
Proceedings of the 13th Conference on Language Resources and Evaluation (LREC 2022), pages 3519–3529
Marseille, 20-25 June 2022

© European Language Resources Association (ELRA), licensed under CC-BY-NC-4.0

3519

Constrained Language Models for Interactive Poem Generation

Andrei Popescu-Belis,1,2 Àlex R. Atrio,1,2 Valentin Minder,1
Aris Xanthos,3 Gabriel Luthier,1 Simon Mattei,1 Antonio Rodriguez3

1 HEIG-VD / HES-SO 2EPFL 3 Université de Lausanne
CH-1401 Yverdon-les-Bains CH-1015 Lausanne CH-1015 Lausanne

Switzerland Switzerland Switzerland
firstname.lastname@heig-vd.ch firstname.lastname@unil.ch

Abstract
This paper describes a system for interactive poem generation, which combines neural language models (LMs) for poem
generation with explicit constraints that can be set by users on form, topic, emotion, and rhyming scheme. LMs cannot learn
such constraints from the data, which is scarce with respect to their needs even for a well-resourced language such as French.
We propose a method to generate verses and stanzas by combining LMs with rule-based algorithms, and compare several
approaches for adjusting the words of a poem to a desired combination of topics or emotions. An approach to automatic rhyme
setting using a phonetic dictionary is proposed as well. Our system has been demonstrated at public events, and log analysis
shows that users found it engaging.

Keywords: language models, text generation, poem generation, interactive systems, digital humanities.

1. Introduction
Neural language models (LMs), which are probabil-
ity distributions over sequences of words or characters,
have recently enabled the generation of fluent sentences
and texts. However, controlling such models in order to
generate specific text structures remains difficult. We
propose solutions for constrained language modeling
with external features such as form, topics, emotions
and rhymes, and integrate them into a system for inter-
active poem generation, which enables the joint writ-
ing of a poem by a human and a computer. Our CR-
PO system1 leverages neural LMs to generate the ini-
tial draft of a poem in a form selected by the user, and
then enters a cycle of joint human-computer co-editing,
in which the user can set various parameters, according
to which the computer modifies the current creation.
Manual editing is also possible at any stage. The CR-
PO system has been demonstrated at a public exhibition
and other events at our institutions.
The goal of this paper is to present the poem gener-
ation system and our approaches to constrain neural
LMs according to different dimensions that character-
ize poetry. We first present a functional view of CR-PO
in Section 2, along with the setting and hardware. We
introduce the third party software and the data used to
build LMs in Section 3. Our solutions for constrained
text generation are presented in Section 4, regarding the
form of the poem (stanzas and lines), the adaptation of
the poem to given topics or emotions, and the rhyming
scheme. We present in Section 5 several actions we
took towards the evaluation of CR-PO, and discuss re-
lated work in Section 6.

1CR-PO stands for Création Poétique Assistée par Ordi-
nateur, i.e. computer assisted poetical creation in French.

2. Overview of the System
2.1. Functional Description
CR-PO addresses the following research questions re-
garding text generation using LMs:

1. While powerful LMs are now available for text
completion tasks in well-resourced languages,
how can a LM be trained to generate a specific
text genre if resources are scarce?

2. How can constraints on form (lines and stanzas)
be applied to the unstructured output of auto-
regressive LMs? For instance, given the relative
scarcity of sonnets, hence the difficulty of learn-
ing such a form from data, how can it be imposed
on LM-generated text?

3. As poems convey topics and emotions, how can a
human steer a LM to include one or more topics
into a poem, without writing explicitly the begin-
ning of the poem?

4. How to design a system that can function au-
tonomously for a long time in a public exhibition?

The CR-PO system attempts to answer these questions,
mostly through its poem generator presented in Sec-
tion 4 below. To understand the entire system, a func-
tional description is shown in Figure 1. The stages of
the creation of a poem are the following ones:

1. The user selects the intended form of the poem,
among four predefined options: a quatrain (four
lines), a sonnet, a haiku, or free form (3–5 lines of
32–52 characters). Although the generator adapts
to any number of stanzas and lines, we found it
simpler for the user to choose among a small num-
ber of fixed options.



3520

Select poetic form

Generate draft

Select topics

Adjust words

Manual editing

Select emotions

Adjust words

Select rhyme scheme

Adjust line endings

START

END

Figure 1: Functional schema of the CR-PO system. The creation of a poem proceeds clockwise. The quills in
the white boxes indicate actions of the human user, and the cogwheels in the gray boxes indicate actions of the
system’s back-end. Manual editing is possible at any stage.

2. Using a general-domain LM trained on French po-
ems, the system generates a first draft respecting
the selected form (see Section 4.1).

3. The user can edit the poem using a keyboard, for
instance to correct mistakes, improve readability,
or express their own creativity. Manual editing is
possible after each of the system’s contributions,
as shown in the central box of Figure 1. The editor
is shown in Figure 2 in the Appendix.

4. The user can select one or more topics using slid-
ers, as shown in Figure 3 of the Appendix, from a
list of five topics labeled as love, art, nature, spir-
ituality or life-and-death. The system then mod-
ifies the poem by adjusting some words to fit the
desired topics (see Section 4.2).

5. Similarly, the user can select one or more emo-
tions among happiness, sadness, or aversion. The
system then modifies the poem accordingly.

6. Finally, the user selects a rhyming scheme among
three possibilities offered in the interface (e.g.
AABB, ABBA, or ABAB for a quatrain), and the
system changes line endings accordingly (see Sec-
tion 4.3). This is the last stage, and the delivery
of the final poem depends on the technical setup
which we now present.

