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Abstract
The Story Cloze Test (SCT) is designed for training and evaluating machine learning algorithms for narrative understanding and
inferences. The SOTA models can achieve over 90% accuracy on predicting the last sentence. However, it has been shown that
high accuracy can be achieved by merely using surface-level features. We suspect these models may not truly understand the
story. Based on the SCT dataset, we constructed a human-labeled and human-verified commonsense knowledge inference
dataset. Given the first four sentences of a story, we asked crowd-source workers to choose from four types of narrative inference
for deciding the ending sentence and which sentence contributes most to the inference. We accumulated data on 1871 stories,
and three human workers labeled each story. Analysis of the intra-category and inter-category agreements show a high level of
consensus. We present two new tasks for predicting the narrative inference categories and contributing sentences. Our results
show that transformer-based models can reach SOTA performance on the original SCT task using transfer learning but don’t
perform well on these new and more challenging tasks.
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1. Introduction

Narrative Reading Comprehension (RC) and common-
sense reasoning are both prevalent Natural Language
Processing (NLP) tasks. At the center of this intersec-
tion, story understanding is particularly challenging for
machine learning algorithms and can even be hard for
people (Charniak, 1972), (Oatley, 1994). Stories are
more than sequences of words. Commonsense knowl-
edge and reasoning are often needed to understand a
story.
The Story Cloze Test (hereinafter, SCT-v1.0), published
in 2016, is a popular dataset for training and evaluating
machine story reasoning (Mostafazadeh et al., 2016).
Each story is composed of five sentences and follows a
character through a series of events to an ending event or
situation. The first four sentences of each five-sentence
story are provided as “context”, and two alternative sen-
tences are provided as the ending, labeled “correct” and
“wrong”. Each “context” and corresponding “correct”
ending make up a complete five-sentence story. The
goal is to predict the correct ending of the story. Ta-
ble 1 shows two examples from the SCT-v1.0 dataset.
Mostafazadeh et al. (2016) leveraged crowd-workers
and carefully defined mechanisms to create the “wrong”
endings and make sure they are entirely reasonable when
read in isolation and not trivial.
Table 2 shows related work performance on the SCT-
v1.0 test dataset. Mostafazadeh et al. (2016) provided
results of several models at the time when SCT-v1.0 was
published, the best of which achieved an accuracy of
59%. Latest works with transfer learning can reach accu-
racy comparable to human beings’, which is 100%. Sun
et al. (2018) achieved 88.3% accuracy by fine-tuning a
GPT (Radford et al., 2018) model with training strate-
gies such as back and forth reading, highlighting, and
self-assessment. Cui et al. (2020) reported that the pre-
trained BERT (Devlin et al., 2018) model can already

achieve 89.2% and proposed Diff-Net along with BERT
which can achieve 90.1% on SCT-v1.0. Li et al. (2019)
also presented a transferable BERT model that can trans-
fer language knowledge from a large-scale data corpus
as well as various semantically related supervised tasks
to achieve 91.8% accuracy.
Existing SOTA deep neural language models are ap-
proaching human performance. These results make it
seems like the story understanding challenge has already
been solved, at least for the SCT-v1.0. However, we
notice that several earlier approaches performed rela-
tively well on SCT-v1.0, even without understanding
the meaning of the first four sentences. Most noticeably,
Schwartz et al. (2017) leveraged stylistically linguistic
features like word and character level n-grams for each
ending sentence to build a classifier and achieved an
accuracy of 75.2%, discarding the story content. This is
not consistent with Mostafazadeh et al. (2016)’ initia-
tives that are hoping to leverage narrative understanding
as well as commonsense reasoning to tackle the SCT-
v1.0 task. Further, Sharma et al. (2018) performed an
extensive analysis on the SCT dataset and best perform-
ing models at that time, and pointed out that models
leveraging human-authorship biases discovered in the
SCT-v1.0 dataset can already achieve relatively high
accuracy.
Based on these observations, we suspect that existing
models do not have a deep understanding of the stories
despite their performances. At least, the models should
not be able to explain how and what knowledge is used
to make their inferences. To test this hypothesis, we
need labeling of the commonsense knowledge used in
understanding stories in SCT-v1.0 which is missing in
the original dataset.
Our work remedies this defect in the original SCT-v1.0
by leveraging human crowd-workers to identify refer-
ence sentences and the type of narrative reasoning they
used for ending event inference in the SCT-v1.0 valida-
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tion dataset, which contains 1871 data instances. The
data is collected using Amazon mTurk. We provide
four categories for the reasoning of story ending, which
are behavior-based, objective-based, emotional-based,
and goal-driven. The first four sentences are given to
the crowd-workers, and they are asked to infer the fifth
ending sentence. The crowd-workers are asked to think
about and categorize how they made the decisions based
on the four categories we provided. We require each
story’s data to be labeled by three workers to mini-
mize individual biases. We hypothesize that even if
a model can reach human-level performance at the orig-
inal SCT-v1.0 task, it may not correctly identify the
type of narrative reasoning required to conclude. To
test this hypothesis, we create two tasks for this new
data: commonsense inference category prediction and
commonsense prime determinant sentence prediction.
Only when a model can correctly perform these tasks
in addition to predicting the endings of the stories, we
will have confidence that the model possesses a deep
understanding of the story and can make judgments in
narrative understanding as human beings do.
This paper makes the following contributions:

