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Abstract
Parallel corpora are ideal for extracting a multilingual named entity (MNE) resource, i.e., a dataset of names translated into
multiple languages. Prior work on extracting MNE datasets from parallel corpora required resources such as large monolingual
corpora or word aligners that are unavailable or perform poorly for underresourced languages. We present CLC-BN, a new
method for creating an MNE resource, and apply it to the Parallel Bible Corpus, a corpus of more than 1000 languages. CLC-BN
learns a neural transliteration model from parallel-corpus statistics, without requiring any other bilingual resources, word
aligners, or seed data. Experimental results show that CLC-BN clearly outperforms prior work. We release an MNE resource for
1340 languages and demonstrate its effectiveness in two downstream tasks: knowledge graph augmentation and bilingual lexicon
induction.
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1. Introduction
Of the thousands of languages in the world, a very small
portion is covered by language technologies (Joshi et al.,
2020). Bird (2020) suggests a number of approaches to
develop such technologies for low-resource languages.
In this paper, our goal is to create a multilingual named
entity (MNE) resource – by which we mean a dataset of
names translated into multiple languages – for a large
number of low-resource languages, in total more than
a thousand. Named entities (NEs) are crucial for many
language technologies and NLP applications, includ-
ing text comprehension, question answering, informa-
tion retrieval and relation extraction. In this paper, we
demonstrate the effectiveness of our MNE resource in
two downstream tasks: knowledge graph augmentation
and bilingual lexicon induction.
We extract our MNE resource from the Parallel Bible
Corpus (PBC) (Mayer and Cysouw, 2014), a multiparal-
lel corpus that covers more than 1300 languages. (Note
however that we do not use Bible-specific features;
therefore, our work is in principle applicable to any
parallel corpus.) For some languages, PBC is the only
available text (Wu et al., 2018). Multiparallel corpora
contain sentence-level parallel text in more than two
languages. Apart from PBC, JW300 (Agić and Vulić,
2019) and Tatoeba1 are two other examples of such cor-
pora. While the amount of data per language provided
by highly multiparallel corpora is usually small, this
type of corpus plays an important part in compiling
resources for low-resource languages.
Creating a named entity resource is comparatively easy
if sufficiently high-quality resources are available for

∗Now at Apple.
1https://tatoeba.org

Kat: იერემია (ieremia)

Heb: (yiremeyahu) וּהָימְרְִי

Jpn: ェレムヤ (eremuya)

Tam: எேரமியா (ereemiyaa)

Ita: geremia

Deu: jeremias

jeremiah rachel
Hin: राहेल (raahel)

Fin: raakel

Rus: рахи́ль (rakhil)
Spa: raquel

Kor: 라헬이 (raheli)

Ell: ραχη% λ (rachel)

Figure 1: Two NEs from our resource, each with a
sample of translations in six different languages

a language. Such resources include named entity rec-
ognizers (Yadav and Bethard, 2018; Li et al., 2020);
large monolingual corpora, which can be used to learn
high-quality word embeddings or high-quality contextu-
alized embeddings; parallel corpora that consist of large
corpora (millions of words) per language (Lample et
al., 2016; Ma and Hovy, 2016; Dasigi and Diab, 2011);
or high-quality annotated data, e.g., training sets for
named entity recognition (Wang and Manning, 2014;
Wu et al., 2021; Wu et al., 2020) or implicit high-quality
annotations like hyperlinks in Wikipedia (Tsai et al.,
2016). Recent work (Wu et al., 2021; Li et al., 2021)
with multilingual pretrained language models (PLMs)
like BERT and XML-R for named entity recognition is
promising, but also relies on moderately large monolin-
gual corpora (e.g., a Wikipedia of decent size) to learn
good quality contextualized representations. However,
these monolingual corpora exist only for about 100 or
so languages. For instance, Zulu is not included but we
cover it in our experiments.
In this work, our goal is to cover the large number of
languages for which these resources do not exist: no
named entity recognizers, no large monolingual (or par-
allel) corpora, no annotated data (not even implicitly

https://tatoeba.org
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annotated) and no pretrained language models (due to
the lack of large monolingual corpora).
Many low-resource languages are covered in the PBC
which gives us a chance to create resources for lan-
guages that currently do not have any – perhaps apart
from an entry in the World Atlas of Language Structures
(Dryer and Haspelmath, 2013) that is too abstract for
most purposes in computational linguistics.
Since PBC is a parallel corpus, the question of why we
do not use word alignment naturally arises. However,
our experiments with word alignment on PBC were not
successful for named entities. The reason is that word
alignment performance deteriorates when parallel text is
scarce (Och and Ney, 2003), especially for named enti-
ties as most are rare words. Our approach therefore does
not depend on a word aligner and works well even when
only a small parallel corpus is available. We directly
compare with prior work that relies on word alignment.
Based on this motivation, we introduce CLC-BN (Char-
acter Level Correspondence Bootstrapping and Neural
transliteration), a method for extracting a multilingual
named entity resource from a parallel corpus, including
in low-resource settings in which the available text per
language in the corpus is small. CLC-BN learns a neu-
ral transliteration model from parallel-corpus statistics,
without requiring any other bilingual resources, word
aligners or seed data. In the first step, the method iden-
tifies NE correspondences in the parallel text. It then
learn a neural transliteration model from these (noisy)
NE correspondences. Finally, we use the learned model
to identify high-confidence NE pairs in the parallel text.
The first step (identifying NE correspondences) works
at the character-ngram level, hence it is applicable to
languages for which a tokenizer is not available, as op-
posed to word alignment based approaches. We will
show that our method performs well for untokenized
Japanese text.
In summary, our contributions are:

1. We present CLC-BN, a method that first identifies
named entity correspondences in a parallel corpus
and then learns a neural transliteration model from
them.