2.2. Implementation and Public Displays
As the focus of this paper is the poem generator and the
constraints on LMs, we list here only briefly the main
implementation decisions that make the demonstrator
operational. Currently, the generator and the GUI are
in French, and are being ported to English.

1. CR-PO is implemented in Python, and the GUI

uses the Kivy framework.2

2. The system runs autonomously on a small-form-
factor PC with modest computational require-
ments.3 Training of LMs is done separately on
a workstation with two GPUs.4

3. Users interact with CR-PO through a 32” touch-
screen, which is fixed on a stand together with the
computer. The system cannot be stopped as long
as the physical keyboard and mouse are hidden.

4. The stages of each poem are logged into a JSON
file for further analyses, but we do not record all
interactions with the interface.

5. For users to keep a memory of their poems, so-
lutions vary according to the presentation setting,
but all the following solutions preserve the privacy
of the users:

• The poems can be automatically uploaded to
a website, and when users conclude their cre-
ation, its URL and an access code for their
specific poem are displayed.

• In the exhibition mentioned below, each
completed poem was printed on a large plot-
ter, displayed as a work of art in the center of
the room.5 Users could select parameters of
the fonts used for printing.

2https://kivy.org/
3A Dell Optiplex 7060 with an Intel Core i5 3 GHz pro-

cessor, 8 GB RAM and 128 GB SSD.
4nVidia GeForce RTX 2080 Ti 11 GB.
5Designed by Nicolas Baldran and David Héritier from

the Center for Future Publishing in Geneva, https://
www.centerforfuturepublishing.org.

https://kivy.org/
https://www.centerforfuturepublishing.org
https://www.centerforfuturepublishing.org


3521

• The poems can be printed on a regular
printer, if available.

• As suggested on the final screen, users can
take a picture of their poem using their smart-
phones.

The system has been shown at the following events:

• The Digital Lyric exhibition in Morges, Switzer-
land, in spring 2020, which showcased art works
and devices demonstrating novel relations be-
tween poetry and technology.6 Poems created by
visitors were made available online.

• Open doors of the HEIG-VD in November 2021,
where CR-PO was presented at two workshops to
10–13 years old visitors.

• Internally, CR-PO is available to visitors of the In-
stitute for ICT at HEIG-VD in its showroom.

3. Language Models and Data
3.1. Neural Language Models
LMs are the key technology that enables the generation
of raw text, which our system transforms into poems
based on the user’s constraints. For the initial gener-
ation, we selected character-level LMs in order to in-
crease the variability of generated text, which poten-
tially includes non-existing but plausible French words,
but also to ensure better grammatical agreement in sen-
tences, as not all word forms are seen during training.
The LM toolkit we used for autoregressive (left-
to-right) generation of the first draft of the poem
is TextGenRNN,7 an open-source implementation by
Max Woolf of a character-based LM using recurrent
neural networks (RNNs) with attention. Written in
Python using TensorFlow, following an approach pro-
posed by Andrej Karpathy,8 TextGenRNN uses LSTM
layers according to the early principles of sequence
modeling with RNNs (Sutskever et al., 2011; Graves,
2013).
To generate text in a poetic style, we trained a LM on
our entire collection of poems (14.45 MB of text, pre-
sented below) without additional data from prose. In-
deed, on the one hand, we observed that the text gener-
ated by this general model is nearly always grammat-
ical without the need for more data, and on the other
hand, it is not clear what prose genres are suitable to
train a model that generates poetry. We also trained
topic-specific and emotion-specific models based on
smaller datasets presented below. The advantage of

6The exhibition was held at the Château de Morges,
from February 14 to May 10, 2020. Called Code/Poésie
in French, it was curated by Antonio Rodriguez (Uni-
versity of Lausanne) and Sarah Kenderdine (EPFL).
For more information, see https://lyricalvalley.
org/digital-lyric-exposition/.

7https://github.com/minimaxir/textgenrnn
8https://github.com/karpathy/char-rnn

character-based RNNs over more recent Transformer-
based decoders such as GPT-2 (Radford et al., 2019)
is the lower amount of training data needed to reach
acceptable quality.
For adjusting words to topics and emotions, the re-
placement of non-matching words is better achieved by
taking into account the left and right contexts of these
words, and not by left-to-right generation (as shown
by the results in Section 5). We experimented with a
general LM for French, namely CamemBERT (Mar-
tin et al., 2019),9 which is an encoder model trained
on a masked language modeling task with 138 GB of
French text using the RoBERTa architecture (Liu et al.,
2019). We adapted CamemBERT for 20 epochs to the
topic-specific datasets presented below, following the
documentation from HuggingFace.

3.2. Data Collection
We obtained about 7.72 MB of French poems from
https://www.poesie-francaise.fr/, with
poems in the public domain, only used for training our
LMs. We gathered more than 5,000 poems, mostly
from the 19th century and before. We obtained a sim-
ilar amount of French poems (7.73 MB of text) from
Project Gutenberg10 by downloading text-only versions
of works by a set of authors who have mostly written
poetry, again in the public domain (about 50 authors
and 76 books). The overlap between the two corpora is
smaller than 4%. In order to train TextGenRNN with
both datasets, we cleaned the texts by removing char-
acters outside the ISO-8859-1 set, any material not part
of the poems (such as Project Gutenberg metadata, ti-
tles, author names, etc.), and any blank lines, as we do
not expect the LM to learn forms from the data.
In addition, to train topic-specific and emotion-specific
LMs, we gathered annotated corpora of poems. We
used topic and emotions labels from https://www.
poesie-francaise.fr/ – assigned by the cre-
ators of the collection – to obtain small datasets for
five topics and three emotions, using a correspondence
between these eight coarse-grained categories and the
observed labels.11 We augmented these datasets with
a second collection of 19th century French poems with
labels, from the University of Lausanne.12 The data
sizes for each topic and emotion are the following ones:

• Topics: amour (love, 136,557 words, 776 KB
of text), art (97,522 words, 561 KB), nature
(130,923 words, 775 KB), spiritualité (spirituality

9CamemBERT-Base model from https:
//huggingface.co/camembert-base/.

