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Berliner Hochschule für Technik

{Benjamin.Winter, afigueroa, aloeser, gers, asiu}@bht-berlin.de
∗Both authors contributed equally.

Abstract
Training transformer language models requires vast amounts of text and computational resources. This drastically limits the
usage of these models in niche domains for which they are not optimized, or where domain-specific training data is scarce. We
focus here on the clinical domain because of its limited access to training data in common tasks, while structured ontological
data is often readily available. Recent observations in model compression of transformer models show optimization potential
in improving the representation capacity of attention heads. We propose KIMERA (Knowledge Injection via Mask Enforced
Retraining of Attention) for detecting, retraining and instilling attention heads with complementary structured domain knowl-
edge. Our novel multi-task training scheme effectively identifies and targets individual attention heads that are least useful for
a given downstream task and optimizes their representation with information from structured data. KIMERA generalizes well,
thereby building the basis for an efficient fine-tuning. KIMERA achieves significant performance boosts on seven datasets in
the medical domain in Information Retrieval and Clinical Outcome Prediction settings. We apply KIMERA to BERT-base to
evaluate the extent of the domain transfer and also improve on the already strong results of BioBERT in the clinical domain.
Keywords: Language Modelling, Neural language representation models, Statistical and Machine Learning Methods, Semi-
supervised, weakly-supervised and unsupervised learning

1. Introduction

Transformer models like BERT (Devlin et al., 2019)
and its derivatives outperform other models in many
NLP benchmarks and have achieved widespread accep-
tance. Due to the general nature of pre-training data,
these models often lack specific domain knowledge or
vocabulary and under-perform in even broad domains
like the medical one (Lee et al., 2020). One option to
impart this domain knowledge is to use structured data
in the form of knowledge graphs. Additionally, recent
findings in model compression have shown that these
large transformer models contain redundancies in their
components (Michel et al., 2019; Sanh et al., 2019).
We propose KIMERA, a novel re-training method for
effective knowledge injection in transformer models
which enhances these redundant parameters with the
help of structured domain knowledge.
First, we detect the redundant attention heads in these
transformer models, by using the findings of model
pruning. This allows KIMERA to leave the relevant
components of the model untouched while improv-
ing the more irrelevant ones. We retrain and special-
ize these redundant components in a Multi-Task train-
ing scheme enabling the model to abstract information
from the structured knowledge sources. We use com-
mon tasks from the Knowledge Graph Completion field
to facilitate this training.
Focusing on the clinical domain, we choose Clinical
Answer Passage Retrieval(CAPR) and Clinical Out-
come Prediction(COP) as downstream tasks. Medi-
cal knowledge graphs like UMLS (Bodenreider, 2004)
contain commonly known medical knowledge like
disease-symptom or drug interactions, while clinical
notes often represent the current health state of a par-
ticular patient. Therefore, both can effectively comple-

ment each other for a deep patient representation. Ad-
ditionally, we probe our models with GLUE (Wang et
al., 2019) to assess the effect on the general language
abilities that KIMERA retains after the domain trans-
fer. We evaluate the effects of KIMERA on BERT
and BioBERT (Lee et al., 2020). BioBERT serves
as a strong baseline that is trained with medical data,
and our method manages to further improve on its re-
sults.The contributions of this paper are as follows:

• Applying model compression-based analysis for
targeted retraining of attention heads

• A novel Multi-Task retraining scheme based on
Knowledge Graph Completion to integrate struc-
tured knowledge

• Experiments on 5 different strategies to employ
our method

• An evaluation on domain adaptation to the med-
ical domain in 8 downstream tasks over both
BERT-base and BioBERT

• We publish PyTorch code1 and plan to upload
trained models to huggingface.co

The remainder of this paper is structured as follows:
Section 2 illustrates KIMERA’s process; 3 introduces
the downstream tasks and Knowledge Graphs that we
use in our experiments, Section 4 discusses the experi-
ments and results on these tasks, Section 5 contains an
analysis on the actual impact the retraining has on the
model, Section 6 showcases related work and finally
Section 7 discusses future work and conclusions.

1https://anonymous.4open.science/r/kg-
transformers/README.md

huggingface.co
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2. Methodology
An overview of our method is depicted in Figure 1
A). We start with a pre-trained transformer model, a
domain-specific knowledge graph, and a downstream
task within that domain that we desire to improve on.
KIMERA is composed of three major steps:

1. Compute the attention head importance of a
fine-tuned model on the downstream task we in-
tend to improve on.

2. Retrain the less essential heads (using the atten-
tion mask generated in step 1) of a pre-trained
model using a multi-task knowledge graph gen-
eration scheme.