2. We annotate a set of NEs to evaluate CLC-BN’s
performance on 13 languages through crowdsourc-
ing and show a clear performance increase in com-
parison to prior work. We release the gold anno-
tated sets as a resource for future work.2

3. Using CLC-BN, we create and release a named
entity resource containing 674,493 names across
1340 languages, 503 names per language on aver-
age.2

4. For many languages, ours is the first published re-
source. We believe that it can be useful for future
work in computational linguistics on the more than

2http://cistern.cis.lmu.de/ne_bible/

1000 languages covered. We show experimentally
that this is the case for knowledge graph augmen-
tation and bilingual lexicon induction.

2. Related work
2.1. Word alignment
A multilingual named entity resource can be extracted
from a parallel corpus via word alignment. Word align-
ment has been widely studied. Statistical word align-
ment models were introduced by Brown et al. (1993).
More recently Giza++ (Och and Ney, 2000) and Eflo-
mal (Östling et al., 2016) were released followed by
neural network extensions (Ngo-Ho and Yvon, 2019).
Other approaches use learned representations for creat-
ing alignments (Jalili Sabet et al., 2020). In concurrent
work, Imani et al. (2021) have shown that better word
alignment results can be achieved by exploiting multi-
parallel corpora. Previous work on named entity align-
ment and recognition uses combinations of alignment
tools and postprocessing techniques. Dasigi and Diab
(2011) use Giza++ for alignment and applied statistical
machine translation (Koehn et al., 2007) and language-
specific rules for improving transliteration. (Wu et al.,
2018) use the Berkeley aligner (Liang et al., 2006) to
word-align language pairs in the English Bible and fur-
ther improve them with machine translation. In this
paper, we do not use word aligners because of their low
quality for named entities in small parallel corpora. We
will directly compare with the word-alignment-based
method of (Wu et al., 2018).
Recent approaches rely on parallel corpora and multi-
lingual pre-trained models. Wu et al. (2021) construct
a pseudo training set by performing translation and use
multilingual BERT (Devlin et al., 2019a) to generate
language independent features for training NER mod-
els. Li et al. (2021) use XLM-R (Conneau and Lample,
2019) to build an entity alignment model that projects
English named entities into the parallel target language.
While these approaches are promising, they are limited
to the language set the models have been trained on
(≈100). In contrast we apply CLC-BN to the more than
one thousand languages in the Parallel Bible Corpus.

2.2. Transliteration
Prabhakar and Pal (2018) provide a comprehensive sur-
vey on transliteration. Recently, the task has been ad-
dressed with sequence-to-sequence models and trans-
formers. Wu and Yarowsky (2018) perform experiments
with these models on their Bible-based translation ma-
trix dataset (Wu et al., 2018) and show that the task is
challenging in the low-resource scenario. One of the
causes is overfitting of the training set due to its re-
duced size. Our CLC-BN method uses a transliteration
model and addresses this problem by augmenting the
training set with monolingual target data (English) and
introducing a monotonic bias.

http://cistern.cis.lmu.de/ne_bible/
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Verse: 44010031

Eng (Se): cornelius , your prayer has been favorably heard […]

Ita (St): cornelio , la tua preghiera è stata udita […]
…

Verse: 45016021 

Eng (Se): timothy , my fellow
worker […]

Ita (St): timoteo , mio
compagno d’opera […]

Italian fs fa

imote 24 24

moteo 24 24

oteo 24 24

timot 24 24

imoteo 24 24

timoteo 24 24

timote 24 24

imot 24 36

mote 24 39

Italian Len

timoteo 7

imoteo 6

timote 6

moteo 5

imote 5

timot 5

…
Verse: 55001002 

Eng (Se): to timothy , a beloved
child […]

Ita (St): a timoteo , diletto
figlio […]

Attention with 
monotonic bias

t   i  m o  t   e  o EOS

* *  *   * *   *  * EOS

SOS  t   i  m o   t  h  y

SOS  a  l  l  i s  o  n

t   i  m  o  t  h  y  EOS
a   l   l  i s  o  n EOS

(A) (B) (C) (D)

Italian Score

cornelio 0.92

cesarea 0.82

appresso 0.61

udita 0.53

tua 0.45

…

Verse: 44010024

Eng (Se): he entered into caesarea . cornelius , of course […]

Ita (St): entrò a cesarea . cornelio , naturalmente […]

(E)

Figure 2: Data flow in CLC-BN. Example showing extraction of Italian NE training candidates for English “timothy”
and identification of an Italian NE that matches English “cornelius”. The input is the parallel corpus (A). CLC-B
extracts from the parallel corpus ngrams that are candidate transliterations for “timothy” (B). These candidates are
then filtered (C). (D): The architecture of the neural transliteration model. Green input-output pairs: Italian-English
training data taken from the output of CLC-B. Blue input-output pairs: monolingual English training data. (E): We
use the trained neural model to score candidates taken from the Italian parallel verses in which “cornelius” appears
and keep the best scoring word.

