaum, 2005).  
 
The present work is a promising new direction in the 
pursuit of understanding language development. Despite 
the forward progress still required to implement the 
proposed model, valuable insights cam be gained for future 
modeling attempts. Our analyses not only suggest the need 
to be mindful when choosing similarity metrics or semantic 
network structure, but highlight the importance of the 
degree of representativeness that corpora from different 
populations achieve, based on the question of interest.  
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