3. Fine-tune and evaluate the retrained model on the
downstream task.

2.1. Compute Attention Head Importance
This first step enables the detection of the parameter re-
dundancy that we aim to re-purpose. We start with the
model fine-tuned on a downstream task that we intend
to improve on. We use recent findings in transformer
pruning to identify a subset of the model parameters
(attention heads) that can be targeted in the subsequent
retraining step. Specifically, we follow (Michel et al.,
2019) in their computation of the head importance and
head pruning mask, where they modify multi-head-
attention MHAtt(Vaswani et al., 2017) into

MHAtt(x, q) =
Nh∑
h=1

ξhAtt(x, q) (1)

where Att is the vanilla attention, x is a sequence of
d-dimensional vectors, and q is a d-dimensional query
vector. This proposed modification of the Multi-Head-
Attention adds ξh as a binary control variable that turns
on or off a specific attention head h. Based on this
modification (Michel et al., 2019) introduce a score of
the relevance of each attention head.

Ih = Ex∼X

∣∣∣∂L(x)
∂ξh

∣∣∣ (2)

This importance score of each head Ih approximates
the expected absolute sensitivity of the loss in the
downstream task L(x) to ξh, i.e. the sensitivity to hav-
ing a specific head enabled for a subset of the training
or validation data X . In practice Ih is approximated by
accumulating the absolute of the gradients w.r.t the pa-
rameter ξh for each of the samples in X , then it is nor-
malized resulting in a value ranging from 0 to 1. Based
on the importances Ih, the computation of the pruning
mask follows an iterative ablation of a proportion ρ of
the attention heads, setting their corresponding ξh to
0. This process halts once a threshold τ of the overall
performance on the downstream task is reached. The
result of this process is a pruned fine-tuned model and

a mask of L layers × M attention heads with values
in {0, 1} which we denote Mhard, where 0 implies a
redundant head and 1 an attention-head that is relevant
for the downstream task.

Since our intention is not to compress the model, we
diverge from (Michel et al., 2019) by discarding the
pruned model, only keeping Mhard for our retraining in
step 2. Our main contribution here lies in interpreting
these redundancies not as parameters to cut away, but
instead as something to be repurposed. Specifically, we
use these masks to selectively weigh the retraining of
the network:

W lh
i+1 = W lh

i − η(1−mlh)∇L (3)

where W lh
i is one of the (Q,K, V ) attention matrices

or the weight matrix of the dense output layer (O) for
the attention head h in layer l at training iteration i, ∇L
is the loss gradient applied during the backward pass, η
is the general learning rate and mlh is the mask value
of head h at layer l. We explore the following three set-
tings for this learning rate adaptation.
Discrete learning rate adaptation. This involves se-
lectively freezing attention heads using directly the in-
formation of the pruning (hard) mask. In this case the
values mlh are strictly in {0, 1}. Following our retrain-
ing step in equation 3, the mask values yield a non zero
learning rate only for the unimportant heads that could
be pruned. With this we focus only on retraining and
improving the unimportant heads, leaving the impor-
tant ones untouched.
Soft attention-head mask. To address the fact that
partially freezing specific heads during the retraining
could yield two sub-networks within the model that re-
sult in a disjointed representation, we slightly modify
the computation of the head-mask. Here we also it-
eratively score the heads with Ih. However, we omit
the pruning of the unimportant heads in each iteration,
and instead of setting their ξh to 0 we set it to the
last normalized Ih that would have made them pruning
candidates, retaining their importance in the resulting
soft mask. This guarantees that the values of the atten-
tion of the unimportant heads are not entirely removed
in the forward pass, but rather weighted according to
their importance. We again stop the process once the
performance of the network on the downstream task
has reached a proportion τ of the metric. The result-
ing mask Msoft can be used as a soft weighting of the
learning rate in our retraining step (3).
Weighing the forward pass. In addition to selectively
weighing the backward pass, we explore applying the
attention-head masks in the forward pass during re-
training. Model predictions are then only calculated
using non-masked heads. This is to control the level of
isolation of the targeted heads as a sub-network. We
treat this behaviour and the masks as another hyper-
parameter of the retraining stage.
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Figure 1: A) KIMERA consists of three phases: I A transformer model is fine-tuned and a head-mask is computed
by identifying redundancies. II The computed mask is then used in conjunction with a multi-task training based
on knowledge graph completion. Finally, the model is fine-tuned on the target task. III The retrained model is
fine-tuned on the domain-specific task to culminate the domain transfer. B) Examples of KG retraining tasks. I
and II Entity Prediction with a Masked Language Modelling objective. III Relation Prediction with a multi-class
classification objective, and IV Triplet Classification with a binary classification objective.

