Proceedings of the 13th Conference on Language Resources and Evaluation (LREC 2022), pages 2909-2918
Marseille, 20-25 June 2022
© European Language Resources Association (ELRA), licensed under CC-BY-NC-4.0

Quality and Efficiency of Manual Annotation: Pre-annotation Bias

Marie Mikulova, Milan Straka, Jan Stépanek, Barbora Stépankova, Jan Hajic¢
Institute of Formal and Applied Linguistics
Computer Science School, Faculty of Mathematics and Physics, Charles University, Prague
{mikulova,straka,stepanek,stepankova,hajic } @ufal. mff.cuni.cz

Abstract
This paper presents an analysis of annotation using an automatic pre-annotation for a mid-level annotation complexity task -
dependency syntax annotation. It compares the annotation efforts made by annotators using a pre-annotated version (with a
high-accuracy parser) and those made by fully manual annotation. The aim of the experiment is to judge the final annotation
quality when pre-annotation is used. In addition, it evaluates the effect of automatic linguistically-based (rule-formulated)
checks and another annotation on the same data available to the annotators, and their influence on annotation quality and
efficiency. The experiment confirmed that the pre-annotation is an efficient tool for faster manual syntactic annotation which

increases the consistency of the resulting annotation without reducing its quality.

Keywords: annotation, syntax, pre-annotation bias, annotation efficiency, annotation quality, inter-annotator agreement

1. Introduction

Developing high-quality annotated corpora represent-
ing natural language phenomena that can be used by
machine learning tools or explored by linguists solving
various research tasks is time-consuming and expen-
sive. This paper presents results of a carefully designed
experiment that shed some light on the issue of effi-
ciency vs. quality of manual syntactic annotation. For
this purpose, we used manually annotated parts of the
Prague Dependency Treebank - Consolidated, PDT-C
in sequel (Haji¢ et al., 202011-] under various experimen-
tal set-ups: annotation with no support (“from-scratch
mode”), annotation supported by the use of automatic
pre-annotation (using a high-accuracy parser), avail-
ability of other annotation on the same data, and “on-
line” checking rules (implemented in such a way that
the annotator can check the manual annotation or man-
ual post-editing immediately). The experiments focus
on dependency syntax annotation: each token of a sen-
tence is assigned its head and specific type of the de-
pendency relation.

With the experiment, we aim to answer three main re-
search questions, the first of which is crucial:

* Does the quality of manual annotation remain
acceptably high if pre-annotation is used? How
much the manual correction of automatic pre-
annotation increases quality? The concern is that
annotators might tend to simply go along with the
pre-annotation, which would lead to a lower qual-
ity than they could produce by a fully manual an-
notation (cf. similar question in [Rehbein et al.
(2009)).

* What effect do other available tools (checking
rules, other annotation on the same data) have on

'"https://hdl.handle.net/11234/1-3185

the quality and efficiency of the annotation and to
what extent?

* Which set-up is most useful for manual de-
pendency syntax annotation? We want to find
out how to best prepare the annotation environ-
ment and workflow for the syntactic annotation
of 2,000,000 tokens in the PDT-C project (see
Sect. [3) and possibly generalize the findings for
other similar projects.

To evaluate the results, we use the usual methods
for measuring accuracy and inter-annotator agreement
in the dependency syntax tasks (UAS, LAS, Cohen’s
kappa).

The experiment confirmed the usefulness of automatic
pre-annotation for efficiency of annotation and quality
of the result. The influence of the other support tools
on efficiency and quality of annotation was not as pos-
itive as expected. However, when used together they
significantly increase the quality of the annotation.

In the following Sect. 2} we summarize previous re-
lated work on similar tasks. In Sect. |3} the annotation
task is briefly described. Annotation support tools used
within the experiment (parser, automatic checks, avail-
ability of other annotation) are presented in Sect. 4]
The core of the article is Sect. [5] in which the exper-
iment is described and the results are presented and
evaluated. Conclusions and future work are summa-
rized in Sect.

2. Related Work

Various time-saving methods while maintaining data
quality have already been explored. An overview of
studies on this topic is given by |Grouin et al. (2014). A
number of previous works have demonstrated the use-
fulness of automatic pre-annotation by verifying it with
various annotation experiments.

2909

https://hdl.handle.net/11234/1-3185

The experiments were performed on different anno-
tation tasks (POS annotation (Fort and Sagot, 2010),
semantic role labeling (Chou et al., 2006} |[Rehbein et
al., 2009), name entity annotation (Grouin et al., 2014;
Rosset et al., 2013)), treebank construction (Marcus
et al., 1993; |Chiou et al., 2001} |Gupta et al., 2010;
Voutilainen and Purtonen, 201 1)) for different purposes
(comparison of annotation quality by experienced and
inexperienced annotators (Gupta et al., 2010), the ef-
fect of different types of pre-annotation, the difference
between using a high-quality and lower-quality parser
(Rehbein et al., 2009; Chiou et al., 2001))), which corre-
sponds to the different set-ups of the experiments. Ex-
perimental design was chosen not only in line with re-
search question that the authors wanted to address, but
also in line with the number of annotators, the amount
of data and time available.