10https://www.gutenberg.org/
11Annotating emotions in poems requires in reality a

broader range of categories (Haider et al., 2020) but we were
constrained here by the available labels.

12A 1,001 poem collection put together by Mélina
Marchetti under the supervision of Antonio Rodriguez for the
Digital Lyric exhibition.

https://lyricalvalley.org/digital-lyric-exposition/
https://lyricalvalley.org/digital-lyric-exposition/
https://github.com/minimaxir/textgenrnn
https://github.com/karpathy/char-rnn
https://www.poesie-francaise.fr/
https://www.poesie-francaise.fr/
https://www.poesie-francaise.fr/
https://huggingface.co/camembert-base/
https://huggingface.co/camembert-base/
https://www.gutenberg.org/


3522

and religion, 95,169 words, 542 KB), vie et mort
(life and death, 153,554 words, 886 KB).

• Emotions: joie (joy, 41,126 words, 229 KB),
tristesse (sadness, 62,248 words, 352 KB), aver-
sion (hate, 44,004 words, 253 KB).

These datasets are too small for training or adapting
topic- or emotion-specific LMs. To augment them, we
used them as training sets for classifiers, which we then
applied to our entire collection of poems (15.45 MB).
The classifiers are word-based Naive Bayes models:
5-way for topics and 3-way for emotions. Although
they are quite imperfect, the benefits of larger data sets
thus obtained exceed their drawbacks. The augmented
datasets have the following sizes in MB:

• Topics: amour (3.3), art (1.0), nature (2.0), spiri-
tualité (5.3), vie et mort (5.8).

• Emotions: joie (4.3), tristesse (8.2), aversion (4.9).

The quality of topic-specific and emotion-specific cor-
pus augmentation has been evaluated by holding out a
small portion (10%) of the training data (labeled po-
ems) and testing classifiers on it. We experimented
with three different options: the type of model (naive
Bayes, decision tree, or logistic regression), the repre-
sentation of lexical features (Bernoulli, i.e. ‘present’
vs. ‘absent’, or multinomial, i.e. ‘number of occur-
rences’), and the chunks used for classification (fixed
number of lines, whole stanzas, or whole poems).
Since the emotion-specific sub-corpora are not divided
in stanzas, we consider chunks of at least seven lines
stopping at the first punctuation mark. Overall, our ex-
periments led us to select a naive Bayes classifier (con-
fusion matrix presented in Table 1), with lexical fea-
tures represented using the Bernoulli model, and split-
ting the data into stanzas.

Love Art Nature Spiri- Life &
tuality death

Love 16.8 2.9 4.5 1.0 1.7
Art 8.5 4.6 7.1 1.3 2.2
Nature 8.2 2.8 8.6 0.8 1.2
Spirituality 6.6 1.0 2.4 2.4 1.5
Life & death 7.4 1.4 2.3 0.8 1.9

Table 1: Confusion matrix of the topic classifier (in
percentages; horizontally: reference topics; vertically:
predicted topics).

4. Constrained Autoregressive
Generation of Poems

4.1. Setting the Poetic Form
In the first stage, the character-based TextGenRNN LM
generates a poem with the form chosen by the user.
Any form can be generated, with any number of stan-
zas, lines per stanza, and lengths of lines, although in

the current interface only four fixed possibilities are of-
fered. The following parameters have been set empiri-
cally.

4.1.1. Sampling Probability of the LM
The general LM is made of an input layer of 40 units,
an embedding layer of 100 units, and two concatenated
bidirectional LSTM layers of 256 units each (128 in
each direction). Attention is applied to the concatena-
tion of the embedding layer and the two recurrent lay-
ers, and the softmax dense output layer has 89 units,
which is the size of our character set V . This covers
largely the French character set, with common punctu-
ation signs.
Once trained, the general LM provides a probability
distribution over the character vocabulary V , condi-
tioned on context, i.e. on the N = 40 previous char-
acters noted cn−1

n−N+1, with cn being the character to
generate. To sample character cn from V using this
distribution, we use the temperature parameter t avail-
able in TextGenRNN, which we set to t = 0.4. Such
a value augments the highest probability values in the
distribution, and thus makes the model more “prudent”
when sampling. Formally, we sample from V with the
distribution:

P ′(cn) =
P (cn|cn−1

n−N+1)
1/t∑

c∈V

P (c|cn−1
n−N+1)

1/t
(1)

where P (c|cn−1
n−N+1) are the probabilities of the LM.

Furthermore, in our implementation, we consider a set
F of forbidden characters from V that we disallow our
system to generate at a given stage. The use of F will
be explained below.
Due to the lack of context, the initial parts of most
generated sequences are often ungrammatical, contain
numerous repeated words, and lack variety – a phe-
nomenon known as “cold start”. To address this, we
generate four lines that are not shown to the user, and
only start displaying the generated poem after them, i.e.
after feeding the LM these four lines as initial context.

4.1.2. Adjusting the Length of Lines
The next goal is to control the length of the generated
lines, in characters. This can be set at any value, but
in our implementation, we approximate the number of
characters per syllable as 4 for French, and, for in-
stance, for a 12-syllable line, we aim for 48 characters
per line on average.
For each line, we first generate 85% of it, disallowing
end-of-sentence punctuation to avoid sentence splits in
the middle of the line. Then, we set the minimum
length of the remaining part of the line to 2 charac-
ters, and the maximum length to 1.8 times the remain-
ing length. For instance, for a line with 48 characters,
we first generate 41 characters (85% of 48), and then
allow ending sequences between 2 and 13 characters
(1.8 × 15% of 48).