2.2. Retraining
This step uses a pre-trained model, an attention mask
computed in the previous step, and a knowledge graph,
resulting in a model that can be fine-tuned on the fi-
nal downstream task. We follow a multi-task training
scheme with tasks based on knowledge graph triplets.
We adopt the common Knowledge Graph Comple-
tion tasks of entity prediction, relation prediction, and
triplet classification, e.g. (Bordes et al., 2011; Socher
et al., 2013; Yao et al., 2019), and apply them in this
novel way. These tasks are intended to specialize the
redundant or unimportant attention heads into the do-
main of the knowledge base.
Multitask Training Scheme. We follow a multi-task
scheme to force the target models to generalize by hav-
ing a combination of multiple competing losses. We
explore two different settings. First, we attempt to im-
prove existing pre-trained transformer models, namely
BERT or BioBERT, by retraining them. In the sec-
ond setting, we train BERT from scratch exclusively
on the knowledge graph completion tasks to measure
the extent of the complementary information added by
a knowledge graph. In each task, we target a single
knowledge graph triplet denoted in a directed graph by
(s, r, o): subject node, relation edge, and object node,
respectively. We adopt three link prediction tasks fo-
cusing each on completing one of these s, r, or o triplet
elements, and a fourth task validating the plausibility
of the whole triplet. Figure 1 B) depicts examples for
these tasks. Each input row depicted in this figure is
embedded as a single input sequence, with separator
tokens between the columns.
Entity Prediction. We frame entity prediction as a
Masked Language Modelling task (Devlin et al., 2019).
In our multi-task setting, this results in two tasks: given
(s, r) or (r, o), o or s have to be generated correspond-
ingly. In contrast to (Devlin et al., 2019), we mask
and predict all tokens of o or s. In both cases, this

generation results in a sequence of tokens denoting the
model’s predictions for the masked component. The
loss being optimized is token-wise cross-entropy over
the model vocabulary.
Relation Prediction. In this task, given (s, o), the ob-
jective is to predict r. While this task could also be
modeled with a (masked) language modeling objective
similar to the Entity Prediction tasks, we opt to imple-
ment this task as a multi-class classification since, in
our case, the number of relations in the graph is very
small compared to BERT’s vocabulary. This simplifies
the task substantially.
Triplet Classification. This task tests if a graph triplet
is a valid triplet present in the knowledge graph. Given
a triplet (s, r, o), this task involves a binary classifica-
tion to determine its plausibility. We take valid sam-
ples directly from the knowledge graph and generate
an equal amount of invalid samples by replacing one of
the three components with the same component from a
different randomly selected triplet.
Multitask model architecture. To implement this
multi-task setting we use the encoder part of the trans-
former model, pool the output, and add linear layers,
one for each task. These output layers have the same
size as the hidden size of the transformer model used.
We experiment with different pooling techniques as
hyper-parameters, e.g. [CLS] token for BERT, average
pooling, max pooling, and a learned pooling method
using an additional linear layer.
Optimization Objective. During training, we sample
batches randomly from all tasks and compute the main
loss as a weighted sum of losses corresponding to each
one of the tasks

L = α1L1 + α2L2 + ...+ αnLn (4)

where α1, ..., αn are scalar loss weights which are re-
garded as hyperparameters, and L1, ...,Ln are the per-
task loss functions, namely Categorical Cross Entropy
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in all tasks. This weighted sum over the tasks is to
weigh difficult tasks more strongly to prevent overfit-
ting on some of the simpler tasks.

2.3. Fine-tuning
This is the final step proposed in KIMERA and it in-
volves extracting the encoder from the retrained model
and fine-tuning it on the final downstream task as is
common practice, yielding a model with specific do-
main knowledge.

3. Datasets and Downstream Tasks
Ideally, the knowledge graph that we instill into a lan-
guage model has large amounts of complementary in-
formation and is relevant for solving the downstream
task. The performance of our retraining method re-
lies on the combination of knowledge graph, language
model, downstream task fitting appropriately. We leave
metrics and an algorithm for automatically evaluating
the fitness of such a combination to future work. To
evaluate our method, we choose eight datasets from
the clinical domain with challenging tasks such as zero
shot-retrieval and extreme multi-class classification on
hundreds of classes. The clinical domain in particu-
lar exhibits issues like limited training data, due to pri-
vacy and regulatory issues, and idiosyncratic language,
which may highlight insufficiencies in BERT’s capa-
bilities (Kalyan and Sangeetha, 2020). Additionally,
there is reasonable structured data available for this do-
main in the form of UMLS(Bodenreider, 2004). It is for
these reasons that we decide on the clinical domain to
evaluate KIMERA. We specifically highlight the clini-
cal domain, which is closely concerned with direct pa-
tient care, as a subset of the general biomedical domain.
We choose our tasks in favor of common tasks such
as Named Entity Recognition and Relation Extraction
since in a clinical setting doctors do not find this type
of information extraction sufficient. Instead, they deem
complex downstream tasks such as patient cohort re-
trieval and outcome prediction more useful (Miotto et
al., 2016; Topol, 2019).