• We provide a new crowd-sourced dataset that aug-
ments the original story cloze dataset with the type
of reasoning and evidence sentences for choosing
the right ending.

• We propose two new tasks based on this new
dataset – the prediction of inference category and
prime determinant sentence.

• We demonstrate that a transformer-based model
can reach human-level performance on the original
SCT-v1.0 task, yet still has large room to improve
on these new tasks. Therefore, we believe this new
dataset and new tasks can help AI models to gain a
deeper understanding of the story.

2. Background
2.1. Reading Comprehension and

Commonsense Reasoning Tasks
Reading Comprehension (RC) with commonsense rea-
soning is a task to read and comprehend given text
chunks and articles and complete a variety of tasks based
on the text corpus by leveraging commonsense knowl-
edge embedded into the text, such as cloze-style RC,
open-domain RC. The early (Chambers and Jurafsky,
2009) work on the narrative cloze test did not rely on
the order of the sentences. Three years later, Jans et al.
(2012) redefined the test to be an ordered sequence of
events. A few frameworks for evaluating language RC
have been developed since then. For example, MCTest
(Richardson et al., 2013) involves story comprehension,
but they are mostly targeting fictional and children’s
stories. Mostafazadeh et al. (2016) presented ROC-
Stories, a collection of 50k high-quality five-sentence
commonsense stories about everyday life, and the Story

Cloze Test (SCT-v1.0), to serve as a proper evaluation
framework for Commonsense RC correspondingly.
Despite the SCT-v1.0 dataset intended to require ma-
chines with reading comprehension capabilities for the
inference, existing neural models do not necessarily
need to understand the story for performing the task
well. For example, a linear model Cogcomp (Khashabi
et al., 2018) leveraged sentiment trajectory, topical con-
sistency, and event sequences and performed with 74.4%
accuracy. MSAP (Schwartz et al., 2017) used stylisti-
cally linguistic features like word and character level
n-grams for each ending sentence to build a classifier
and achieved an accuracy of 75.2% on SCT-v1.0, which
fully discarded the text context.
Sharma et al. (2018) performed an extensive analysis
on the SCT-v1.0 dataset and the best performing mod-
els at that time. Sharma et al. (2018) pointed out that
models leveraging human-authorship biases discovered
in the SCT-v1.0 dataset can already achieve relatively
high accuracy. Sharma et al. (2018) proposed an up-
dated SCT-v1.0 dataset trying to overcome some of
the biases they have discovered, hereinafter SCT-v1.5.
However, the latest works with pre-trained or transfer
learning encoder-decoder structured deep neural models
can achieve over 80% accuracy on both SCT-v1.0 and
SCT-v1.5. Sun et al. (2018) achieved 88.3% accuracy
by fine-tuning a GPT model, which is a generative pre-
trained transformer (Radford et al., 2018), with training
strategies such as back and forth reading, highlighting,
and self-assessment. Cui et al. (2020) reported a pre-
trained BERT model, which is a Bidirectional Encoder
Representation from Transformers (Devlin et al., 2018),
can achieve 89.2% and Cui et al. (2020) proposed Diff-
Net alone with BERT can achieve 90.1% on SCT-v1.0,
82.0% accuracy on SCT-v1.5 correspondingly. Li et
al. (2019) also presented a transferable BERT model
that can transfer language knowledge from large-scale
data corpus as well as various semantically related su-
pervised tasks, to achieve 91.8% accuracy on SCT-v1.0
and 90.3% on SCT-v1.5.

