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Abstract
Subtitles appear on screen as short pieces of text, segmented based on formal constraints (length) and syntactic/semantic crite-
ria. Subtitle segmentation can be evaluated with sequence segmentation metrics against a human reference. However, standard
segmentation metrics cannot be applied when systems generate outputs different than the reference, e.g. with end-to-end
subtitling systems. In this paper, we study ways to conduct reference-based evaluations of segmentation accuracy irrespective
of the textual content. We first conduct a systematic analysis of existing metrics for evaluating subtitle segmentation. We then
introduce Sigma, a new Subtitle Segmentation Score derived from an approximate upper-bound of BLEU on segmentation
boundaries, which allows us to disentangle the effect of good segmentation from text quality. To compare Sigma with existing
metrics, we further propose a boundary projection method from imperfect hypotheses to the true reference. Results show that
all metrics are able to reward high quality output but for similar outputs system ranking depends on each metric’s sensitivity
to error type. Our thorough analyses suggest Sigma is a promising segmentation candidate but its reliability over other
segmentation metrics remains to be validated through correlations with human judgements.
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1. Introduction
Accessibility of audiovisual content has become a le-
gal obligation for major TV channels in many coun-
tries (EU, 2010) and is also a strong suggestion for
uploaded web content (EU, 2016). Subtitles are a
means for providing accessibility services, either with
intralingual closed captioning for the deaf and hard-of-
hearing or with interlingual subtitling in various lan-
guages for persons without knowledge of the source
language speech. Subtitles are also useful for online
talks and educational content and facilitate the compre-
hension of speech by language learners. Automatising
the generation of subtitles has been a long-standing is-
sue (Piperidis et al., 2004; Melero et al., 2006; Volk et
al., 2010), and is nowadays more and more often per-
formed with neural models trained end-to-end (Lakew
et al., 2019; Liu et al., 2020).
Automatic generation of subtitles is a difficult task,
since subtitles should not only reflect the spoken con-
tent, but should also satisfy multiple formal require-
ments related to their position on screen, the text
length, size and colour, their display duration and
synchronization with speech, etc. Additionally, a
good segmentation of the transcribed or translated text
into subtitles must satisfy syntactic and semantic con-
straints, since a segmentation which respects linguistic
units has been shown to facilitate comprehension and
to lead to more readable subtitles (Perego, 2008; Ra-
jendran et al., 2013). Subtitling must thus go well be-
yond the automatic transcription and translation of the
soundtrack, and complete automation would typically
require additional processing modules such as text
simplification and segmentation into readable chunks,
speaker diarization and sound event detection.

In this work, we study ways to evaluate the quality of
the output segmentations delivered by end-to-end sub-
titling systems. Contrary to pipeline systems, which
typically contain an independent segmentation module
that can be evaluated as a standalone component by
simply measuring its ability to reproduce a reference
segmentation of a reference text (perfect text), end-to-
end systems directly output a segmented text, which
may not correspond to the reference subtitle (imperfect
text). Separating text from segmentation errors thus
becomes an issue. Recent proposals to address this
problem notably include metrics such as BLEUbr and
TERbr (Karakanta et al., 2020b), inter alia, which in-
clude segmentation tags in the computation of the over-
all output quality. However, their ability to single out
segmentation errors remains unclear. In this work, we
perform a systematic assessment of subtitle segmenta-
tion metrics, with the aim to better understand their be-
haviour in relation to textual errors.
Our contributions can be summarised as follows:

• A comparison of existing sequence segmentation
metrics to evaluate subtitle quality in the ideal sit-
uation of a perfect textual content, exactly match-
ing the reference (Sec. 3.1);

• A new score Sigma, derived from an estimation
of an upper bound of BLEUbr, which isolates the
segmentation signal irrespective of text quality,
for imperfect texts (Sec. 3.2);

• A boundary projection method which maps the
subtitle breaks from hypothesis to the reference
and allows for applying the standard segmentation
metrics even for imperfect texts (Sec. 3.3);
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This kind of harassment keeps women <eol>
from accessing the internet – <eob>
essentially, knowledge. <eob>

 0:00:31.066,0:00:34.390
 This kind of harassment keeps women
 from accessing the internet --

 0:00:34.414,0:00:36.191
 essentially, knowledge.

Figure 1: Example of the <eol>, <eob> segmenta-
tion notation for two subtitle blocks.