3.1. Knowledge Graphs
We combine three knowledge graphs into one dataset:
UMLS(Bodenreider, 2004), HSDN(Zhou et al., 2014),
and the graph from (Rotmensch et al., 2017). We gather
∼2.5M knowledge graph triplets with 43 unique rela-
tion types. We limit the sequence length of nodes to
100 tokens and edges to 10 tokens, and pad accord-
ingly. This is done to optimize computation speed
while truncating < 0.1% of triplets.
UMLS(Bodenreider, 2004) The Unified Medical Lan-
guage System is an aggregation of different medical
knowledge sources. This work specifically focuses
on UMLS’ Metathesaurus, which contains diseases,
symptoms, medications, etc., and the relations between
them. From the 80 million relationship triplets in
UMLS, we filter for relevant relation types, triplets that

are complete, and choose to keep only well-populated
sub-relations with more than 10k sample triplets. This
results in our training corpus of ∼600k triples.
HSDN(Zhou et al., 2014) is constructed from ∼7M
PubMed(Sayers et al., 2018) bibliographic records.
MeSH(Medical Subject Headings)(Lowe and Barnett,
1994) metadata is used to identify symptom and disease
terms. The co-occurrence of at least one symptom and
one disease term is then utilized to filter the PubMed
records further. From these records, symptom-disease
relations are then extracted, resulting in ∼150k triplets.
(Rotmensch et al., 2017) create a knowledge graph
from electronic health records collected between 2008
and 2013 from a trauma center and tertiary academic
teaching hospital. Concepts are extracted by applying
UMLS as well as other sources to these records. The
graph is then constructed by a set of 3 probabilistic
models which relate symptoms and diseases. The re-
sulting graph contains ∼3k symptom-disease triplets.

3.2. Clinical Answer Passage
Retrieval(CAPR)

Retrieving documents and passages from clinical doc-
uments is an important task in the medical domain. We
evaluate our models on the clinical answer passage re-
trieval task(CAPR) (Grundmann et al., 2021) in a zero-
shot setting and across four different datasets. The
zero-shot setting puts an even higher burden on each
individual model since each model is evaluated as-is,
and not fine-tuned to the evaluated datasets. We fol-
low (Grundmann et al., 2021) and evaluate our models
using the Cross Encoder Architecture (Humeau et al.,
2020), which calculates matching scores over the joint
sequence of all query and passage pairs. We use the
same training and evaluation described in (Grundmann
et al., 2021) and train on Wikipedia articles, and evalu-
ate on WikiSectionQA(Arnold et al., 2020), Mimic-III
clinical notes(Johnson et al., 2016), MedQuad(Abacha
and Demner-Fushman, 2019), and HealthQA(Zhu et
al., 2019) datasets. In this setting, we create only one
joint attention-head mask for all four tasks. This mask
is generated on a dataset that is combined from held out
parts of the test sets of each of the datasets.

3.3. Clinical Outcome Prediction(COP)
We adopt the admission notes dataset by (van Aken et
al., 2021) for the Clinical Outcome Prediction tasks.
They are based on special filtering of Mimic-III’s dis-
charge summaries that simulate patient information at
the time of admission. This is achieved by only keep-
ing the following sections: Chief complaint, (History
of) Present illness, Medical history, Admission Medica-
tions, Allergies, Physical exam, Family history, Social
history. In particular, this filtering hides all informa-
tion about the course and outcome of treatment of the
patient during their stay.
In-hospital Mortality Prediction Task (MP) This
task is a binary classification task, in which the model
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determines whether a patient deceased during the hos-
pital stay or not. The data is heavily imbalanced with
90% of patients surviving their stay.
Length of Stay Prediction Task (LOS) Here the
model classifies a patient’s stay at the hospital into 4
classes regarding the length of their stay: < 3 days,
3− 7 days, 1− 2 weeks, 2+ weeks.
Diagnosis Prediction Task (DIA) In this extreme
multi-label classification task the model is tasked with
assigning ICD-9 diagnosis codes to a patient. In-
stead of 4-digit codes, we reduce the problem to 3-
digit codes, which results in 1266 ICD-9 codes with
a power-law distribution.
Procedures Prediction Task (PRO) This task follows
the diagnosis prediction task, being a multi-label task
utilizing 3-digit ICD-9 codes. There are 711 procedure
codes that we use from Mimic-III.