3523

The algorithm makes several attempts to generate a
series of characters ending with a punctuation mark
within the desired character limit. The attempts are
made in the following order, and when one succeeds,
the algorithm stops and appends the result to the initial
part of the line.

1. Generate a sequence until the maximal ending
length is reached.

2. Retry, disallowing the first character of the previ-
ous try to encourage diversity.

3. Retry, relaxing the constraint on minimal length.

4. Retry, accepting whitespace as punctuation.

5. Retry, relaxing the constraint on maximal length.

A newline character is appended to the finished line,
and the line is appended to the context of the LM. The
generation of the next line thus also takes into account
the newline character, which drives generation towards
a sequence resembling a line start as learned during
training. Therefore, our lines are genuinely distinct
poem lines, and not just sequences divided manually
into lines. The result is post-processed as follows:

1. Remove duplicate whitespaces.

2. Fix whitespaces before and after punctuation.

3. Uppercase line starts.

4. Delete 25% of all punctuation marks at line ends,
to avoid too many lines ending with punctuation.

5. Ensure stanzas end with hard punctuation.

Although the creativity of a character-based LM some-
times leads to interesting new words, we decided that
for a public exhibition it was preferable to spell check
the output before display. We use a French dictionary
of 142,541 words13 (New et al., 2004) and replace un-
known words with their closest correct match using
Python’s SequenceMatcher from the Difflib library.

4.2. Adjusting Poems to Topics and Emotions
The next two stages enable the user to adjust the words
of the poem towards one or more desired topics, and
then emotions. The principles and interfaces for topic
and emotion adjustment are similar, and we present
them together. As stated in Section 2, when designing
the CR-PO system, we settled on five topics (love, art,
nature, spirituality, life-and-death) and three emotions
(happiness, sadness, aversion) that appear frequently in
poems. The user selects the desired proportion of each
topic in the poem (and then emotion) using the slid-
ers shown in Figure 3 of the Appendix. The values
for the m topics (or emotions) are coded as a vector
w = (w1, . . . , wm) of m weights between 0 and 1.
Poem adjustment requires two operations: select the
words to be replaced (4.2.1), i.e. those that do not

13http://www.lexique.org/

match well with the desired topics or emotions, and re-
place them with words that match better (4.2.2). For
each operation, topic- or emotion-specific LMs (Sec-
tion 3.2) provide an obvious solution: words that have
higher perplexities for these LMs than for the general
LM should be replaced with words generated using
these specific LMs. However, we propose for each
operation an alternative solution, which human evalua-
tors have found to perform better (as presented in Sec-
tion 5).

4.2.1. Word Selection
Using topic- or emotion-specific LMs, the baseline cri-
terion for word selection is the likelihood of each word
according to these specific models: words with the low-
est values are good candidates for replacement. In our
implementation, we compute the difference between
the weighted average (by w) of the likelihoods given
by the specific LMs and the likelihood of the general
LM, then rank all words by decreasing values, and se-
lect about 8% of the words that are at least 3 characters
long.14

The second method for word selection uses indepen-
dence quotients (IQs) following the approach of Egloff
and Bavaud (2018). The IQ value Qik for word i and
category k is the ratio of the observed count of word i
in poems belonging to category k to its expected count
assuming independence of words and categories. For-
mally:

Qik =
Cik · C••

Ci• · C•k
(2)

where Cik is the count of word i in the poems of cat-
egory k and the ‘•’ sign denotes summation over the
corresponding index. The IQ values are non-negative,
smaller than 1 if word i is under-represented in cate-
gory k, greater than 1 if i is over-represented in k, and 1
if the count of i in k equals its expected count assuming
independence. The IQ matrix Q = (Qik)1≤i≤n,1≤k≤m

for n words and m categories can be pre-computed.
The dot product Q ·wT represents the fitness values of
all words given a choice of topics (or emotions), which
shows how closely the profile of IQs of each word i
matches the used-defined weights w of the categories.
A fraction of the words with the lowest fitness are then
replaced.
We built the IQ matrices using labeled poems from
https://www.poesie-francaise.fr/ with a
mapping of their labels into our five topics or three
emotions. We only considered nouns, verbs and adjec-
tives as found by TreeTagger15 (Schmid, 1994) and we
excluded stopwords16 and words appearing fewer than

14As TextGenRNN is a character-based LM, the likelihood
of a word is the average of the character probabilities.

15https://www.cis.lmu.de/˜schmid/tools/
TreeTagger/

16From the list available at http://members.unine.
ch/jacques.savoy/clef/frenchST.txt.

http://www.lexique.org/
https://www.poesie-francaise.fr/
https://www.cis.lmu.de/~schmid/tools/TreeTagger/
https://www.cis.lmu.de/~schmid/tools/TreeTagger/
http://members.unine.ch/jacques.savoy/clef/frenchST.txt
http://members.unine.ch/jacques.savoy/clef/frenchST.txt


3524

5 times. This resulted in 8,146 word types for topics
and 2,621 for emotions in the respective IQ matrices.