• EvalSub: A tool for computing reference-based
segmentation scores for automatic subtitles.1

2. Generating and evaluating subtitle
segmentation

2.1. Problem statement
In this work, we only focus on the evaluation of seg-
mentation, and consider that the system’s output is
composed of text interspersed with segmentation sym-
bols. We further assume that there are two types of
symbols: <eol>, which indicates a change of line
within the same screen, and <eob>, which indicates
the end of a subtitle block and a subsequent change of
screen. Figure 1 displays an example of two subtitle
blocks using these notations. According to subtitling
guidelines (BBC, 2021; Netflix, 2021; TED, 2021),
there should be no more than two lines on the same
screen, and each line should contain about 40 char-
acters, with variations depending on the language and
audience. To ease readability, line and subtitle breaks
should be positioned so as to preserve the syntactic and
semantic units as much as possible (Carroll and Ivars-
son, 1998). In addition, the display duration of each
subtitle should vary according to the number of char-
acters on screen (reading speed), while keeping in sync
with the spoken content.
Matching these constraints is a challenging task, and
human subtitlers often have to compromise one con-
straint over the other. Moreover, the decision of where
to segment depends not only on the syntax/semantics
of the text (Cintas and Remael, 2007, p. 172) but also
on multimodal factors such as speaker changes, speech
pauses and shot changes. This means that a lot of tech-
nical, linguistic and extra-linguistic expertise goes into
the segmentation process, and that there is a lot to learn
from corpora of actual subtitles, be they intralingual or
interlingual.

2.2. Metrics for segmentation
As for evaluating automatic segmentation, there are
two possible approaches: one is to separately evalu-
ate how well each constraint is matched, then derive an

1Our code to replicate the experiments is available at
https://github.com/fyvo/EvalSubtitle.

aggregate score; the other is to try to reproduce human
reference segmentations. Both have their strengths and
weaknesses: the former is difficult due to the need to
perform a syntactic and semantic analysis of the subti-
tles, and to correctly weight the importance of each of
the constraints listed above; the latter is tricky because
standard string comparison metrics are not appropri-
ate for subtitles. For instance, minor changes such as
adding one extra <eol> can yield an invalid display
with three lines. Conversely, missing one <eol> can
make the current line overly long to even fit the screen.
As for the position of the boundaries, it may also hap-
pen that moving a break three words ahead can better
match the syntactic constraint than moving it just one
word ahead.
We focus here on reference-based metrics and further
require that a good segmentation metric should:

• account for different types of boundaries;

• accommodate scenarios where multiple human
references are available;

• handle content differences with the reference;

• disentangle the effect of a poor content from that
of a poor segmentation;

• realise a fair balance between all the formal and
structural constraints.

We thus conduct three experiments where we 1) anal-
yse standard segmentation metrics for evaluating subti-
tling segmentation and discuss how well each of them
accommodates the above criteria for perfect texts (Sec-
tion 3.1), 2) propose Sigma, a new score derived from
BLEUbr, which allows for disentangling the effect of
text quality from segmentation (Section 3.2) and 3)
compare all metrics on real subtitling tasks for out-
puts generated by end-to-end neural machine transla-
tion and speech translation systems (Section 3.3).

3. Experimental setting
3.1. Metric sensitivity/robustness
In the first experiment, we investigate the behaviour of
standard segmentation metrics and metrics previously
used in the evaluation of subtitle segmentation for per-
fect texts in an artificial environment where we control
the degree of drop in segmentation quality. The metrics
are the following:

• Precision, recall and F1 (Álvarez et al., 2016):
Precision is defined as the proportion of bound-
aries in the hypothesis that agree with the refer-
ence boundaries over the total number of hypoth-
esis boundaries, while recall is the number of cor-
rect boundaries divided by the reference bound-
aries. F1 is the harmonic mean of precision and
recall.

https://github.com/fyvo/EvalSubtitle
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• Window-based metrics: Pk (Beeferman and
Berger, 1999) assigns penalties for each moving
window if ends are detected to be in different seg-
ments between reference and hypothesis, while
WindowDiff (Pevzner and Hearst, 2002) assigns
a penalty if the number of boundaries in each win-
dow is different for reference and hypothesis.