2.2. Narrative Comprehension
When designing the categories for how story endings are
reasoned from the previous sentences, we draw inspi-
ration from existing narrative comprehension theories.
Studied through the formalisms of cognitive psychology,
the structuralist view of narrative led to models of narra-
tive comprehension that focused on how people under-
stand and represent information. These models mapped
to models of knowledge representation, such as the adop-
tion of Minsky’s frames (Minsky, 1974) by Kintsch, van
Dijk, and Teun to account for the comprehension of se-
mantics in narrative discourse (Van Dijk, 1977; Kintsch
and Van Dijk, 1978), and Schank & Abelson’s scripts
(Schank and Abelson, 1975; Abelson, 1981), schema-
like structures for typified action sequences which were
studied in relation to how people read and recall narra-
tives (Bower et al., 1979).
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First Four Sentences Correct Ending Incorrect Ending

Mary makes candles. She enjoys this as a hobby. Mary took one to
her friend as a gift. Everyone loved the candles and asked to buy one.

Mary was very happy. Mary felt unappreci-
ated.

Sam loved his old belt. He matched it with everything. Unfortunately
he gained too much weight. It became too small.

Sam went on a diet. Sam was happy.

Table 1: Example of stories and ending alternatives in the SCT-v1.0 dataset. Given the first four sentences of a story,
the original task is to predict the correct ending sentence.

Authors Prediction accuracy

Mostafazadeh et al. (2016) 59%
Khashabi et al. (2018) 74.4%
Schwartz et al. (2017) 75.2%
Sun et al. (2018) 88.3%
Cui et al. (2020) 90.1%
Li et al. (2019) 91.8%

Table 2: Prediction accuracy of existing works on the
original SCT-v1.0 dataset.

Tannen describes the various models used to study nar-
rative comprehension as “structures of expectation”, a
term borrowed from Ross in his study of semantic un-
derstanding in discourse (Ross, 1975; Tannen, 1977).
By structures of expectation, Tannen refers to how the
various models represent the ways in which people orga-
nize the information they have previously encountered
in order to parse new information (Tannen, 1993), an
interpretation in line with Bartlett’s initial formulation
of schema (Bartlett and Bartlett, 1995) and Weick’s
formulation of sensemaking (Weick et al., 2005).
Gernsbacher & Givon categorize grammatical markers
of coherence in human-written text into spatial, tem-
poral, and referential continuity (Givón, 1992; Gerns-
bacher and Givón, 1995). In a coding scheme for per-
sonal narratives designed for use in clinical psychology,
researchers (Reese et al., 2011) categorize elements
of narrative coherence as spatial orientation, temporal
orientation, and a larger element they call topical con-
sistency. Topical consistency encompasses causal links,
personal emotional and motivational evaluations, and
connections to previous stories or events in a person’s
life (Reese et al., 2011). Rideout studied personal narra-
tives delivered in court cases and observed causal and
character consistency as major elements of narrative co-
herence, including consistency of character motivations
and causal links between events (Rideout, 2013). Con-
sistency of character motivations relates more broadly
to general character consistency and believability, which
have been pointed out as major components of people’s
feelings of coherence in narratives (Riedl and Young,
2010; Rapp et al., 2001). Based on our observation of
the five-sentences stories in SCT-v1.0, we found top-
ical consistency as described in (Reese et al., 2011)
being the most relevant narrative coherence marker.

We further divide the inference process into four types:
behavior-based, objective-based, emotional-based, and
goal-driven, which are introduced in the next section.