2.3. Named entity resources
(Benites et al., 2020) introduce Translit, a transliteration
resource created by combining and unifying public cor-
pora. However, this dataset only covers 180 languages.
BabelNet (Navigli and Ponzetto, 2012) is a multilin-
gual encyclopedic dictionary that integrates WordNet,
Wikipedia, GeoNames, inter alia. BabelNet is more
comprehensive than other resources, but its NE cover-
age is still poor for many languages (e.g., for Inuktitut).
We show in this paper that we can extend the coverage
of BabelNet with our method. The Translation Matrix
of (Wu et al., 2018) covers 591 languages. Their ap-
proach is based on word alignment. We show that our
approach yields higher quality.

2.3.1. Named Entity Recognition resources
Named Entity Recognition (NER) systems usually re-
quire annotated data to achieve high accuracy. Our NE
resource can be exploited to bootstrap such NER models
for many different languages. (Al-Rfou et al., 2015) au-
tomatically extract named entities from Wikipedia link
structure and Freebase attributes and create Polyglot-
NER for 40 languages. (Pan et al., 2017) introduce
WikiAnn, a resource for 282 Wikipedia languages that
supports name tagging and entity linking. Our resource
covers more than 1300 languages and CLC-BN does
not rely on external sources other than the PBC.

2.4. Annotation projection
(Ehrmann et al., 2011) project annotations from English
to five languages using a phrase-based statistical ma-

chine translation system and different methods: string
matching, consonant signature matching and edit dis-
tance similarity. Ni et al. (2017) propose two methods
for NER projection using heuristics, alignment informa-
tion, and mapped word embeddings. Wang et al. (2018)
describe a method for cross-lingual knowledge graph
alignment of pre-aligned entities based on their distance
in the learned embedding space. We project English
NEs to the target languages exploiting character-level
correspondence and a neural transliteration model with-
out requiring any word alignment information or seed
data.

2.5. Monotonicity

The performance of sequence-to-sequence models on
some tasks can be improved by imposing an inductive
bias of monotonicity (i.e., no character can be aligned
to one that precedes a previously aligned character).
Previous studies implement and analyze the effect of
such a monotonic bias. Wu and Cotterell (2019) show
that enforcing strict monotonicity and learning a la-
tent alignment jointly while learning to transduce leads
to improved performance for morphological inflection,
transliteration, and grapheme-to-phoneme conversion.
Rios et al. (2021) develop a general method for incor-
porating monotonicity into attention for seq2seq and
Transformer models, agnostic of the task and model
architectures. Similar to this prior work, we impose a
monotonic bias on our neural transliteration model.
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3. Method
We now describe CLC-BN.3 Figure 2 shows architec-
ture and data flow. For ease of development and evalu-
ation, we also use the Uroman romanizer (Hermjakob
et al., 2018). It converts scripts into Latin characters.
But CLC-BN can be applied equally well without ro-
manization. CLC-BN consists of two steps. First we
extract character-level correspondences (CLC-B). Then
we train a neural transliteration model to obtain the final
set of named entities.

3.1. Character-Level Correspondence
Bootstrapping (CLC-B)

We use cooccurrence statistics at the character level
between English NEs and target language NEs to create
a training set for the neural transliteration model. We
use (Wu et al., 2018)’s list of English Bible NEs. NEs
with frequency 1 are not considered in CLC-B because
the FILTER step (#3 below) is likely to produce false
positives (accidentally correlated ngrams) for them; but
they are considered in §3.2.
CLC-B is designed based on the following simple cor-
respondence assumption: if an English NE occurs in a
verse, the corresponding target NE occurs in the parallel
target verse and vice versa. This also implies that if
N and M are the the number of verses in which the
NE and its translation occur, then N ≈ M . We do not
require N = M because we relax the correspondence
assumption due to errors in the parallel corpus and due
to the use of pronouns (including null pronouns, i.e., the
pronoun is only present implicitly), which differs across
languages.
We now describe our Character-Level Correspondence
Bootstrapping (CLC-B) method, for the example of an
English NE w. Algorithm 1 shows the pseudocode.
Let fa be the total frequency of an ngram in the target
language and fs its frequency in the subset of verses
that contains w in English.

1. EXTRACT. (Line 4) Extract the parallel subcor-
pus that contains w from the parallel corpus. It
consists of the English part Se and the target lan-
guage part St.

2. GET_NGRAMS. (Lines 5–13) For all character
n-grams4 (3 < n < 20) in St, determine fs, the
number of occurrences in St. Discard ngrams with
fa > 50 – this removes a small number of frequent
NEs like Jesus, but avoids false positive matches
with frequent ngrams. The resulting set of target
ngrams is Gt.

3. FILTER. (Line 14) Filter Gt as follows. (a) Deter-
mine the ngram(s) with the highest fs. Remove all
other ngrams. (b) Determine the ngram(s) with the
minimum absolute difference between fa and fs.

3Reproducibility details in §A.
4We discard ngrams containing digits, punctuation and

spaces.