• Edit distance-based metrics: Segmentation
similarity (Fournier and Inkpen, 2012) computes
the proportion of boundaries that are not trans-
formed when comparing segmentations using edit
distance as a penalty function. Boundary sim-
ilarity (Fournier, 2013) is an adaptation of seg-
ment similarity, where different weights are ap-
plied for each edit type. In TERbr (Karakanta
et al., 2020b) all words except boundary symbols
in each hypothesis-reference pair are masked and
TER (Snover et al., 2006) is computed over the
masked sequences.

• BLEUbr (Karakanta et al., 2020b): BLEU com-
puted on text containing subtitle boundaries as
special symbols. It has often been reported to-
gether with BLEUnb (no boundaries), computed
over the hypothesis-output without the boundary
symbols.

To investigate the sensitivity/robustness of the segmen-
tation metrics in subtitling tasks, we perform changes
in the reference segmentation in a controlled way.
Specifically, we apply the following operations ran-
domly on the reference segmentation: 1) shift, where
a boundary is shifted 1, 2 or 3 positions to its left/right,
2) addition, where a new boundary is added to the seg-
ment, 3) deletion, where a boundary is deleted from
the segment, and 4) replacement, where a boundary is
substituted with the other boundary type, e.g. <eol>
substituted with <eob>. For each operation type,
we gradually increase the percentage of boundaries af-
fected by the operation (20%, 40%, 60% 80% and
100%). For example, shift.1.20 corresponds to 20% of
the reference boundaries shifted by one position, while
delete.80 means that 80% of the reference boundaries
are deleted. Additions are made with respect to the
number of boundaries and not to the number of possi-
ble insertion positions (spaces); that is, add.100 dou-
bles the number of boundaries. Finally, metrics are
computed between the modified test set and the true
reference.

3.2. BLEUbr: Content vs. segmentation
In the second experiment, we explore whether BLEUbr

really captures segmentation quality. BLEU without
(BLEUnb) and with (BLEUbr) boundaries have some-
times been reported together (e.g. in (Karakanta et al.,
2020b) and (Buet and Yvon, 2021)), the motivation
being that BLEUnb should evaluate the content, and
BLEUbr the segmentation. Yet, the relationship be-

tween these two scores suggests that this interpretation
may be oversimplistic, motivating deeper analyses.
BLEUbr is computed on longer sequences than
BLEUnb, which means more n-grams to match. Since
predicting the right number and type of segmenta-
tion tags is generally easier than predicting the actual
words, BLEUbr usually has a higher unigram preci-
sion, which can, in turn, impact the higher-order pre-
cision scores.2 This suggests that the absolute or rel-
ative difference between the two scores cannot be a
proper signal of segmentation quality alone: interpret-
ing BLEUbr > BLEUnb as a sign of good segmen-
tation may be correct, but the intensity of this signal
cannot be realistically assessed from these two mea-
sures alone. How to compare BLEUnb and BLEUbr?
When BLEUnb=100, as with perfect texts, BLEUbr

cannot be greater; in that case, decreases of BLEUbr di-
rectly reflect segmentation errors. With imperfect texts
though, the more BLEUnb goes down, the easier it is to
observe BLEUbr values greater than BLEUnb.
Differences between BLEUbr and BLEUnb, as shown
in Figure 2, result from matches obtained for the n-
grams containing a segmentation tag (henceforth n-
tagrams). A first possible way to disentangle the ef-
fects of the segmentation would thus be to separately
compute two scores: BLEUnb and BLEUem,3 where
BLEUem only measures precision scores with respect
to n-tagrams. Unigram precision only counts segmen-
tation tags, bigram precision counts 2-tagrams such as
“w <tag>” or “<tag> w” etc. However, BLEUem

remains highly correlated with BLEUnb. This is be-
cause n-tagram matches for BLEUem directly depend
on the precision of (n−1)-grams for BLEUnb. For in-
stance, “w1 w2 <tag>” can only be correct if “w1

w2” is also a match, implying that the n-gram scores
define an upper bound on the possible n + 1-tagram
matches.
We therefore discard BLEUem and consider instead an
upper bound of BLEUbr, denoted BLEUbr

+ and com-
puted as follows. We denote p1, p2, p3, p4 respectively
as the 1g, 2g, 3g and 4g modified precisions computed
by BLEUnb, α the ratio of the number of boundaries
to the number of word tokens, and p′1, . . . , p

′
4 the cor-

responding precisions for BLEUbr. Under the assump-
tion that boundaries are mostly correct, the expected
number of correct unigrams in a text of l words aug-
mented with boundaries is just p1 × l+α× l, yielding
p′1 = p1+α

1+α . For higher order n-grams, the exact com-
putation is more involved, but a simple upper bound is
the following:

p′n ≤ (1− (n− 1)α)× pn + nα× pn−1

1 + α
.