3. Human Labeling Task
Our goal is to extend the validation split of the SCT-v1.0
dataset by asking human annotators to not only explic-
itly categorize the type of narrative coherence reasoning
that they used for the ending sentence inference but
also label the key sentences that inference is based on.
We will then require consensus from multiple human
annotators.
Categories of Narrative Coherence Reasoning: We
propose a four-category classification for the common-
sense knowledge used by human annotators while in-
ferring the ending sentence: Behavior-based means
the event is an action by the character’s own initia-
tive; Objective-based corresponds to an objective or
external environment that causes the character to react;
Emotional-based represents descriptions about a char-
acter’s feelings or other emotional states; Goal-driven
explicitly describes character’s goals and targets. Exam-
ples are shown in Table 3.
Procedure: We first perform a pilot study with col-
lege students on 100 randomly selected stories from
SCT-v1.0 dataset. This study aims to make sure that
the instructions are clear and the four categories we de-
signed are meaningful. Then, we collect the rest of the
data by leveraging crowd workers from Amazon mTurk.
During the mTurk collecting process, we first present
the dataset and the classification task with examples to
the crowd-workers. Stories are randomly assigned to
the workers while making sure that each story is labeled
by three workers. We set a limit that any worker can
only annotate up to 50 stories so as to prevent the data
from being heavily influenced by any individual.
Interface: Figure 1 shows the interface of the anno-
tation task on mTurk. The workers can indicate that
the narrative inference belongs to one or multiple cat-
egories by selecting the key reference sentences under
those categories. Each sentence is only allowed to be
selected for one category, but the workers are allowed to
choose multiple sentences for one category. Further, we
asked the workers to self-report their confidence levels
regarding the selections they made for each category.
We require the crowd-workers to be qualified mTurk
Masters, and the annotation task for each story needs to
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Category First 4 Sentences of the Story Ending Sentence

Behavior-based The building exploded. Five people were inside it. Three died and two lived.
Mosh rushed out with his little sister in his arms.

He was relieved to be
alive.

Objective-based My brother got a ticket. He never went to court. He eventually got pulled over
again. They arrested him for failure to appear.

He went to jail.

Emotional-based Gina went to her 6th hour class. It was gym. Gina hated gym, and all things related.
She was horrified when the teacher made them run the first day.

Gina cried at the end.

Goal-driven My girlfriend collects stamps. Not the kind for mail but the kind to stamp things
with. She has different cute ones. For her birthday I want to buy her more.

I bought her a rare stamp
from an online seller.

Table 3: Example of each category for the Commonsense Inference in SCT-v1.0. We highlight the determinant
sentence from the first four sentences and the ending sentence.

be finished within five minutes.

4. Quantitative Analysis
We perform statistical and quantitative analysis of hu-
man consensus on the combined pilot study and mTurk
study data.

4.1. Inter-category Consensus Analysis
Table 4 shows three typical examples of human con-
sensus. Each row represents the annotation of a single
worker. The number before the slash is the index of the
sentence showing which sentence(s) are classified into
each category by the mTurk workers. The value after
the slash in each cell is the normalized relevance value
given by the workers. A cell without an index means
that none of the sentences is selected for this category.
As we can observe from the table, there is a high con-
sensus over the prime determinant sentence or the most
important category for commonsense inferences. For
the first example, three workers share exactly the same
sentence classification, except that they weigh differ-
ently on the relevance value. In this case, we determine
the sentence with the highest sum of relevance value,
which is the first sentence, to be the prime determinant
sentence and the corresponding category. Therefore, the
behavior-based category is determined to be the most
important category for commonsense inference. In the
second example, we observe that all three workers have
a consensus over selecting and classifying the first sen-
tence to be behavior-based and the fourth sentence to
be the emotional-based category. The fourth sentence
becomes the prime determinant sentence because the
sum of relevance value is higher than that of the first sen-
tence. Though the sentence classifications in the third
example vary a lot among different workers, we can eas-
ily observe that they all agree on the fourth sentence to
be the objective-based category and the fourth sentence
is the only sentence being selected by all workers. This
tie-breaking algorithm is being leveraged to prepare
subset data for the commonsense inference category
prediction task, and we show details of this algorithm
in Algorithm 1.