4. Experiments and Results
Our Experiments and Baselines are based on ei-
ther BERT-base or BioBERT. Although Clinical-
BERT(Alsentzer et al., 2019) is another option for
comparison, we do not consider it for our evaluation
since it is already trained on Mimic-III, skewing the re-
sults especially in the zero-shot CAPR scenario.
For BioBERT we choose dmis-lab/biobert-v1.1 from
the huggingface transformers repository (Wolf et al.,
2020), and for BERT-base experiments we choose the
best model out of BERT-base-uncased and BERT-base-
cased. For the Clinical Answer Passage Retrieval, we
find that hyperparameter optimization does not have
a significant impact, and manually choose reasonable
values from several trials. In contrast, Clinical Out-
come Prediction is very sensitive to hyperparameters.
Therefore we carry out a thorough hyperparameter op-
timization based on HyperOpt (Bergstra et al., 2013)
for all evaluated models. All KIMERA models are
trained on the full set of knowledge graph triplets and
for a maximum of 5 epochs, but most models con-
verged after a single epoch. Although the parameter
α could weigh partially the loss on the tasks, in our ex-
periments it was only used discretely to enable or dis-
able distinct tasks. We find in our experiments that it
is usually most beneficial to keep all αn at 1 and leave
the exploration of soft weightings to further research.
On a single Nvidia V100 GPU, one epoch takes 18
hours. We choose the head masks resulting from the
best base model, calculated with performance thresh-
old τ ∈ [0.95, 0.98, 0.99] and a per step pruning ratio
ρ = 0.1. We explore the effect of the selective retrain-
ing of attention heads with KIMERA is done in 5.

4.1. Models and Baselines
We focus on the BERT architecture and the domain
specific BioBERT, exploring different variations of
KIMERAtrained from these base models.

BERT-base (Devlin et al., 2019) We focus on
the smaller BERT-base and choose from the English
pre-trained models and use the best of BERT-base-
uncased and BERT-base-cased for each task.
BERT-base(pruned). This model is created apply-
ing the pruning scheme of (Michel et al., 2019) to
BERT-base. The authors showed that this model some-
times outperforms BERT-Base solely due to pruning.
Therefore, we include this baseline to confirm that
the improvements of our methods cannot be achieved
solely by pruning.
BioBERT (Lee et al., 2020) follows the same architec-
ture as BERT-base-cased. This model is a state of the
art biomedical language model, and is pre-trained on
PubMed for 23 days on 8 V100 GPUs. This is up to
50-250 times slower than using KIMERA to create a
domain-specific model.
KIMERA no-mask, hard-mask, soft-mask make use
of different types of masks during the retraining step.
no-mask uses no mask at all, whereas hard-mask and
soft-mask explore the corresponding discrete and soft
learning rate adaptation proposed in 2.1.
KIMERA from-scratch. We investigate the KG
retraining as the sole pre-training step. We randomly
initialize BERT-base apply the multi-task KG training,
before fine-tuning on the downstream tasks.

KIMERA b+f. We base KIMERA b+f on KIMERA
hard-mask, but apply the mask both in the backward
and forward pass as discussed in 2, which leads to a
strict isolation between frozen and unfrozen heads.
KIMERA BioBERT follows KIMERA hard-mask but
uses BioBERT as a base model. Here we probe
if KIMERA can also be used for improving al-
ready domain-specific models with additional struc-
tured data, besides efficient domain transfer.

4.2. Clinical Answer Passage Retrieval

We choose to calculate only one joint attention mask
ahead of retraining instead of individual ones for each
task, this due to the zero-shot setting of this bench-
mark. Table 1 reports results in these tasks. The Cross
Encoder shows significant performance differences be-
tween models. Most notably KIMERA hard-mask and
KIMERA soft-mask outperform BERT-base across all
tasks with a margin of up to 20% in R@1 and up to
35% in R@5. Even KIMERA no-mask achieves no-
table performance boosts. This can be ascribed to the
functioning domain transfer with the help of informa-
tion from UMLS. We also evaluate our methodology on
BioBERT and manage to overcome it in all the retrieval
tasks, suggesting that KIMERA serves as well to fur-
ther specialize BioBERT in the medical domain. In the
case of Mimic-III, BioBERT is only marginally ahead
of BERT-base. KIMERA only beats both of them by
a few percentage points, in contrast to the other tasks.
One reason for this could be that domain-specific data
here is less relevant than for the other tasks.