Algorithm 1 Pseudocode for the CLC-B method. Given
a parallel corpus of English (E) and a target language
(T ), we identify, for each English NE, its target match.
See §3.1 for details and for the EXTRACT and FILTER
methods.
1: procedure CLC-B(corpus E, corpus T , list

English_NEs)
2: pairs← list()
3: for w ∈ English_NEs do
4: Se, St ← extract(w, S, T ) ▷ (1) EXTRACT
5: Gt ← list()
6: ngram_list ← get_ngram_list(St)
7: frequency_list← get_frequent_ngrams(St)
8: for [ngram, count] ∈ ngram_list do
9: if ngram ∈ frequency_list or count == 1 then

10: continue
11: end if
12: Gt.append([ngram, count])
13: end for
14: pairs.append(filter(Gt)) ▷ (3) FILTER
15: end for
16: return pairs
17: end procedure

Remove all other ngrams. Intuitively, most NEs
in a particular domain are unique – so they should
contain ngrams that only occur in the NE and not
in other words. (c) Return the ngrams with the
smallest length difference to w. This eliminates
candidates that are much longer or shorter than w.

3.2. Neural transliteration
CLC-B returns a noisy set of NE pairs, especially when
only a small number of parallel verses is available for a
language (we refer to this as the lowest-resource setting
below). We build a neural sequence-to-sequence model
(Sutskever et al., 2014) to refine it and to mine addi-
tional pairs. We use a single-layer bidirectional Gated
Recurrent Unit (GRU) (Cho et al., 2014) encoder and
a single-layer GRU decoder with attention (Luong et
al., 2015). The sequences are processed at the character-
level, with separate input and output vocabularies. Tar-
get language NEs are the input, English NEs the output;
we use input/output when referring to the neural model
(not source/target) because “target” in this paper refers
to the target language that English is paired with.
To make best use of the limited training data in our ex-
perimental setup, we use augmentation and impose a
monotonicity bias as described below. To avoid overfit-
ting, we augment the training set with English NEs. We
label the English Wikipedia dump5 with the Flair Part-
of-Speech tagger (Akbik et al., 2019), and select all NEs.
We add, for each English NE mined from Wikipedia,
one pair of the form (empty input NE, English output
NE) to the training set. We use empty input NEs to pre-
vent the learning of the identity function while helping
the decoder to learn the structure of English words. To

5https://dumps.wikimedia.org/ (01.04.2020)

https://dumps.wikimedia.org/
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Lang ISO # verses # parallel

lo
w

-r
es

ou
rc

e
la

ng
ua

ge
s

Arabic Arb 31173 31062
Finnish Fin 31167 31061
Greek Ell 31183 31062
Russian Rus 31173 31062
Spanish Spa 31167 31062
Swedish Swe 31167 31062
Zulu Zul 31167 31062

lo
w

es
t-

re
so

ur
ce

la
ng

ua
ge

s

Hebrew Heb 7952 7917
Hindi Hin 7952 7917
Kannada Kan 7952 7917
Korean Kor 7913 7869
Georgian Kat 4904 4844
Tamil Tam 7942 7917

Table 1: Number of verses in PBC and number of verses
that are parallel with our English edition for the lan-
guages in our experiments. The English edition has
31,133 verses.

prevent generation of output independent of the input,
we ensure equal proportions of original and augmented
data by oversampling the former. Because translitera-
tions are (with few exceptions) monotonic, we impose a
monotonicity bias: we mask the attention matrix, so that
the model cannot see anything to the left of the position
previously attended to.
Given an English NE w and the verses Se in which it
appears, target candidates are all words in St, the verses
parallel to Se. Once the model is trained, we choose
the best scoring candidate as w’s transliteration where
the score is the average log likelihood of the output
characters (Severini et al., 2020).
We use a slightly different scoring step for non-
tokenized languages (e.g., Japanese) because separated
words in St are not available: given an English NE w,
the target candidates are all ngrams that CLC-B has
extracted for w in step 3b.

4. Evaluation and Analysis
We apply CLC-BN to the Parallel Bible Corpus (PBC)
(Mayer and Cysouw, 2014) for evaluation and for cre-
ating our NE resource.6 We evaluate on a subset of 13
languages that includes different scripts, resource avail-
abilities and language families: Arabic, Greek, Finnish,
Hebrew, Hindi, Kannada, Korean, Georgian, Russian,
Spanish, Swedish, Tamil, and Zulu. These languages
are also covered by the baselines and are therefore suit-
able for comparison. We view them as a representative
subset for evaluating our method’s performance. Note,
however, that our NE resource covers all 1340 PBC
languages: our approach is applicable to all languages
since it does not use language-specific features and pre-
processing steps.
PBC contains 1340 languages, most of which are low-
resource. It is divided into subfiles, each containing
Bible text from one language. Some languages that
cover the Hebrew Bible and the New Testament com-

6Reproducibility details in §A

pletely contain about 30,000 verses. Other languages
contain fewer than 8000 verses. We divide the languages
into two categories: lowest-resource, fewer than 8000
verses; and low-resource, between 8000 and 32,000
verses.7 Table 1 gives the number of verses for the
editions we use. We evaluate our resource on human
annotated data and on silver data with respect to the
baselines and provide analysis.