4.2.2. Word Replacement
We have tested two methods for generating word re-
placements: either with the character-level LM from
TextGenRNN, trained from scratch with topic or emo-
tion specific data, or with a word-level CamemBERT
model fine-tuned using the topic or emotion specific
data. When several topics (or emotions) have non-zero
weights in w, we decide randomly which model to use
to generate each character or word, based on probabil-
ities derived from w.
As the first method uses a left-to-right RNN, only the
left context of the word to be replaced can be consid-
ered. The replacement is generated character by char-
acter, forbidding punctuation for the first three charac-
ters, then allowing it (including whitespace) and stop-
ping when a punctuation mark is generated. For the
second method, once the specific CamemBERT model
is drawn, we give it the left and right contexts of the
word to replace and a mask token in the respective po-
sition, and we select randomly among the five words
receiving the highest probabilities.
The 2 × 2 options for word selection (TextGenRNN
vs. IQs) and replacement (TextGenRNN vs. Camem-
BERT) were evaluated by human judges, and results
are summarized in Section 5 below.

4.3. Setting the Rhyming Scheme
In the final stage, the user can select a rhyming scheme
to apply, represented using letters, e.g., ‘AABB’,
‘ABAB’ or ‘ABBA’ for a quatrain. The system selects
which line endings must be changed, retrieves a list of
candidate words from a dictionary, scores them with
the general LM and selects the highest-scoring one with
the same POS tag as a replacement. We use the same
dictionary as in Section 4.1, as it includes the phonetic
representation and POS tag of each word.
The main challenge is to exploit the phonetic forms of
words to identify the rhymes, i.e. the ending sounds
which must match across words. We formulate the
following stages using regular expressions: (1) iden-
tify the final vowel of the word; (2) extract either the
following consonant, if any, or the immediately previ-
ous ones, if any; (3) otherwise, extract the immediately
previous vowels plus the previous consonant. All the
rhymes are two or three sounds long, as exemplified in
Table 2.
Although these rules produce imperfect rhymes,
stricter ones were also tested, but they either did not
find rhyming words, or found words that were too simi-
lar, e.g., singular vs. plural of the same words – perhaps
due to the reduced dictionary size (150k words).
To apply a rhyming scheme to a poem, we keep the fi-
nal word of a line if it is the first one in the rhyming
scheme: e.g., with ‘ABBA’, the first two lines are not
changed. We also store their endings in order not to re-
peat them below. Then, for each line ending to change,

Word Rhyme Word Rhyme
endormant m@ raisonnassent as
chipez pe perturbent yRb
plaisantions tj§ béatement m@
guet-apens p@ soumettions tj§
brouillaient ujE misait zE
vallonnés ne observées ve
fumant m@ pugilistes ist
envole Ol hydrophiles il

Table 2: Examples of rhymes extracted from the pho-
netic representations of some words in the dictionary.

we search for at most five candidate words that have
the same rhymes, with priority to words that have the
same POS tag as the word to be changed. We score the
candidates in context with the general LM and choose
the candidate with the highest score. If the user edits
the poem, the same process is run based on the edited
version.

5. Evaluation
We performed several experiments with human users
of the CR-PO system. First, we summarize an exper-
iment comparing the 2 × 2 adjustment methods from
Section 4.2. Then, we present statistics from the two
public events where CR-PO was used.

5.1. Results from A/B Testing
We tested all four combinations of word selection and
replacement methods presented in Section 4.2 with 15
automatically-generated poems presented to 13 users.
Each user saw the initial poem and had to compare
two outputs of topic or emotion adaptation, differing
on one of the two stages, either word selection or word
replacement. Users were asked to choose the best of
the two outputs, with ties allowed, on the dimensions
of topic relevance and fluency, by answering the fol-
lowing questions:

• Which output is closer to the indicated topic?

• Which is the most understandable output, i.e. the
one that makes the most sense in French?

We present the answers in Table 3. The use of IQ values
for word selection leads to poems that are clearly per-
ceived as more topically-relevant than when using the
LM probability difference. These poems are also per-
ceived as more fluent, although the difference is lower.
The smaller effect on fluency can be explained by the
fact that the IQ score does not consider the context of
words, which may lead to replace words that are par-
ticularly important for fluency. For word replacement,
CamemBERT clearly outperforms TextGenRNN. This
can be explained by the larger amount of training data
in comparison with the RNN character-level models,
which were trained from scratch, and by the bidirec-
tional nature of CamemBERT. As a result, we chose IQ



3525

as a criterion for word selection, and CamemBERT for
word replacement.

Topic Fluency
Word selection

TextGenRNN is better 17.3 24.4
IQ values are better 67.7 41.7
The two are similar 14.9 33.9

Word replacement
TextGenRNN is better 14.3 3.1
CamemBERT is better 68.3 79.2
The two are similar 17.5 17.7

Table 3: Answers of human judges (%) for each
method of word selection and replacement.

5.2. Results from Use by the General Public
As stated at the end of Section 2, CR-PO was presented
to the general public on two occasions, and is also
available in the ICT Showroom at HEIG-VD. Upon the
first occasion, at the Digital Lyric exhibition (see foot-
note 6), we collected about 100 poems in 13 days, be-
fore the exhibition was closed due to the Covid-19 pan-
demic. The interactions with CR-PO were logged in a
central database, which will be analyzed in the future,
when more poems are collected.
CR-PO was presented at a workshop for young visitors,
aged 10–13, at the HEIG-VD Open Doors in Novem-
ber 2021. After a discussion about artificial creativity
and an overview of CR-PO, each visitor could experi-
ence the co-creation of a poem. We gathered 42 poems
from 25 visitors, who all felt quite engaged by CR-PO
and tried all its functions. Table 4 shows the average
number of interactions and calls to the editing window
for each stage. An average of 1.62 interactions at the
first stage means that some users started over and asked
for a new first draft, while 0.31 manual editing at this
stage means that on average, 1 user out of 3 modified
the first draft using the editor. The topic and emotion
adjustments were each tried once per poem, on aver-
age, with manual edits in 1/4–1/3 of the times. Despite
coming at the end, the automatic generation of rhyming
schemes also raised interest from users. Examples of
generated poems are given in the Appendix.