368

Model MedQuad HealthQA Mimic-III Wiki MP LOS DIA PRO

R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5 AUROC AUROC AUROC AUROC

BERT-base 52.63 60.80 40.30 81.82 59.74 72.07 35.44 77.66 81.13 70.40 82.08 85.84
BERT-base(pruned) 50.71 60.45 39.92 78.12 61.96 72.64 35.23 75.12 81.07 70.14 80.21 83.48
KIMERA scratch 32.88 74.17 31.23 83.45 23.63 41.77 20.63 59.85 75.75 65.74 51.1 64.91
KIMERA no-mask 64.68 92.33 49.01 80.31 65.68 79.78 50.38 80.44 81.63 69.55 82.47 85.91
KIMERA hard-mask 71.94 94.52 50.53 82.71 67.13 80.52 51.73 80.72 81.88 69.02 82.59 85.95
KIMERA soft-mask 70.33 93.81 49.50 81.69 67.94 81.82 51.25 81.31 81.20 68.11 82.35 85.49
KIMERA b+f 70.41 93.91 49.22 80.99 68.07 80.43 50.81 81.24 65.72 55.36 81.45 84.21

BioBERT 78.86 97.06 62.07 91.59 64.89 78.81 61.31 90.69 82.55 71.59 82.81 86.36
KIMERA BioBERT 79.74 97.93 64.14 92.26 65.22 79.02 62.48 94.32 82.87 71.42 83.56 88.44

Table 1: Results across the four CAPR datasets using the Cross Encoder architecture(left) and four COP
tasks(right). Top part shows scores for models based on BERT-base, bottom part scores for models on BioBERT.
KIMERA improves on both BERT-base and BioBERT performance, with the exception of the LOS task.

In general, using an attention-head mask during the
re-training does lead to a performance increase over
our no-mask approach. However, none of the masking
strategies is clearly better than the others. KIMERA
from-scratch generally under-performs in all of the re-
trieval tasks. This reinforces the fact that the informa-
tion contained in UMLS is only complementary and not
a replacement to the general language capabilities of a
pre-trained model. Simply pruning the model did also
not improve performance for these tasks with the ex-
ception of Mimic-III. This demonstrates that the perfor-
mance increases we observe for KIMERA do not stem
from the pruning alone.

4.3. Clinical Outcome Prediction
For this benchmark an attention mask is generated for
each of the tasks individually. In contrast to the Pas-
sage Retrieval tasks, the COP results show significantly
lower variance in the performance between models.
(van Aken et al., 2021) highlight numerical errors as
one of the major error classes in these tasks, empha-
sizing that their evaluated models do not follow med-
ical reasoning, but focus on statistical observations.
This fact in combination with the already strong per-
formance of the base architecture of BERT-base could
account for the small variance.
As shown by Table 1, KIMERA BioBERT achieves
the best results with the exception of the LOS task.
Similarly, when applying KIMERA to BERT-base we
achieve consistent improvements. The different mask-
ing strategies of KIMERA performed closely without
any particular one standing out as the best. The results
of KIMERA from-scratch confirm the complementary
nature of the UMLS data we found also in the Passage
Retrieval tasks. The pruned BERT-base model did not
provide performance benefits in these tasks either.
For both the Mortality Prediction and Length of Stay
task the back+forward approach performed signifi-
cantly worse. Given the almost equal performance to
other KIMERA models in other tasks, we deem these
as outliers that are caused by an insufficient amount of
hyper parameter optimization.

The LOS stands out as the only downstream task, in-
cluding the results in CAPR, where KIMERA did not
achieve improvements.

4.4. General Language Understanding
(GLUE)

We evaluate KIMERA on GLUE (Wang et al., 2019)
and compare it to BERT-base and BioBERT. The re-
sults are detailed in Table 2. KIMERAmodels for
this evaluation have been trained on the medical KGs
with masks generated in CAPR, in order to assess how
the medical transfer learning impacts the language ca-
pabilities. As expected, BERT-base outperforms the
biomedically trained BioBERT across all tasks with
its general language pre-training. Furthermore, the
comparison between KIMERA no-mask and KIMERA
hard-mask shows that the hard-mask version, where
only a subset of the attention heads have been retrained,
is consistently superior to the non-mask version. This
supports our intuition that the masking process enables
the model to retain more of its language ability dur-
ing the transfer learning process. Notably, KIMERA
outperforms even BERT-base in 3 of the GLUE tasks.
While we expected KIMERA with clinical training
to perform slightly worse than BERT-base since the
knowledge graph task data does not contain proper
grammar in its triplets and therefore skews language
perception, the results show that for CoLA, QQP and
WNLI tasks this training is particularly beneficial and
leads to significant improvements over BERT-base.