4.2. Intra-category Consensus Analysis
We further analyze the consensus of commonsense in-
ference within each category. For each category, we first
count how many stories that two or more workers anno-
tate at least one sentence into that category. To further
analyze to what extent humans agree on classifying the
same sentence into the same category, we calculate how
many stories have such labeling that the same sentence
is selected by two or more workers and classified into
the same category. Results are shown in Figure 2. For
instance, there are 1869 stories have two or more work-
ers classify at least one sentence into the behavior-based
category, and 1502 stories have two or more workers
classify the same sentence into the behavior-based cat-
egory. We observe that workers are highly likely to
classify the same sentence into the same category if
they are certain about the category of the commonsense
reasoning being involved in the inference. More specif-
ically, there are 74.34% to 80.36% cases where two
or more workers classify the same sentence into the
same category compared with all the cases where this
category is being selected.

5. Two Commonsense Inference Tasks
The quantitative consensus analysis indicates a relatively
high level of agreement among the mTurk workers.
Therefore, we propose two new tasks: commonsense
inference category prediction and commonsense prime
determinant sentence prediction. Our proposed tasks
focus on how the machine learning models can mimic
humans’ use of narrative commonsense knowledge to
make inferences. Specifically, we ask the models to
predict which type of narrative inference is most im-
portant for picking the correct story endings and which
sentence(s) are the most critical determinants of the
inference.
To prepare data for the commonsense inference cate-
gory prediction task, we select a subset of labeled story
dataset with clear human label consensus on a unique
top category classification. We determine whether there
exists clear consensus via a 3-step tie-breaking algo-
rithm shown in Algorithm 1. First, we initialize (line 6)



3504

Figure 1: Annotation interface for the mTurk workers. We also provide examples of each commonsense inference
category in instructions.

three counters that count the number of times each cat-
egory is selected, the sum of relevance values for each
category, and the total number of sentences that fall
into each category. For each story in the dataset, we
loop through the labeling for each category created by
each of the three workers and increment the counter
correspondingly. Then the 3-step tie-breaking algorithm
contains three rules which we apply in sequence: 1) re-
turn the category if there exists a unique category being
selected the most number of times among three workers
(line 21); 2) otherwise, compare the sum of relevance
value among the categories with maximum selection
counts, return if there is a unique category with the

biggest sum (line 23); and 3), choose the category with
the most amount of sentences among the top-category
candidates of the previous steps if there is still a tie
(line 25).

A subset of 1619 stories is obtained with the tie-breaking
algorithm above for the commonsense inference cate-
gory prediction task. We further split this subset fol-
lowing an 80/10/10 split to get 1295 samples for the
training set, 162 for validation, and 162 for testing. We
notice that in this subset, three categories – behavior-
based, objective-based, and goal-driven – have relatively
even distributions (19.6%, 19.7%, 15.4% respectively),
and the emotional-based category has a much higher
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Figure 2: Human consensus on sentence selection and categorization of Commonsense Inference for SCT-v1.0 Val
with 1871 stories in total. Workers are likely to classify the same sentence into the same category if they are certain
about the inference category.

Story content Behavior-
based

Objective-
based

Emotional-
based

Goal-
driven

1. / 0.26 3. / 0.26 4. / 0.26 2. / 0.2
1. / 0.23 3. / 0.29 4. / 0.23 2. / 0.23

1. Matt was out for a walk with his mom. 2. Suddenly he saw something shiny
on the ground. 3. He bent to pick it up. 4. It was a gold ring! 5. Matt was excited
to be so lucky. 1. / 0.28 3. / 0.21 4. / 0.21 2. / 0.28

1. / 0.18 3. / 0.36 4. / 0.27 2. / 0.18
1. / 0.27 / 4. / 0.36 3. / 0.36

1. I cleaned my wedding ring. 2. I first set it in the cleaner to soak. 3. I then
wiped it with the brush to make sure I got everything off. 4. Then I put it back in
the cleaner for a bit. 5. It came out sparkling. 1. / 0.25 3. / 0.25 4. / 0.25 2. / 0.25

3. / 0.4 4. / 0.4 / 2. / 0.2
3. / 0.25 4. / 0.25 2. / 0.25 1. / 0.25

1. Bobby was having a birthday party. 2. His friends bought him a huge cake. 3.
A woman jumped out of the cake. 4. Bobby was surprised and amused. 5. Bobby
had a good party. 1. / 0.27 4. / 0.18 3. / 0.27 2. / 0.27

Table 4: Example commonsense inference labelings that form different consensus on SCT-v1.0 validation dataset by
crowd workers.

count of roughly 45.1% of the data. We assume two
potential reasons to explain the unbalance and are worth
further analysis: 1. The original dataset may not be
evenly distributed, and 2. People may be biased to
choose the emotional-based category as long there are
emotional descriptions in the story instead of thinking
about the reasoning determinant.