6. Related Work
Poetry generation is a specific task within the field of
Natural Language Generation, but also a significant is-
sue in the field of computational creativity (McGregor
et al., 2016). Before the advent of deep neural LMs,
various combinations of rule-based approaches and n-
gram LMs have been tried. For instance, in their broad
discussion of computational creativity, McGregor et al.
(2016) define a poem generation model, which uses
word vectors to infer semantic relations, followed by
a phonological model, an n-gram LM, and a sentiment
model. Their basis for poem generation are topics from

AVG STD
1. Generation of 1st draft 1.62 1.10

Manual editing 0.31 0.47
2. Topic adjustment 1.05 1.23

Manual editing 0.36 0.48
3. Emotion adjustment 0.95 0.91

Manual editing 0.26 0.45
4. Rhyming scheme 1.26 1.67

Manual editing 0.38 0.49

Table 4: Average number of interactions with the CR-
PO system, for each stage, at the 2021 Open Doors of
HEIG-VD (25 visitors, 42 poems).

Switchboard conversations annotated with sentiment
scores.
Large neural LMs have brought high expectations re-
garding their capacities to generate structured texts
such as poems. However, controlling LMs during gen-
eration is still an open problem (Dathathri et al., 2019),
despite promising models such as CTRL17 (Keskar et
al., 2019). Direct poem generation with GPT-2 has
been anecdotally discussed in blog entries.18

Deep neural networks have been used several times
for poem generation, mostly in English or in Chinese.
The main challenge is to learn and use the constraints
of poetic style from the data, and most studies fo-
cus on rhythm and rhymes. Most of these systems
are not interactive: the human user can only, in prin-
ciple, set the initial parameters. For instance, Hop-
kins and Kiela (2017) train a large recurrent neural
LM with LSTM units directly on the phonetic encod-
ing of poems (1.5 MB of text from https://www.
sonnets.org), and constrain the form with a fi-
nite state machine. In their study, human judges were
not able to distinguish machine-generated poems from
human-authored ones. “Deep-speare” is a system for
sonnet generation in Shakespearean style, which cap-
tures especially rhythm and rhyme, with a fixed form
(Lau et al., 2018). The model also uses a bidirec-
tional RNN with LSTM units. The results of evalu-
ation by experts show that while constraints on form
can be quite easily satisfied, readability and substance
still hamper machine-generated poems. More recently,
Wöckener et al. (2021) used conditioned RNNs in
a system that is able to learn stylistic features from
the data, such as length and sentiment, although not
rhymes. Moreover, the authors show that models such
as GPT-2 struggle with rhymes as well.
For Chinese, one of the earliest systems using RNNs
was proposed by Zhang and Lapata (2014), starting
from user-provided keywords and generating a quatrain
line-by-line, with a convolutional sentence model and
pre-defined line lengths and tonal patterns. Previously,

17https://github.com/salesforce/ctrl
18E.g., https://www.gwern.net/GPT-2.

https://www.sonnets.org
https://www.sonnets.org
https://github.com/salesforce/ctrl
https://www.gwern.net/GPT-2


3526

as done e.g. by Yan et al. (2013), the numerous con-
straints of Chinese poetry were solved through numeric
optimization algorithms. The task of poem generation
can be additionally constrained: for instance, Yang et
al. (2019) study the problem of generating a poem
from prose, an approach that allows users to convey
more precise meanings than when seeding the poem
with keywords only. Using a variational encoder and
adversarial training, the system designed by Li et al.
(2018) generates a Chinese poem given the title as a
representation of its topic. They evaluate their poems
in terms of topic consistency, fluency, meaningfulness
and “poeticness.” Additional constraints can be im-
posed: for instance, to generate an acrostic poem where
the first letters of the lines spell a given word, Agarwal
and Kann (2020) use a left-to-right 3-layer RNN with
LSTM units and a separate rhyming model.
Turning now to interactive systems, ASPERA is an ex-
pert system for prose-to-poetry conversion in Spanish
(Gervás, 2001). The rule-based system gathers infor-
mation from the user about the style and the content,
and uses NLG techniques and an example-based ap-
proach to generate a poem, although collaborative cre-
ation does not seem to be possible.
PoeTryMe is a rule-based interactive poem genera-
tion system initially designed for Portuguese and later
extended to Spanish and English (Gonçalo Oliveira,
2012; Gonçalo Oliveira et al., 2019). Developed over a
long period of time, and also available through a web-
based interface,19 the system leverages its grammatical
and semantic knowledge to offer capabilities for word-
level or line-level modifications in terms of number
of syllables, “surprise” level, or keywords. Although
many default forms are possible, there are no direct
ways to express topics or emotions, and the fluency in
English appears to be limited by the smaller amount of
knowledge available to the system.
Poem Machine (Hämäläinen, 2018; Hämäläinen and
others, 2018) was developed for Finnish and was fo-
cused from the start on assisting primary school chil-
dren in creating poetry as a follow up to previous ex-
periments (Kantosalo et al., 2015). To cope with the
complex morphology of Finnish, the system uses finite
state transducers and a semantic network. Predefined
forms and topics are proposed, and an assistance with
rhythm is provided too. Similar to what we observed
when children used CR-PO, Poem Machine helps to
teach the constraints of poetic forms and makes exper-
iments with poem creation more entertaining for chil-
dren.
Hafez was one of the first systems to combine interac-
tion with deep neural LMs (Ghazvininejad et al., 2016;
Ghazvininejad et al., 2017). The system proceeds in
the opposite order of CR-PO: it first asks the user for
a number of parameters, including sample words, sen-
timent, and repetitiveness, then it formulates internally

19https://poetryme.dei.uc.pt/ – see also
@poetartificial on Twitter.

the constraints as a set of transducers, and uses a word-
based RNN LM to generate a poem (a quatrain) satis-
fying these constraints. User satisfaction was shown to
increase when learning the initial parameters from pre-
vious interactions. Our system makes a different use
of the LM: we use a character-based LM which better
captures the grammatical inflections of French regard-
less of the forms seen during training, and we use also
LMs to replace mismatching words. Moreover, CR-PO
can be run with acceptable speed (less than 5 seconds)
on a small computer witout a GPU, which makes our
hardware easy to set up.