This holds because we assume that: (a) each boundary

2Almost all our simulations have a higher unigram preci-
sion for BLEUbr than for BLEUnb.

3This approach is investigated by Élise Michon, personal
communication with the authors.
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REF the car has just left Paris <eol> for its destination London <eob> where it will arrive next Sunday
<eol> if all goes well . <eob>

HYP the car has just left Paris <eol> for his destination : London <eob> where he arrives <eol> next
Sunday if <eol> all goes well . <eob>

The bigram “left Paris” and trigram “all goes well” are counted both by BLEUnb and BLEUbr; the bigram
“London <eob>” and the trigram “Paris <eol> for” are counted by BLEUbr but not by BLEUnb; conversely
the bigram “if all” and trigram “arrive next Sunday” are counted by BLEUnb, but not by BLEUbr.

Figure 2: Comparing BLEUnb and BLEUbr

is part of n n-tagrams, within which it is surrounded
by regular tokens;4 and (b) the text is sufficiently long
so that we can make the approximation l

l+1 ≈ 1. We
readily derive an upper bound BLEUbr

+ of BLEUbr

that we can compute from BLEUnb. This value can be
used as a proxy to the best achievable BLEUbr score
for a given BLEUnb. We thus denote our new score
Sigma (S) as:

S =
BLEUbr

BLEUbr
+ (1)

Values close to 100 should signal a good segmentation,
while values close to 0 a bad segmentation, irrespective
of the value of BLEUnb.
We empirically investigate the above assumptions in
two steps. We first explore the relation between
BLEUbr and BLEUnb for imperfect system outputs
when the segmentation remains constant. To simu-
late these outputs, we insert noise in the reference text,
without affecting the type or position of boundaries.
The noising process consists of applying a mix of edit
operations (insertions, deletions, substitutions, in equal
shares) corresponding to a certain percentage of the
number of tokens (from 0 to 90, with a step of 10).
We then move to the case when textual errors in imper-
fect texts are combined with segmentation errors. We
apply the segmentation changes (mix of operations on
the boundaries, following the same procedure as for the
words) to the noisy references generated in the first step
and compare the behaviour of our new score Sigma
compared to BLEUbr for different values of BLEUnb.

3.3. Boundary projection
In the third experiment, we move from the scenario
of controlled text and segmentation changes to investi-
gating the usefulness of Sigma for evaluating the out-
put of real end-to-end subtitling systems. To this aim,
we compare Sigma to BLEUbr and TERbr, as well as
to the scores obtained by standard segmentation met-
rics. To overcome the fact that standard metrics can-
not be computed on imperfect texts, we apply a bound-
ary projection method based on reference-hypothesis

4In theory there might be several breaks in one n-tagram,
but this would imply very short lines and rarely appears in
our references.

alignment, illustrated in Figure 3. Given a reference-
hypothesis segment pair Ref(1, .., i) and Hyp(1, .., j),
where i and j are respectively the number of subti-
tles in the reference and hypothesis segment, we split
the reference and hypothesis at the subtitle boundaries,
such that each subtitle (or subtitle line) is one segment.
Then, the reference subtitles are aligned to the hypoth-
esis subtitles using the MWER algorithm (Matusov et
al., 2005). After this process we obtain a new reference
Refproj(1, .., j), containing the text of the true refer-
ence but with the boundaries projected from the hy-
pothesis. Since Hyp and Refproj have the same num-
ber of subtitles, the boundaries of the hypothesis are
simply copied in the Refproj . Projecting the bound-
aries from the hypothesis to the reference allows us
to compute standard segmentation metrics between the
projected reference Refproj and the true reference Ref ,
as in Experiment 3.1.

Hyp
 1. Imaginez que vous vous réveillez à un inconnu, <eob>
 2. parfois à des inconnus multiples, <eob>  

Ref
 1. Imaginez que vous vous réveillez <eol>
 2. un matin et qu'un inconnu, <eob> 
 3. ou parfois plusieurs inconnus, <eob>

Ref_proj
 1. Imaginez que vous vous réveillez un matin et qu'un inconnu, <eob>
 2. ou parfois plusieurs inconnus, <eob>

Text

Boundaries

Figure 3: Projection of boundaries from hypothesis to
reference based on subtitle alignment.