5. Discussion and Analysis
We inspect qualitatively the effects of our selective re-
training of the attention heads for the Clinical Answer
Passage Retrieval setting. We do this for our KIMERA
hard-mask experiment.
Model Downstream Redundancy Figure 2 A presents
the mask for freezing the important (yellow) heads and
retraining the unimportant (purple) heads. The most
noticeable aspect of this mask is the high number of
heads that are rendered as unimportant, namely 102
heads or 70.8% of the model. This high level of re-
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Model CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE WNLI Mean

BERT-base 59.05 93.34 89.37 88.79 89.84 85.12 91.78 69.31 49.30 79.54

BioBERT 43.70 91.28 88.51 88.15 89.59 83.97 90.84 67.50 32.39 75.10
KIMERA no-mask 60.17 92.20 87.71 88.12 89.53 84.49 90.35 67.50 60.17 80.02
KIMERA hard-mask 62.06 93.00 88.93 88.53 90.63 84.65 91.15 69.12 62.05 81.13

Table 2: Results of the GLUE benchmark, choosing the best of 10 seeds. KIMERA consistently outperforms
BioBERT, and shows improvements over BERT-base in 3 tasks, having the highest mean score of tested models.

Figure 2: Attention head importance with and with-
out KIMERA for the CAPR task. A) Head mask used
for retraining. B) and C) present the head importances
Ih before and after using KIMERA, respectively. Our
method results in relatively higher and more homoge-
neous importance of the heads.

Figure 3: Importance changes per layer for the CAPR
task. A) Average importance Ih per layer before
and after KIMERA. B) Number of retrained heads
that saw an increase/decrease in their importance af-
ter KIMERA. C) Number of frozen heads that saw an
increase/decrease in importance with our method. The
retrained heads present an overall increase in impor-
tance, whereas the frozen heads show mixed results.

dundancy is compatible with the performance gains we
see for this task after applying KIMERA.
Head relevance improvement. In parallel, Figure 2 B
and C show the attention-head importance scores, the
former corresponds to the fine-tuned BERT-base and
the latter to the KIMERA hard-mask using A for the
retraining step. It can be seen that the general head-
attention importance shown after KIMERA tends to be
higher on average (yellow) and more homogeneous.
We expand on this by analyzing the mean improvement
of the importance scores Ih per layer which is shown in
Figure 3 A). All the layers present an overall increase

Heads Ih Before KIMERA Ih After KIMERA

Frozen 0.60 0.53
Retrained 0.17 0.37

Table 3: Mean importance scores Ih before and after
KIMERA for frozen and retrained heads in the CAPR
task. Ih more than doubles for the retrained heads
while it moderately decreases for the frozen heads.

in importance w.r.t. the downstream task. Furthermore,
we count the number of heads that increase or decrease
in importance, but now accounting for the retrained and
frozen heads separately; this is shown in Figure 3 B)
and C) accordingly. For the retrained heads, the posi-
tive increase of importance is dominant across all lay-
ers. This is true not only for their count, but also for
the retrained-average importance score Ih shown in Ta-
ble 3, which more than doubles from 0.17 to 0.37. In
contrast, the split of frozen heads that increase or de-
crease in importance is more mixed, and we notice only
a moderate decrease of their average importance scores
from 0.60 to 0.53 after applying KIMERA. This be-
havior supports the intuition that not only the model is
better at the downstream task, but also that the retrained
heads are more relevant for this improvement.
Limitations. Our proposed methodology is only suit-
able in the case of domain transfer when the underly-
ing multi-head transformer model underperforms sig-
nificantly on a benchmark. This is evident in the stark
contrast between the gains achieved by KIMERA in the
CAPR and COP tasks. The main factors behind this are
the level of redundancy of the model for the task, which
we gauge by the head-masks, and how complementary
the target Knowledge Graph is. The latter is an open
question that we leave for further work.

6. Related Work
Our work stands separate from Graph Neural Networks
where the focus lies on creating graph embeddings,
these are orthogonal to our approach. We base our
findings on recent advancements in three different ar-
eas of research: model compression, domain transfer,
and Knowledge Graph Completion/Generation.
Model Compression is an area of research focused on
retaining the original performance of a given model
while reducing the number of its parameters. Notable
examples are (See et al., 2016), who among others