4.1. Human evaluation
We annotated 60 NEs per language using Toloka,8 a
crowd-sourcing platform. Annotators had to pass an
English test and successfully complete a training task to
gain access to the annotation pool. Their performance
was constantly checked using covert control questions.
Each question contained the English NE and up to five
possible options: one for each of the three baselines,
one for CLC-B and one for CLC-BN. Each option con-
sists of the word in the target script together with its
romanized version in parentheses. Annotators had to
mark all correct options that can be paired to the English
NE, or none if no option is correct. Each question was
annotated by exactly three annotators.
We calculate annotator agreement using Cohen’s Kappa
(Cohen, 1960), which measures agreement above
chance. Similar to the setup of (Wu et al., 2018), we
do not require that the annotators know the target lan-
guages. However, their average pairwise agreement
is 0.73, “substantial agreement” according to Cohen’s
Kappa (Landis and Koch, 1977), indicating that they can
find the correct corresponding target named entity even
if they do not know the target language. To create the
final gold set, we adopt a majority voting strategy and
keep named entities that at least two annotators agreed
on, resulting in at least 58 named entities per language.
We evaluate CLC-BN and the baselines on this gold set.9

The results can be found in Table 2, column “Hum”.
CLC-BN outperforms the baseline (Wu et al., 2018)
for all languages (average difference of 7.9), with sub-
stantial improvements for the lowest-resource languages
(difference of 21.1). The biggest improvements are for
Hindi and Kannada (more than 30).

4.2. Silver evaluation
The gold dataset is used as the main evaluation of the re-
source. However, we additionally create a silver dataset
to evaluate based on a larger set of hundreds of NEs.
We create the silver set by translating each English NE
to all target languages supported by the Google transla-
tion API10 and comparing them with the NEs extracted

7“low-resource” is to be interpreted as referring to the
setting in our experiments. For example, many resources
are available for Russian, but in our setting we only use the
Russian text that is available in PBC to evaluate how well our
method works in a low-resource setting.

8https://toloka.yandex.com/
9We release the gold dataset to facilitate future research.

10https://cloud.google.com/translate

https://toloka.yandex.com/
https://cloud.google.com/translate
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Arb Ell Fin Spa Swe Rus Zul AVG
Dist Hum Dist Hum Dist Hum Dist Hum Dist Hum Dist Hum Dist Hum Dist Hum

(Wu et al., 2018) 67.9 70.0 47.2 80.0 89.0 90.0 87,6 91.7 88.8 88.3 60.6 72.9 61.9 84.8 65.9 82.5
Östling et al. (2016) 69.8 61.7 53.4 88.3 77.7 76.7 83.9 86.7 81.2 85.0 64.8 83.1 52.9 86.4 60.9 81.1
Sabet et al. (2020) 18.1 20.0 23.5 40.0 49.8 60.0 35.6 45.0 41.6 50.0 39.6 45.8 18.3 25.4 29.6 40.9
CLC-B 53.8 56.7 32.2 45.0 59.9 50.0 48.0 48.3 52.0 48.3 46.5 57.6 55.1 74.6 46.6 54.4
CLC-BN 70.6 81.7 54.7 91.7 86.5 93.3 89.6 96.7 89.9 91.7 70.2 84.8 68.8 93.2 71.9 90,4

Heb Hin Kan Kat Kor Tam AVG
Dist Hum Dist Hum Dist Hum Dist Hum Dist Hum Dist Hum Dist Hum

(Wu et al., 2018) 53.4 62.5 64.1∗ 76.3∗ 41.5 61.7 64.3 70.0 30.5 54.2 47.1∗ 66.1∗ 50.2 65.1
Östling et al. (2016) 65.5 83.9 57.7∗ 69.5∗ 23.1 38.3 64.0 68.3 16.6 33.9 20.5∗ 35.6∗ 41.2 57.5
Sabet et al. (2020) 27.8 23.2 41.6∗ 47.5∗ 26.5 46.7 28.0 20.0 23.5 40.0 30.4∗ 47.5∗ 29.6 37.5
CLC-B 37.2 51.8 43.1∗ 39.0∗ 30.7 48.3 41.7 45.0 23.8 37.3 38.6∗ 47.5∗ 35.9 44.8
CLC-BN 62.6 71.4 78.6∗ 94.9∗ 45.9 93.3 70.8 88.3 34.2 78.0 59.5∗ 91.5∗ 58.6 86.2

Table 2: Precision of NE correspondence identification for low-resource (top: Hebrew Bible and New Testament)
and lowest-resource (bottom: New Testament only) languages. We compare Translation Matrix (Wu et al., 2018),
Eflomal (Östling et al., 2016), SimAlign (Sabet et al., 2020), CLC-B and CLC-BN. Comparisons are with silver
data+Jaro distance (Dist) and with gold human annotated data (Hum). *: evaluation on romanization for fair
comparison with baselines.

by CLC-BN using the Jaro distance (Jaro, 1989). The
distance takes into account the number and order of
characters shared by two strings; e.g., the NE “salome”
has a distance of 0.05 from “salom” and 0.11 from
“calom”. Jaro is frequently used for entity matching and
is well-suited for short strings (Cohen et al., 2003). We
use a threshold of 0.3 for the Jaro distance, chosen to
be strict enough to evaluate the NEs and to take into
account noise in the pairs produced by Google Trans-
late. For example, the silver translation of "jannes" in
Greek is γιάννες (giánnes) while our data contains ι-
αννής (iannís), which is also correct; their distance is
0.26. Another example is the name "mitylene" that the
silver data translates to μυτυλένιο (mytylénio) and has
a distance of 0.27 to our translation μυτιλήνη (mytilíni).
By design, the silver data provides only a single transla-
tion for each English NE. However, multiple translations
are often correct, due to the variability of morphology,
transliteration, naming conventions and dialects (Prab-
hakar and Pal, 2018). For example, the English NE
“Paul” can be aligned to Russian “Pavel” and “Pavla”.
For this reason, our results on the silver standard must
be interpreted as lower bounds.
Arabic and Hebrew are standardly written without short
vowels. This is also the case for the silver data. However,
some PBC editions are written with short vowels, so
we postprocess predictions by removing short vowel
diacritics.
Table 2 shows results for the 13 languages. The ranking
of baselines and methods is similar to the one obtained
with the gold human evaluation with CLC-BN being
always the best, except for Finnish. Improvements for
lowest-resource languages (lower part of the table) are
large, up to 48% difference on average. CLC-BN out-
performs (Wu et al., 2018) for 12 of the 13 languages.11