The second task, the commonsense prime determinant
sentence prediction task, is more challenging because
people may leverage different sentences as the determi-
nant for Commonsense Inference, and both could be
reasonable. We create another subset for this task by
counting how many times each sentence is selected by
three workers and only consider stories that have human
consensus on top one or two determinant sentence(s).
The subset for this task contains 1074 stories. We follow
the same split as the category task to obtain 859 samples
for training, 108 for validation, and 107 for testing.

Our intention for designing these two tasks is to guide
machine learning models to mimic the human process
of reasoning with narrative commonsense knowledge.
As mentioned before, we don’t believe the SOTA mod-
els for the SCT-v1.0 can automatically perform well
on these tasks. To establish a baseline, we test fine-
tuning transformer-based language models on these two

datasets, as these models have reached SOTA perfor-
mance on the original SCT-v1.0 task. More specifi-
cally, we test the performance of these three models:
BERT (Devlin et al., 2018), RoBERTA (Liu et al., 2019),
and DeBERTA (He et al., 2020). We expect that they
will all perform well on SCT-v1.0 but fail the two new
tasks we proposed.

6. Baseline Model Performance
We evaluated the performance of three SOTA trans-
former models, BERT, RoBERTa, and DeBERTa, to
serve as baselines on the proposed tasks. Additionally,
we evaluated the models’ performance on SCT-v1.0
for comparison with previous SOTA. Each model was
fine-tuned on an NVIDIA Tesla T4 for up to an hour
depending on the task. We fine-tuned each model on
the training sets and report performance metrics for the
fine-tuned models on the test sets in Table 5.

6.1. Training Setup
In each task, we fine-tune a transformer language model
pretrained with a masked language modeling objective.
For the SCT-v1.0 task, the 4 sentences of a story and the
two endings (wrong and correct) are concatenated and
then tokenized with WordPiece (Wu et al., 2016) for
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Test SCT-v1.0 Inference Category Prime Determinant Sentence

Model Accuracy Accuracy Balanced
Acc.

Macro F1 Accuracy Hamming
Loss

Macro F1

BERT-Large 78.2% 37.7% 24.8% 36.1% 20.4% 0.354 34.3%
RoBERTa-Large 93.1% 37.0% 25.9% 35.9% 29.6% 0.303 45.8%
DeBERTa-Large 93.1% 46.3% 30.2% 43.1% 31.5% 0.313 41.1%

Table 5: Baseline Comparisons of BERT, RoBERTa, and DeBERTa on Test Sets

Algorithm 1 Tie-breaking to find the top-category for
each story

1: Input: human labellings on one story L
2: Output: top-category c selected for this story,

None otherwise
3: Data: Complete human labellings on SCT −

v1.0V al
4: ▷Each story is labeled by 3 human workers
5: assert len(L) == 3
6: cnt category = cnt rv = cnt sent = [0] ∗ 4
7: for li in L do ▷ C : list of 4 categories
8: for ci in C do
9: if li[ci] is not None then

10: cnt category[ci] += 1
11: cnt rv[ci] += relevance value rvci
12: cnt sent[ci] += sentence count
13: end if
14: end for
15: end for
16: maxcnt ← max(cnt category)
17: maxrv ← max(cnt rv)
18: maxsent ← max(cnt sent)
19: ▷3-step tie-breaking strategy
20: if unique cnt category.count(maxcnt) then
21: return C[cnt category.index(maxcnt)]
22: else if unique cnt rv.count(maxrv) and this cate-

gory has maxcnt then
23: return C[cnt rv.index(maxrv)]
24: else if unique cnt sent.count(maxsent) and this

category has both maxcnt and maxrv then
25: return C[cnt sent.index(maxsent)]
26: else
27: return None
28: end if