For comparison with previous work, we apply the
boundary projection on the outputs of the 4 systems
of Karakanta et al. (2020b) for En−→Fr. The sys-
tems are a neural MT system (NMT), a cascade speech
translation system (Cas), and two end-to-end ST sys-
tems: e2ebase for an ST system trained only on MuST-
Cinema and e2ept for a ST system pretrained on large
amounts of ST data and fine-tuned on MuST-Cinema.
We then compute the segmentation metrics and discuss
how the ranking of system outputs based on Sigma
scores differs wrt. 1) standard segmentation metrics
applied on the projected reference and 2) the BLEUbr

and TERbr computed between the output (without pro-
jection) and the true reference.
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Figure 4: Behaviour of segmentation metrics when gradually transforming the reference segmentation with shift.1,
shift.2, shift.3, add, delete, and replace operations applied on the boundaries. Metrics that do not distinguish
different boundary types were not computed in the “replace” scenario.

3.4. Data and implementation
The subtitling data we use in the experiments come
from the MuST-Cinema corpus (Karakanta et al.,
2020c). The test set is compiled from the subtitle files
of 9 TED talks, amounting to 545 sentences with sub-
title boundaries marked as special symbols. For ex-
periments 3.1 and 3.2 we use the English side of the
English-French pair, while for the boundary projection
method we use the French side.
Our code for computing the segmentation metrics is
implemented in Python, based on existing libraries.
The window-based metrics (Pk, WindowDiff), as well
as Segment and Boundary Similarity, are computed us-
ing the SegEval package5 (Fournier, 2013). BLEU and
TER are computed with SacreBLEU6 (Post, 2018).

4. Results
4.1. How robust/sensitive are metrics to

segmentation changes?
We evaluate here the impact of several types and lev-
els of segmentation noise on the segmentation metrics
of Section 3.1. Apart from the desiderata for a good
segmentation metric in Section 2.1, the types of noise
we apply can have an impact on user experience: Shifts
correspond to having the ‘correct’ number of subtitles
but segmented in a non-optimal way for comprehen-
sion. Moreover, near misses are less likely to match ref-
erence boundaries, since subtitles rarely contain only
1 token (in our reference, subtitles contain on average
5 tokens7). Therefore, a shift of 3 positions is more

5https://pypi.org/project/segeval/
6BLEU|#:1|c:mixed|e:no|tok:13a|s:exp|

v:2.0.0
TER|#:1|c:lc|t:tercom|nr:no|pn:yes|as:no|
v:2.0.0

7We acknowledge that this number may vary for lan-
guages with different scripts and subtitling conventions.
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Figure 5: Pearson correlation matrix for the segmen-
tation metrics. Coefficients were computed over the
values measured in Experiment 1. “Length” is the per-
centage of lines conforming to the length constraint of
max. 42 characters per line.

likely to move the boundary in a position where another
boundary is placed. For this reason, an optimal metric
for subtitling segmentation should not be sensitive to
shifting distance by penalising near misses less. As for
additions, deletions and replacements, all of them may
lead to critical errors; a deletion will lead to overly long
subtitles, an addition to shorter subtitles and, as with re-
placements, to multiple lines in the case of consecutive
<eol>. Since there are no studies clearly showing
the effect of each operation on user experience, we pre-
fer a metric which would equally penalise over- and
under-generation of boundaries as well as the genera-
tion of the wrong type of boundary. Results for the
degradation scenarios are shown in Figure 4. Correla-
tion between the metrics is analysed through Pearson
correlation coefficients (PCC), shown in Figure 5.
For precision-recall, shifting the boundaries causes the
highest drops, despite the fact that the same number of
boundaries is preserved. Interestingly, shifts by 1 posi-
tion are worse than 2 positions, and in turn worse than