11The exception is Finnish, which is probably due to the
fact that machine translation (which was used for (Wu et
al., 2018)) performs well for high-resource languages. Note
however, that CLC-BN performs best for Finnish in the (more
reliable) human (“Hum”) evaluation.

4.3. Word alignment comparison
NE correspondences can also be obtained using a word
aligner. We compare our results with pairs obtained
using Eflomal (Östling et al., 2016), a statistical word
aligner, and SimAlign (Sabet et al., 2020), a high-quality
word aligner that leverages multilingual word embed-
dings. Table 2 shows precision for silver and gold data.
CLC-BN outperforms Eflomal (with the exception of
Hebrew) and SimAlign for all 13 languages. We at-
tribute this to the fact that NEs are hard to word-align
because most of them are infrequent, resulting in align-
ment errors due to sparseness. CLC-BN could be in-
tegrated into word alignment pipelines to boost word
aligner performance for NEs (Sajjad et al., 2011; Sem-
mar and Saadane, 2013).
CLC-B works at the character level and is applica-
ble to non-tokenized languages while aligners are not.
Japanese is non-tokenized, so we evaluate it (only for
CLC-B and CLC-BN since the other methods were not
run on Japanese). We evaluate the 979 pairs of CLC-BN
with the silver data and obtain a precision of 63.2%. We
also use Toloka for the gold evaluation of 60 random
pairs and obtain a precision of 60%. However, in this
case each question has at most two options (CLC-B and
CLC-BN – in contrast to five as for 4.1), which can hin-
der the annotators’ judgments having less comparison
terms. For this reason, we also asked three experts to
evaluate the 60 pairs and obtained a precision of 85%.

4.4. Impact of corpus size
Table 2 shows that precision for lowest-resource lan-
guages (less than 8000 verses, bottom) is worse than
those for low-resource languages (about 30,000 verses,
top), with an average difference of 13.3% for silver data,
and 4.2% for gold data. The small gap on gold data,
highlights that our method is appropriate also for the
lowest-resource setting. Table 3 shows some examples
of aligned pairs according to CLC-BN. We see that er-
rors arise as the frequency of NEs in the English corpus
diminishes. For example, the Kannada alignment for
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# English Arabic Finnish Greek Hebrew Kannada Russian Tamil
28 elijah alalihaau eliaa elia veaeliyahu eliiyanaagali elisei eliyaavaa
12 titus tiytusa titus titos titos titanannu titu tiittuvin

8 elizabeth aaliysaabaata elisabet elisabet elisheva elisabeet elizaveta elicapet
3 miletus miyliytusa miletokseen mileto lemilitos mileetakke mileta mileettu
2 rufus ruwfusa rufuksen roufo vishelom uphaniguu rufa ruupuvukkum
2 hermes wahirmisa hermeeksi epairne heremes meeyaniguu germes ermee

Table 3: Examples of named entity alignments (romanized). “#” column shows the number of verses in which the
English word appears.

Lang Eng Freq CLC-B CLC-BN
Arb anah 10 ةخيشلا (alshaykha) انآ (ana)
Rus joanna 2 мария (mariya) иоа́нна (joanna)
Fin perez 2 hesroni peresin
Kan cainan 2 !ಾ!ಾ ಕ"#ಾನನ

(naanaa) (kayinaanana)
Tam azor 2 எலி$%&'( ஆேசா%

(eliyuutukkut) (aacoor)

Table 4: Examples of improvement due to neural translit-
eration. CLC-B: incorrect prediction of CLC-B. CLC-
BN: correct prediction obtained with neural translitera-
tion.

“rufus” and Greek and Kannada alignments for “hermes”
are incorrect. Both words are short, indicating another
source of errors: short words provide less of a signal for
the neural transliteration model than long words do.

4.5. Impact of neural transliteration
Table 2 shows precision for CLC-B and CLC-BN. All
languages benefit from neural transliteration with an
average improvement of 30.9 percentage points. One
of the reasons is that CLC-B was designed to discard
English NEs that appear only once in the corpus. Table
4 shows examples where neural transliteration corrects
an error made by CLC-B. Most of these cases have low
frequency. This is not surprising as the risk of false
positives increases as the frequency decreases because
the heuristics used in CLC-B (§3.1) are less reliable for
low-frequency NEs.