370

popularized pruning techniques in NLP and specifi-
cally NMT, and (Sanh et al., 2019), who use a student-
teacher approach (Knowledge Distillation) to yield a
smaller but powerful BERT model. Most closely re-
lated to our work are (Michel et al., 2019) with an anal-
ysis of the efficacy of attention heads. The authors suc-
cessfully prune a substantial number of attention heads,
while retaining, or in some cases even improving, on
the original network’s performance. We follow their
method to determine the importance of attention heads
concerning our downstream tasks, but instead utilize it
to boost performance and inject new knowledge.
Domain Adaptation. While Transfer Learning (Pan
and Yang, 2009) is common for transformer networks
due to widely available pre-trained models, domain
transfer is a more narrow sub-field. (Xu et al., 2019)
demonstrate the efficacy of a post-training or retraining
step while (Du et al., 2020) create two retraining tasks:
domain distinguishing, and target domain masked lan-
guage modeling. Instead of relying on self-supervised
tasks on raw text, our retraining is based on struc-
tured data and knowledge graph completion. We tar-
get specifically the medical domain. (Bapna and Firat,
2019) explore domain adaptation in the field of Neural
Machine Translation. Their solution adds feedforward-
based adapter layers into the network, that contain
domain-specific knowledge. Our work instead fo-
cuses on implicitly merging domain-specific and gen-
eral knowledge in the network, rather than adding sep-
arate modules.
Medical Language Models. BioBERT (Lee et al.,
2020) demonstrate how domain-specific models can
be created via pre-training directly on domain-specific
data. (Chakraborty et al., 2020) and others follow
the same approach utilizing different pre-training cor-
pora. In contrast, we explore leveraging already
trained general-purpose pre-trained transformers and
re-purposing them for niche domains. Thus, we sub-
stantially ease the requirements of data and computa-
tional resources in comparison to aforementioned mod-
els. (Zhang et al., 2020) and (Hao et al., 2020) train
models using UMLS, but do so with significantly dif-
ferent training objectives, and evaluate on the biomed-
ical domain instead of the clinical one.
Structured Knowledge Integration enhances results
in NLP tasks by querying external Knowledge Graphs
or adding complementary architectural modifications
to language models. (Zhao et al., 2020), (Bosselut and
Choi, 2019), (Liu et al., 2020), (Zhong et al., 2019) and
others make use of explicit sub graphs, which are some-
times dynamically generated. (Zhang et al., 2019) align
entities and integrate their matching embedding of a
knowledge graph introducing an additional objective to
mask language modelling at pre-training. (Peters et al.,
2019),(He et al., 2020) and (Wang et al., 2020) train ad-
ditional transformer-based sub-networks specialized on
KG information, and which are used in addition to or
are integrated into other networks. In contrast to these

works, KIMERA works entirely on the existing archi-
tecture of a pre-trained transformer language model. It
does not integrate additional modules nor parameters
and does not require access to the knowledge graph
once the retraining has been completed, containing its
knowledge only implicitly.
Knowledge injection involves specializing the knowl-
edge of language models during the training process.
(Faruqui et al., 2015) refine word representations with
an objective function, which optimizes words that are
close in a knowledge graph to be close in the embed-
ding vector space. (Ye et al., 2019) incorporate com-
monsense knowledge into transformers via pre-training
by constructing a multiple-choice Question Answering
dataset from a knowledge graph. (Zhang et al., 2020)
focus on UMLS, however use Concept Alignment as a
training objective, integrating PubMed and other med-
ical literature. Furthermore, (Wang et al., 2021) and
(Hao et al., 2020) inject factual knowledge from UMLS
and Wikidata, by adding additional objectives to com-
mon transformer pre-training. Closest to our work,
(Kim et al., 2020) use a multi-task setting to solve
two knowledge graph completion tasks and a graph-
triple ranking objective in a re-training scheme. As op-
posed to these works, KIMERA uses a specific multi-
task intermediate retraining scheme, which is based on
Knowledge Graph Completion/Generation, driven by a
selective freezing of the attention heads.
Knowledge Graph Generation focuses on extending
knowledge graphs by generating new triplets. (Petroni
et al., 2019), (Yao et al., 2019) and (Bosselut et al.,
2019) demonstrate the Knowledge Graph Generation
capabilities of Transformers in particular. We build on
these works, by using this generation as an intermediate
step to ground the knowledge into the language model
and improve downstream task objectives. (Joulin et al.,
2017) propose a fastText-based architecture for node
generation, while also combining it with a question an-
swering objective. We extend these tasks with a triplet
classification objective and apply them in a different
setting to a pre-trained transformer.

7. Conclusion
We propose a novel training methodology for improv-
ing pre-trained Language Models and adapting them
to the clinical domain. Further, we demonstrate the
efficacy of utilizing structured knowledge from clini-
cal knowledge graphs in a domain adaptation training
scenario via knowledge graph generation. We explore
different strategies for freezing attention heads during
retraining and achieve a significant and consistent im-
provement over strong baseline models. Our careful
experiments confirm our hypothesis that KIMERA ad-
equately compensates for limited training data and do-
main knowledge. It makes large transformer models
adaptable with limited effort and our results show that
KIMERA manages to improve on the already strong
biomedical baseline of BioBERT.
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