https://pypi.org/project/segeval/
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3 positions. The difference is more visible for percent-
ages above 60%. F1 deteriorates more for deletions
than for additions because of a stronger drop in recall.
By design, the error measured by Pk is always lower
than that measured by WindowDiff (an error for Pk is
an error for WindowDiff, but the reverse is not true).
As noted and criticised by Pevzner and Hearst (2002),
Pk penalises false negatives (FNs) heavier than false
positives (FPs) (in our experiment FNs correspond to
deletions, and FPs to additions). Thus Pk appears to
be more recall-oriented than the other metrics, which is
confirmed by the higher PCC with the recall metric.
However, for Pk and WindowDiff penalties increase
regularly with shift size and reversely to precision and
recall (1<2<3). Again, these metrics are more sensi-
tive to deletions than to additions.
SegSim computes cosmetically high values (as men-
tioned by Fournier (2013)), which can be inconvenient
for interpretation since it lacks sufficient resolution.
The new normalisation introduced for BoundSim no-
tably solves this issue. As with the window-based met-
rics, SegSim and BoundSim are more sensitive to dele-
tions and additions and give less penalty to near misses
(here only for shifts of 1). This can be explained by the
fact that shifting a boundary by 1 position is accounted
as one transposition, while longer shifts cost one ad-
dition and one deletion. However, TERbr is robust to
the type of error, as it shows a balance between dele-
tions and additions, as well as shifts of 3 positions. All
edit-based metrics are less sensitive to replacements.
BLEUbr globally remains within the 45–100 range,
since it is the only metric considering textual content.
It is hardly sensitive to shift size; shifting 1, 2 or 3 posi-
tions yields almost the same scores, but shifts are more
penalised than the other types of noise. Despite being
a precision-based metric, BLEUbr here is actually ro-
bust to error type, since it equally penalises deletions,
additions, as well as replacements. It is worth consider-
ing that one wrongly omitted boundary will affect the
n-gram precision (for n > 1), although not as much
as one wrongly added boundary. Therefore, this bal-
ance between deletion and addition penalisation could
be attributed to the effect of brevity penalty, which de-
creases the score of segments with missing boundaries.
To conclude, drawing back to our criteria for a good
segmentation metric: the ability to account for differ-
ent types of boundaries is present in SegSim, Bound-
Sim, BLEUbr, and TERbr. BLEUbr and TERbr can
take advantage of multiple human references. As for
the balance between formal and structural constraints,
even though all metrics highly correlate with each
other, their correlation with the length conformity (see
“Length” in Figure 5) is low, with only recall, Pk and
BoundSim correlating above 0.5. For this, precision-
recall metrics could give some insights into the type
of error (over- or under-segmentation), but should be
computed separately for each type of break and com-
bined. This suggests that there is still a long way to go

for a segmentation metric that incorporates formal and
structural subtitling constraints.
Apart from the factors mentioned above, sensitivity to
near misses is not a desired property for a subtitle seg-
mentation metric. Unlike window- and edit-based met-
rics, BLEUbr is in line with our expectations regard-
ing the shifting distance of boundaries. It also achieves
balance between the additions, deletions and replace-
ments. Therefore, BLEUbr seems to have properties
corresponding to our criteria for a good segmentation
metric. Still, our expectations on the relationship of
metrics with user experience has to be investigated with
user studies and the final decision on a good segmenta-
tion metric can be taken only after validating its corre-
lation with human judgements.

4.2. What does BLEUbr really measure?
In spite of its flaws, BLEUnb remains the go-to met-
ric for MT research and studies on automatic subti-
tling. As for its relation to segmentation quality, in
Section 3.1, we showed that for perfect output text
(BLEUnb=100) BLEUbr indeed ranks segmentation
from good to bad (fourth graph of Figure 4), with the
added benefit of yielding a global aggregate value tak-
ing into account all types of errors (additions, deletions,
replacements). The question we now turn to is the use-
fulness of BLEUbr for imperfect texts. We would like
to independently evaluate quality in content prediction
(with BLEUnb) and quality in segmentation prediction.
Can BLEUbr, as used in previous work, or Sigma
(equation (1)), play that role?
First, for ‘perfect’ segmentation but imperfect text, Fig-
ure 6 shows that the relationship between BLEUbr and
BLEUnb is linear. This indeed confirms our hypothesis
that the two metrics are so correlated that their differ-
ence cannot be a strong signal of segmentation qual-
ity. It also shows that BLEUbr cannot exceed an upper
bound which is strongly related to BLEUnb, since in
this setting the segmentation has not been affected by
noise. Given this dependency between BLEUbr and
BLEUnb, reporting both scores is not informative and
the segmentation signal should be sought in a different
relationship.
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Figure 6: Linearity of BLEUbr wrt BLEUnb, for in-
stances where only text was submitted to noise (cf.
Section 3.2). Linear regression gives a coefficient of
determination of 0.998, and a standard error of 1.2.
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Figure 7: Values of BLEUbr (a) and Sigma (b) after applying segmentation noise at different values of BLEUnb

(10 levels of segmentation noise for each BLEUnb value, 10 BLEUnb values from 100 down to 8.5). In (a) we see
BLEUbr decreasing with decreasing BLEUnb, whereas (b) Sigma scores remain stable.