7. Conclusion
We presented CR-PO, a system for interactive po-
etry generation in French, putting forward solutions
that combine neural LMs and rule-based constraints
on form, topic, emotion, and rhyming scheme. To-
gether with the hardware and the graphical interfaces,
we achieved a fully functional, robust system, which
was left without supervision in a public exhibition. The
system also represents a platform which can be ex-
tended through future developments, such as porting it
to English, improving the management of rhythm, and
allowing users to provide seed words.
Overall, the main observation made when combining
LMs and explicit constraints is that the poems gener-
ated by such an approach lack a high-level meaning
conveyed by several lines or even stanzas, for instance
as complex visual scenes or short narratives. This is a
shortcoming of most poem generation systems based
on deep neural LMs, and only extremely large LMs
such as GPT-3 seem to be able to overcome it for plain
text. Therefore, finding solutions that increase the co-
herence of texts generated by smaller LMs is a promis-
ing research question.

8. Acknowledgments
The design and implementation of the system were di-
rectly supported by the SNSF Agora project “Digital
Lyric” (n. 184330), for which Antonio Rodriguez re-
ceived the Agora Optimus prize. We also acknowledge
the support of HES-SO through the PhD support fund
(AGP n. 99864), of SNSF through the DOMAT project
(n. 175693), and of the Institute for ICT at HEIG-VD.

9. Bibliographical References
Agarwal, R. and Kann, K. (2020). Acrostic poem gen-

eration. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1230–1240, Online. Associa-
tion for Computational Linguistics.

Dathathri, S., Madotto, A., Lan, J., Hung, J., Frank,
E., Molino, P., Yosinski, J., and Liu, R. (2019).
Plug and play language models: A simple ap-
proach to controlled text generation. arXiv preprint
arXiv:1912.02164.

https://poetryme.dei.uc.pt/


3527

Egloff, M. and Bavaud, F. (2018). Taking into ac-
count semantic similarities in correspondence anal-
ysis. In Proceedings of the Workshop on Computa-
tional Methods in the Humanities 2018 (COMHUM
2018), volume 2314, pages 45–51. CEUR Workshop
Proceedings.

Gervás, P. (2001). An expert system for the compo-
sition of formal spanish poetry. In Applications and
Innovations in Intelligent Systems VIII, pages 19–32,
London. Springer.

Ghazvininejad, M., Shi, X., Choi, Y., and Knight, K.
(2016). Generating topical poetry. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1183–1191,
Austin, Texas. Association for Computational Lin-
guistics.

Ghazvininejad, M., Shi, X., Priyadarshi, J., and Knight,
K. (2017). Hafez: an interactive poetry genera-
tion system. In Proceedings of ACL 2017, System
Demonstrations, pages 43–48, Vancouver, Canada.
Association for Computational Linguistics.

Gonçalo Oliveira, H., Mendes, T., Boavida, A.,
Nakamura, A., and Ackerman, M. (2019). Co-
PoeTryMe: interactive poetry generation. Cognitive
Systems Research, 54:199–216.

Gonçalo Oliveira, H. (2012). PoeTryMe: a versatile
platform for poetry generation. In Proceedings of
the ECAI 2012 Workshop on Computational Cre-
ativity, Concept Invention, and General Intelligence
(C3GI), Montpellier, France.

Graves, A. (2013). Generating sequences with
recurrent neural networks. arXiv preprint
arXiv:1308.0850.

Haider, T., Eger, S., Kim, E., Klinger, R., and Men-
ninghaus, W. (2020). PO-EMO: Conceptualization,
annotation, and modeling of aesthetic emotions in
German and English poetry. In Proceedings of the
12th Language Resources and Evaluation Confer-
ence (LREC), pages 1652–1663, Marseille, France.
European Language Resources Association.

Hämäläinen, M. et al. (2018). Harnessing nlg to create
finnish poetry automatically. In Proceedings of the
9th International Conference on Computational Cre-
ativity. Association for Computational Creativity.

Hämäläinen, M. (2018). Poem Machine - a co-creative
NLG web application for poem writing. In Proceed-
ings of the 11th International Conference on Natural
Language Generation, pages 195–196, Tilburg Uni-
versity, The Netherlands. Association for Computa-
tional Linguistics.

Hopkins, J. and Kiela, D. (2017). Automatically gen-
erating rhythmic verse with neural networks. In Pro-
ceedings of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 168–178,
Vancouver, Canada. Association for Computational
Linguistics.

Kantosalo, A. A., Toivanen, J. M., and Toivonen, H.
T. T. (2015). Interaction evaluation for human-

computer co-creativity: A case study. In Proceed-
ings of the 6th International Conference on Compu-
tational Creativity. Brigham Young University.

Keskar, N. S., McCann, B., Varshney, L. R., Xiong, C.,
and Socher, R. (2019). Ctrl: A conditional trans-
former language model for controllable generation.
arXiv preprint arXiv:1909.05858.