4.6. Error analysis
In our manual error analysis, we found two main types
of errors.
(1) The neural model generally learns well how to
transliterate the beginning of a word, but error rates are
higher word-internally. For example, the NE “balak” is
wrongly paired to “pileeyaam” instead of “paalaak” and
“menna” is paired to “meleyaa” instead of “meyinaan”
in Tamil. The neural model has to learn two aspects
of transliteration: transliteration proper (i.e., character
correspondences) and alignment. This type of error in-
dicates that alignment performance should be improved.
In future work, we plan to explore neural architectures
that more explicitly model the problem as alignment.
(2) For some low-resource languages, the output of CLC-
B has a high level of noise, so the neural model fails to

learn some character correspondences. In some cases,
the output of the neural model is unrelated to the in-
put. This type of error indicates that the CLC-B method
should be improved further. As shown in Tables 3 and
4, low-frequency words contain more errors. In future
work, we plan to adopt an iterative strategy that consid-
ers gradually more and more named entities, starting
with the most confident ones.

5. Use cases
5.1. Transliteration
A straightforward application of our named entity re-
source, as described by (Wu et al., 2018), is to create
transliteration models. They showed that a character-
based Moses SMT system trained over a dataset of
named entities extracted from the Bible (whose perfor-
mance is lower than our method’s, based on Table 2) per-
forms better than a Unicode baseline. We now present
two additional applications of our named entity resource:
extending existing multilingual dictionaries and cross-
lingual mapping of word embeddings.

5.2. Extending existing multilingual resources
BabelNet12 (Navigli and Ponzetto, 2012) is a multilin-
gual encyclopedic dictionary. It was created by integrat-
ing more than 35 WordNets, covering 500 languages,
and has about 20 million entries.
We want to show that one can use our resource to enrich
BabelNet further. Since CLC-BN covers many more
languages than BabelNet, we can simply extend Babel-
Net by adding more languages like Burarra, North Junín
Quechua, and Mian to it. Regarding the languages that
BabelNet already supports, we check whether we can
add more entries exploiting our resource. To this end,
for each word pair (English:target-language) in CLC-
BN, we check whether a translation of the English word
exists in BabelNet in the target language. Results are
depicted in Table 5. On average, 27% (i.e., 206 words)
of the English words have no correspondence in the
target language. These are mostly rare words that are
difficult to translate without accessing a resource as rich
as PBC. From a manual investigation, we find that our
resource could also help to improve the quality of Ba-
belNet; some translations of the latter are completely
incorrect or wrongly written with Latin characters. Ex-
amples for Greek are hamor/εμμώρ (emmor), which

12https://babelnet.org/

https://babelnet.org/
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Lang. CLC-BN Babel New NEs New NEs %
Arb 977 683 294 30.1
Fin 979 647 332 33.9
Ell 979 658 321 32.8
Rus 485 449 36 7.4
Spa 979 784 195 19.9
Swe 979 684 295 30.1
Zul 979 471 508 51.9
Heb 467 413 54 11.6
Hin 467 334 133 28.5
Kan 467 299 168 36.0
Kor 467 386 81 17.3
Kat 368 271 97 26.4
Tam 433 318 115 26.6
Jpn 979 715 264 27.0
Zho 979 698 281 28.7
Tha 467 337 130 27.8
AVG. 715 509 206 27.2

Table 5: Extension of BabelNet with named entities
based on our resource. Example (first line, “Arb”). CLC-
BN returns 977 English-Arabic NE pairs. BabelNet con-
tains Arabic translations for 683 of these English NEs,
but 294 (30.1%) lack an Arabic translation. Thus we
add 294 English-Arabic NE pairs that were not covered
by BabelNet.

BabelNet translates as Δείνα (Deina), and ethan/εθάν,
incorrectly transliterated with Latin characters.

5.3. Cross-lingual mapping of word
embeddings

An effective method for creating bilingual word embed-
dings is to train word embeddings for each language
independently using monolingual resources and then
aligning them using a linear transformation (Artetxe
et al., 2018). Approaches for word embedding align-
ment can be grouped into three categories: supervised
(Mikolov et al., 2013; Lazaridou et al., 2015), semisuper-
vised (Artetxe et al., 2017) and unsupervised (Artetxe
et al., 2018; Alvarez-Melis and Jaakkola, 2018). Super-
vised approaches require a bilingual dictionary with a
few thousand entries to learn the mapping. Semisuper-
vised procedures need a small seed dictionary. Unsuper-
vised approaches can align word embeddings without
any bilingual data but, as shown by Vulić et al. (2019),
they are only effective when the two languages are simi-
lar enough, restricting their applicability.
In this use case, we use our resource as the initial seed
dictionary for semisupervised alignment of word em-
beddings for language pairs where unsupervised meth-
ods fail. We select three such language pairs – En-
glish/Japanese, English/Chinese and English/Tamil –
and show that VecMap,13 a semisupervised method, can
successfully employ our NE resource to align these lan-
guages. VecMap implements the method proposed by
Artetxe et al. (2018), which is a state-of-the-art method
for unsupervised cross-lingual word embedding map-
ping. It creates an initial set of word pairings based

13https://github.com/artetxem/vecmap

Eng-Jpn Eng-Tam Eng-Zho
Unsupervised 0.0 0.0 0.0
Semisupervised 30.43 14.4 30.1

Table 6: P@1 BLI results with unsupervised VecMap
compared to semisupervised VecMap, which uses our
NE resource for initialization

on the distribution of words in their similarity matrix.
Then it employs a self-learning method to improve the
mapping iteratively.
We evaluate the embeddings on the Bilingual Lexicon
Induction (BLI) task and the gold dataset provided by
MUSE (Conneau et al., 2018). We use Wikipedia fast-
Text embeddings (Bojanowski et al., 2017) as monolin-
gual input vectors and report precision at one (P@1) for
the unsupervised and semisupervised approaches in Ta-
ble 6. While the fully unsupervised method fails to align
these languages, the semisupervised approach based on
our resource has much better results confirming that our
NE resource can be effectively used as seed data.