BERT and DeBERTa, and byte-pair encoding (Sennrich
et al., 2016) for RoBERTa. For the proposed inference
category and prime determinant sentence tasks, the 5
sentences of a story are concatenated and then tokenized
the same way as in SCT-v1.0.
For the SCT-v1.0 task (binary classification), we fine-
tune the models to minimize a cross-entropy loss be-
tween their predicted category and the true category
label:

CE = −
2∑
c

yo,c log(po,c)

where y is a binary indicator if class label c is the correct
classification for observation o, and p is the predicted
probability observation o is of class c. The model out-
puts a softmax probability over the two classes (ending 1
vs. ending 2). We then take the higher probability class
as the prediction. To serve as a comparison between
previous works on SCT-v1.0, we evaluated the models
on accuracy as it is the most commonly reported metric
on this dataset (See Table 5).
For the commonsense inference category prediction task
(multiclass classification), we fine-tune the models to
minimize a weighted cross-entropy loss between their
predicted category and the true category label:

CE = −
4∑
c

wc(yo,c log(po,c))

where wc is the weight for class label c, y is a binary
indicator if class label c is the correct classification
for observation o, and p is the predicted probability
observation o is of class c. The model outputs a soft-
maxed probability over all class labels (behavior-based,
objective-based, emotional-based, and goal-driven). For
this task, the class with the highest probability serves as
the prediction. We then evaluate the models on accuracy,
balanced accuracy, and macro F1 score (See Table 5).
For the commonsense prime determinant sentence task
(multilabel classification), we fine-tune the models to
minimize a binary cross-entropy loss between their pre-
dicted sentences and the true sentences label for each
possible sentence prediction:

CE = −(y log(p) + (1− y) log(1− p))

where y is a binary indicator if class label is the correct
classification, and p is the predicted probability. The
model outputs a probability between 0 and 1 for each
sentence separately (with 4 total sentences). During
inference, we set a discrimination threshold of 0.5 and
sentences with a probability > 0.5 are the prediction.
We then evaluate the models on multiple evaluation
metrics, including accuracy, hamming loss, and macro
F1 score (See Table 5).

6.2. Results and Discussion
In Table 5, we can see that for SCT-v1.0, all three mod-
els performed reasonably well. RoBERTa and DeBERTa
have a much higher accuracy rate than the standard
BERT model. The differences between RoBERTa and
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DeBERTa are further explored in the Inference Cate-
gory and Prime Determinant Sentence results, where
DeBERTa outshines RoBERTa on accuracy, balanced
accuracy and Macro F1 of the Inference Category test
as well as accuracy and hamming loss of Prime De-
terminant Sentence test, where RoBERTa only has an
advantage on the Macro F1 of Prime Determinant Sen-
tence test over DeBERTa. It is clearly evident through
baseline comparisons that DeBERTa is the best perform-
ing model for all three tests.
Furthermore, we can see that accuracy on the SCT-v1.0
has no stake in the performance of all models on the
Inference Category and Prime Determinant Sentence
tests. Each model performs significantly worse in the
two new tasks than in SCT-v1.0.

7. Conclusion and Future Work
A key challenge in narrative understanding is the lack of
high-quality data that labels the narrative strategies and
phenomena in stories. We propose two new narrative
understanding tasks and collect rich human-labeled and
human-verified datasets for narrative commonsense in-
ference and prime determinant sentences identification
based on the SCT-v1.0 dataset.
We demonstrate that although the SOTA neural models
have been proven to perform very well on the original
SCT-v1.0 binary classification tasks of choosing the
correct ending sentence, our two proposed tasks remain
very challenging to the models. This is because both
tasks require the models to understand and leverage
the narrative commonsense knowledge underlying. We
believe these two new datasets and the proposed tasks
will help train neural models to better understand and
utilize narrative commonsense knowledge. This project
lays the groundwork for creating explainable AI models
for narrative understanding.
For future work, we will explore improving the mod-
els’ performances by supplementing story structure and
character modeling related to commonsense knowledge.
The stories in SCT-v1.0 are short and relatively simple.
We are also interested in collecting additional human-
annotated data for different types of stories. Finally, we
want to explore downstream tasks that can benefit from
having the model learn our proposed two tasks first.
For example, we hope to find out whether these two
tasks can help a model answer other types of narrative
commonsense questions or generate better stories.
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