Lau, J. H., Cohn, T., Baldwin, T., Brooke, J., and
Hammond, A. (2018). Deep-speare: A joint neu-
ral model of poetic language, meter and rhyme. In
Proceedings of the 56th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1948–
1958, Melbourne, Australia. Association for Com-
putational Linguistics.

Li, J., Song, Y., Zhang, H., Chen, D., Shi, S., Zhao,
D., and Yan, R. (2018). Generating classical Chi-
nese poems via conditional variational autoencoder
and adversarial training. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 3890–3900,
Brussels, Belgium. Association for Computational
Linguistics.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen,
D., Levy, O., Lewis, M., Zettlemoyer, L., and
Stoyanov, V. (2019). RoBERTa: a robustly opti-
mized BERT pretraining approach. arXiv preprint
arXiv:1907.11692.

Martin, L., Muller, B., Suárez, P. J. O., Dupont, Y.,
Romary, L., de La Clergerie, É. V., Seddah, D., and
Sagot, B. (2019). CamemBERT: a tasty French lan-
guage model. arXiv preprint arXiv:1911.03894.

McGregor, S., Purver, M., and Wiggins, G. (2016).
Process based evaluation of computer generated po-
etry. In Proceedings of the INLG 2016 Workshop on
Computational Creativity in Natural Language Gen-
eration, pages 51–60, Edinburgh, UK. Association
for Computational Linguistics.

New, B., Pallier, C., Brysbaert, M., and Ferrand, L.
(2004). Lexique 2 : A new French lexical database.
Behavior Research Methods, Instruments, & Com-
puters, 36:516–524.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. (2019). Language models are un-
supervised multitask learners. OpenAI blog, 1(8):9.

Schmid, H. (1994). Probabilistic part-of-speech tag-
ging using decision trees. In Proceedings of the
International Conference on New Methods in Lan-
guage Processing, Manchester, UK.

Sutskever, I., Martens, J., and Hinton, G. E. (2011).
Generating text with recurrent neural networks. In
Proceedings of the 28th International Conference on
Machine Learning (ICML), Bellevue, WA, USA.

Wöckener, J., Haider, T., Miller, T., Nguyen, T.-K.,
Nguyen, T. T. L., Pham, M. V., Belouadi, J., and
Eger, S. (2021). End-to-end style-conditioned po-
etry generation: What does it take to learn from
examples alone? In Proceedings of the 5th Joint
SIGHUM Workshop on Computational Linguistics



3528

for Cultural Heritage, Social Sciences, Humanities
and Literature, pages 57–66, Punta Cana, Domini-
can Republic (online). Association for Computa-
tional Linguistics.

Yan, R., Jiang, H., Lapata, M., Lin, S.-D., Lv, X.,
and Li, X. (2013). i, Poet: Automatic Chinese po-
etry composition through a generative summariza-
tion framework under constrained optimization. In
Proceedings of the 23rd International Joint Confer-
ence on Artificial Intelligence (IJCAI), pages 2197–
2203. AAAI Press.

Yang, Z., Cai, P., Feng, Y., Li, F., Feng, W., Chiu, E. S.-
Y., and Yu, H. (2019). Generating classical Chinese
poems from vernacular Chinese. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 6155–6164, Hong Kong,
China. Association for Computational Linguistics.

Zhang, X. and Lapata, M. (2014). Chinese poetry gen-
eration with recurrent neural networks. In Proceed-
ings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
670–680, Doha, Qatar. Association for Computa-
tional Linguistics.

Appendix
Three sample outputs of our system, respectively
prompted internally with the strings “Je rêve”, “Être
distrait”, and “Ma tête dans les nuages” (I dream,
being distracted, and my head in the clouds, in
French), are provided hereafter to illustrate its results.
Put together, these outputs constitute CR-PO’s first
participation to a poetry contest, on the same topic
as the prompt strings. To improve quality, the three
outputs were selected from a total of six.

Je rêve des couleurs de la forêt en silence.
La terre s’accroche aux premiers pas de l’homme.
Le soir, dans tout ce qu’il trouve dans ces tomes
Sous les champs d’or de la fleur de la naissance !

Être distrait pour la chair sourde de son âme
L’espoir d’un chant sous le cinname ;
La fille du ciel s’abat, le soir, le temps est éclatant,
Et le printemps, et le soleil se clapotant
Et ses doigts d’or s’en vont au fond du soir.

Ma tête dans les nuages, les arbres noirs, en haut,
Et les parfums pleurants s’en vont en lui rendant les cieux.
Les fleurs de la saison descend de la terre,
A l’entour des vagues du vent, les ombres de l’enfance.

In addition, we provide in the two snapshots below two
more examples of CR-PO’s creations.



3529

Figure 2: User interface for editing the poem, with a keyboard displayed on the touch screen. The instructions in
French state: “Please help me to correct the created poem. You can also add a title.” with buttons for validating or
canceling edits. This snapshot is shown in reverse colors for readability.

Figure 3: User interface for selecting the proportions of topics to represent in the poem. The instructions in French
state: “Select the topics that my AI will use to adapt your poem.” and the five topics are, in order: ‘love’, ‘art’,
‘nature’, ‘spirituality’, and ‘life-and-death’. This snapshot is shown in reverse colors for readability.


	Introduction
	Overview of the System
	Functional Description
	Implementation and Public Displays

	Language Models and Data
	Neural Language Models
	Data Collection

	Constrained Autoregressive Generation of Poems
	Setting the Poetic Form
	Sampling Probability of the LM
	Adjusting the Length of Lines

	Adjusting Poems to Topics and Emotions
	Word Selection
	Word Replacement

	Setting the Rhyming Scheme

	Evaluation
	Results from A/B Testing
	Results from Use by the General Public

	Related Work
	Conclusion
	Acknowledgments
	Bibliographical References