When moving to the scenario of imperfect text and im-
perfect segmentation, Figure 7a confirms our hypoth-
esis that the more the quality of BLEUnb drops, the
more often BLEUbr exceeds BLEUnb. On the con-
trary, Sigma remains in a similar range irrespective of
the value of BLEUnb. We illustrate this in Figure 7b
where we plot Sigma for various values of BLEUnb.
Sigma responds linearly to the amount of segmenta-
tion noise, but we observe a minor drift of the range
of values when BLEUnb decreases (from [74.3–100]
for mixed.0 to [63.2-95.8] for mixed.90). However, in
a realistic scenario, BLEUnb would typically be con-
strained to an interval between 25 and 55 (correspond-
ing to the 4 central series on Figure 7b). Moreover,
when comparing the segmentation ability of two sys-
tems close in BLEUnb value, the impact of that drift
would be all the more limited. This shows that Sigma
can be a good approximate value for capturing segmen-
tation quality, irrespective of the quality of the gener-
ated content.

4.3. Boundary projection
We here move to the evaluation of the segmentation of
actual outputs from end-to-end systems. Since standard
metrics cannot be applied to imperfect texts, we use the
boundary projection method as a proxy to compare the
system ranking based on all metrics to that of Sigma.
Scores are reported in Table 1. Sigma ranks the out-
put of NMT as best with a score of 89.2, followed by
Cas with 83.1, while the two direct systems score very
closely with 81.8 for e2ebase and 81.5 for e2ept. In
relation to the standard metrics on the projected refer-
ence (columns 2-10) and the metrics considering text
quality (BLEUbr and TERbr to the left of Sigma), all
metrics clearly agree with Sigma on their rating of the
output of the NMT system as having the best segmenta-
tion among the examined outputs. In TED talks, subti-
tlers create the target subtitles (our reference) using the
source subtitles as template, therefore it is expected that
a system receiving the source boundaries as input and
able to correctly copy the boundaries will achieve high
similarity with the reference. However, when compar-

ing the scores for the three Speech Translation systems
(Cas, e2ebase and e2ept), the agreement among met-
rics is lost. The cascade output seems to have better
segmentation with 6 wins (WindowDiff, SegSim, pre-
cision, BLEUbr and the two versions of TERbr) and 3
ties (Pk, F1 and BLEUbr on system output) over the
e2ept, which is ranked best according to BoundSim
and recall. The close scores in many metrics, includ-
ing Sigma, show no clear winner between the two di-
rect systems. This is expected since e2ept was pre-
trained on non-segmented text, which improves trans-
lation quality, but did not receive any additional seg-
mentation data compared to e2ebase. The length of
the predicted output seems to have an effect, since met-
rics with a high correlation with length conformity rank
e2ept higher than Cas (length conformity is 95% for
e2ept and 91% for Cas). All in all, the two ST sys-
tems seem to be making different types of errors (Cas
has higher precision, e2ept higher recall), but for most
metrics the scores are so close that it may be hard to
tell which output is the best.

The results show that, even though the metrics are ca-
pable of properly rewarding high quality output, dis-
tinguishing between outputs of similar segmentation
quality under real evaluation settings is a difficult task
and requires metrics with sufficient resolution. Despite
this, Sigma shows a relatively high agreement with the
majority of metrics in ranking the cascade output as
best among the ST outputs. The boundary projection
method is used here as a proxy for disentangling the
effect of text quality from segmentation, but the scores
computed through this method are impacted by the per-
formance of the alignment algorithm, especially for
low quality outputs. On the other hand, metrics com-
puted directly on imperfect texts (BLEUbr and TERbr)
are strongly influenced by translation quality, as shown
by the different ranking of BLEUbr computed on pro-
jected reference (column 9) vs. system output (column
11). Sigma is not constrained by either of these limi-
tations and provides a clear, interpretable and easy-to-
compute solution for evaluating the segmentation even
between imperfect texts of similar quality.
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System Pk Windiff SegSim BndSim Prec Rec F1 BLEUbr TERbr BLEUbr TERbr S

NMT .192 .208 .979 .637 .711 .735 .723 83.18 6.87 32.16 19.38 89.2
Cas .252 .270 .970 .519 .639 .667 .653 76.14 8.91 26.34 23.23 83.1
e2ebase .257 .277 .969 .515 .601 .667 .632 75.00 9.29 22.53 24.48 81.8
e2ept .252 .276 .969 .525 .610 .702 .653 74.89 9.24 26.36 23.52 81.5

Table 1: Segmentation scores of Sigma and the examined metrics for the output of four systems after projecting
their boundaries to the reference (Section 4.3). The two columns to the left of Sigma are BLEUbr and TERbr

scores between the output and the reference without projection. Best score among the ST outputs is underlined.