6. Resource
We release a resource of named entities for 1340 lan-
guages, 1134 of which are lowest-resource.14 The re-
source mainly contains people and location NEs. The
total number of NEs is 674,493, so there are 503 NEs per
language on average with at least 300 NEs in 95% of the
languages. The three best represented language families
(Dryer and Haspelmath, 2013) are Austronesian, Niger-
Congo and Indo-European. However, our coverage
broadly includes all major areas of linguistic diversity,
including Amazonian (e.g., Kaingang), African (e.g.,
Sango) and Papua New Guinea (e.g., Saniyo-Hiyewe).

7. Conclusion
We presented CLC-BN, a new method that identi-
fies named entity correspondences and trains a neural
transliteration model on them. CLC-BN does not need
any other bilingual resources beyond the parallel cor-
pus nor a word aligner or seed data. We showed that
it outperforms prior work on silver data and human-
annotated gold data. We created a new NE resource
for 1340 languages by applying CLC-BN to the Parallel
Bible Corpus and illustrated its utility by demonstrating
good performance on two downstream tasks: knowledge
graph augmentation and bilingual lexicon induction.
Acknowledgments. This work was funded by the Euro-
pean Research Council (grant #740516) and the German
Federal Ministry of Education and Research (BMBF,
grant #01IS18036A).
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Agić, Ž. and Vulić, I. (2019). Jw300: A wide-coverage
parallel corpus for low-resource languages. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 3204–
3210.

Al-Rfou, R., Kulkarni, V., Perozzi, B., and Skiena, S.
(2015). Polyglot-ner: Massive multilingual named
entity recognition. In Proceedings of the 2015 SIAM
International Conference on Data Mining, pages 586–
594. SIAM.

Benites, Fernando and Duivesteijn, Gilbert François
and von Däniken, Pius and Cieliebak, Mark. (2020).
TRANSLIT: A Large-scale Name Transliteration Re-
source. European Language Resources Association.

Bojanowski, Piotr and Grave, Edouard and Joulin, Ar-
mand and Mikolov, Tomas. (2017). Enriching Word
Vectors with Subword Information.

Alexis Conneau and Guillaume Lample and
Marc’Aurelio Ranzato and Ludovic Denoyer
and Herv’e J’egou. (2018). Word Translation
Without Parallel Data.

Matthew S. Dryer and Martin Haspelmath. (2013).
WALS Online. Max Planck Institute for Evolution-
ary Anthropology.

Ehrmann, M., Turchi, M., and Steinberger, R. (2011).
Building a multilingual named entity-annotated cor-
pus using annotation projection. In Proceedings of
the International Conference Recent Advances in Nat-
ural Language Processing 2011, pages 118–124.

Hermjakob, Ulf and May, Jonathan and Knight, Kevin.
(2018). Out-of-the-box universal romanization tool
uroman.

Mayer, Thomas and Cysouw, Michael. (2014). Creat-
ing a massively parallel bible corpus.

Navigli, Roberto and Ponzetto, Simone Paolo. (2012).
BabelNet: The automatic construction, evaluation
and application of a wide-coverage multilingual se-
mantic network. Elsevier.

Pan, Xiaoman and Zhang, Boliang and May, Jonathan
and Nothman, Joel and Knight, Kevin and Ji, Heng.
(2017). Cross-lingual name tagging and linking for
282 languages.

Wu, Winston and Vyas, Nidhi and Yarowsky, David.
(2018). Creating a translation matrix of the Bible’s
names across 591 languages.

A. Reproducibility Information
We run our method on up to 48 cores of Intel(R)
Xeon(R) CPU E7-8857 v2 with 1TB memory and a
single GeForce GTX 1080 GPU with 8GB memory.
CLC-BN is implemented in Python and takes approxi-
mately 2 minutes to run for one language. The neural
model is implemented in PyTorch and has one encoder
and one decoder layer (batch size 16, hidden layer size
32, learning rate 0.01, dropout 0.4, 24K parameters). We
use Luong et al. (2015)’s attention. Each training of the
neural transliteration model requires at most 10 minutes.
SimAlign (Sabet et al., 2020) alignments are obtained
using multilingual BERT (Devlin et al., 2019b). We use
subword alignments and the forward alignment to en-
sure that all English NEs are aligned. Eflomal (Östling
et al., 2016) alignments are obtained with default pa-
rameters and the forward alignment. The Jaro distance
is calculated using the Python library textdistance.15

For the cross-lingual word alignment experiment we
used the latest VecMap code available in its git reposi-
tory16 (no snapshot is available). We ran it using the <
−−unsupervised > and < −−semi_supervised >
switches. All other parameters are left as their default
value. The monolingual word alignments are down-
loaded from fastText’s official website.17

15https://pypi.org/project/
textdistance/

16commit ID:
b82246f6c249633039f67fa6156e51d852bd73a3

17https://fasttext.cc/docs/en/
pretrained-vectors.html

https://pypi.org/project/textdistance/
https://pypi.org/project/textdistance/
https://fasttext.cc/docs/en/pretrained-vectors.html
https://fasttext.cc/docs/en/pretrained-vectors.html
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