5. Related work
Automatic subtitle segmentation has been previously
evaluated in the case of interlingual and intralingual
subtitles, by comparing the automatically generated
output against a reference (Álvarez et al., 2014). For
interlingual subtitles, Álvarez et al. (2016) proposed
a segmentation algorithm based on Logistic regression
and Support Vector Machine classifiers. The evalua-
tion was performed with precision-recall-F1 measures,
based on the ability of the algorithm to insert a seg-
mentation boundary, without however distinguishing
between line and subtitle breaks. Later, Álvarez et
al. (2017) compared rule-based and machine-learning
segmentation methods with metrics which considered
either subtitle breaks only or both line and subtitle
breaks. These metrics count the segmentation er-
rors (F1, NIST), the number of incorrectly segmented
portions (DSER) or the edit distance between se-
quences of reference positions and hypothesis positions
(SegER). Karakanta et al. (2020a) trained a sequence-
to-sequence model on different combinations of real
and synthetically segmented data, which transforms an
unsegmented sentence into a sentence with line and
subtitle breaks. Except for F1, performance is evalu-
ated with BLEU as a similarity measure, and characters
per line (CPL), as the percentage of segmented subtitles
conforming to the length constraint.
Segmentation has also been evaluated in the context of
Machine Translation for subtitling. Karakanta et al.
(2020b) report BLEUbr, where the BLEU metric of
Papineni et al. (2002) is computed on text containing
subtitle boundaries annotated as special symbols. Each
boundary symbol counts as one token in the BLEU
computation. Similarly, Matusov et al. (2019) report
scores for their MT metrics in the S-mode, where line
breaks in a subtitle are marked with a separator symbol.
However, in their setting there is a one-to-one corre-
spondence between source-target subtitles. Karakanta
et al. (2020b) also introduce TERbr, a variant of TER
(Snover et al., 2006) which is computed on text where
all words except for the subtitle boundaries are masked.
The authors claim that this metric determines the ef-
fort required by a human subtitler to manually correct
the segmentation, ignoring word errors. Last, Cherry et
al. (2021) propose two metrics again related to BLEU:
1) Timed-BLEU, where target to reference alignments
necessary for the evaluation are created by linear tem-

poral alignment, over which BLEU is calculated as
usual, and 2) T-BLEU Headroom, calculated as the dif-
ference between an upper bound of T-BLEU and the ac-
tual T-BLEU. Both metrics only apply when the output
contains timestamps, which are not always available in
subtitle generation with end-to-end systems.

6. Conclusion
We have analysed metrics and methods to evaluate the
segmentation of text into subtitles, given a human ref-
erence. Our analysis using artificial noise in segmen-
tation has shown that for perfect texts, BLEUbr satis-
fies our criteria for a good subtitle segmentation metric.
However, when moving to imperfect texts, BLEUbr

correlates highly with regular BLEU, therefore the seg-
mentation signal cannot be extracted by a simple dif-
ference between BLEUbr and BLEUnb. We thus intro-
duce a new subtitle segmentation score Sigma, as the
ratio of BLEUbr to its approximated upper bound. In
order to compare Sigma with standard segmentation
metrics for evaluating real system outputs, we further
proposed a boundary projection method which projects
the subtitle boundaries from the output to the reference.
We noted that in real evaluation settings existing met-
rics do not always agree on their ranking of the outputs,
especially for outputs of similar quality. We believe
that the final response on the most accurate method to
evaluate subtitle segmentation can be given only after
obtaining correlations of the metrics and methods pro-
posed in this paper with human judgements. However,
the analysis presented in this work has shed light into
the critical aspects of evaluating subtitle segmentation,
in order to better design user studies to collect these
human judgements and to refine the approximation of
upper bound BLEUbr for computing Sigma in subti-
tling segmentation tasks.
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