The previous works also confirmed that a clear and con-
trolled, well performed experimental design is neces-
sary for minimizing side effects on the results of the
experiment (annotator influence, learning effect, inap-
propriate or/and different data; cf. the design of the
experiment in |Rehbein et al. (2009), where an ongoing
learning effect (repeated annotation of the same data by
the same annotators) seems to have led to a distortion
of the results).

The approaches that are closest to ours are that of tree-
bank construction. One of the earliest studies that in-
vestigated the usefulness of automatic pre-annotation
for treebank construction was carried out by Marcus et
al. (1993). In the context of the development of the
Penn Treebank, they compared the semi-automatic ap-
proach to a fully manual annotation and found that the
semi-automatic method resulted both in a significant
reduction of annotation time, and in increased inter-
annotator agreement and accuracy. [Chiou et al. (2001}
investigated the effect of pre-annotation in the con-
text of the development of the Chinese Penn Treebank.
They experimented with two different parsers (using
a high-accuracy and lower-accuracy parser) and found
that both significantly shortened the total annotation
time while maintaining accuracy. |Gupta et al. (2010)
described a semi-automatic approach to expedite the
process of manual annotation of a Hindi Dependency
Treebank. In addition to the influence of automatic pre-
annotation, they also experimented with two groups of
annotators: experienced and inexperienced. From their
observations, it seems that a semi-automatic process is
an effective way of doing dependency annotation when
the annotators are trained and experienced. The exper-
iment also confirmed the fact that treebank annotation
is not a trivial task and supervision is required for car-
rying out the task in an efficient manner. |Voutilainen
and Purtonen (2011) documented a double-blind ex-
periment on syntactic annotation of Finnish texts. The
results suggest that as a result of reviews and negoti-
ations, inter-annotator agreement can be much higher
than the corresponding labeled attachment scores re-

ported for state-of-the-art dependency parsers.

Metrics for measuring annotation quality have been
discussed in |Artstein and Poesio (2008). In a more
recent work, [Skjerholt (2014) pointed out the inade-
quacy of existing metrics for syntactic annotation and
proposes his own metric adapted to the structure of syn-
tactic annotation. However, the UAS and LAS (unla-
beled and labeled attachment scores, respectively) for
measuring accuracy (Yang and Li, 2018} [Braggaar and
van der Goot, 2021)) and Cohen’s kappa (Cohen, 1960)
for measuring inter-annotator agreement (Yang and L1,
2018}, Nguyen, 2018)) are still widely used metrics for
the annotation quality evaluation in the dependency
syntax area.

3. Annotation Task

The experiment focuses on annotation at the depen-
dency syntax layer within the multi-layered treebank
for Czech — PDT-C. Its version 1.0 features a fully
manual morphological and syntactic-semantic annota-
tion (Haji€ et al., 2020). For version 2.0, the goal is
to extend the fully manual mid-level dependency syn-
tax annotation to all parts of PDT-C (this assumes an
annotation of 2,000,000 tokens). For our experiments
described in this paper, we have used a sample from the
PCEDT part of PDT-C (Czech translation of the Wall
Street Journal portion of Penn Treebank (Marcus et al.,
1999)).

A dependency syntax annotation usually consists of de-
termining the head for each node and assigning a syn-
tactic function (attribute afun) describing the relation
between the dependent node and its head. In PDT-style
dependency syntax annotation, every word (token) of a
sentence (including punctuation marks) is represented
by a node of the tree and at the same time, no added
nodes are allowed. The original style of this layer an-
notation is best described in |Hajic et al. (1999 based
on principles first formulated in Haji¢ (1998)).

The rules follow (wherever possible) traditional prin-
ciples of the Czech grammar (especially as described
inSmilauer (1947)). In a prototypically structured sen-
tence, a predicate (Pred) is the head of the sentence
and it depends on the technical root. Afuns (25 types
are distinguished) primarily describe dependency syn-
tax relations such as subject (Sb), object (Ob7j), ad-
verbial (Adv), attribute (Atr). Also all other nodes
are assigned a head and a dependency relation (some-
times only in a purely technical way), e.g. auxiliary
verbs (AuxV), prepositions (AuxP), subordinate con-
junctions (AuxC), coordination (Coord) and apposi-
tion (Apos) conjunctions, particles (AuxZ) and punc-
tuation (AuxG, AuxX, AuxK).

Additional syntactic features such as ellipsis (_E) and
parenthesis (_P) and members of coordination (_Co) or
apposition (_Ap) structure are denoted by a specific af-
fixes attached to appropriate afun. These three types

Zhttps://ufal.mff.cuni.cz/pdt-c/
publications/PDT20-a-man—en.pdf

2910

https://ufal.mff.cuni.cz/pdt-c/publications/PDT20-a-man-en.pdf
https://ufal.mff.cuni.cz/pdt-c/publications/PDT20-a-man-en.pdf

Fle Node Tiee View Macios Setp Help

Vode: | PMLAAmot i

BEOCOSI++ARRK (0O TATFB|w

swe PMLA Ant =t | |

Dort bude v prosinci vydrazen pi benefcni akc -

17/68

W
Q@ |
-tree
A-tree -
AUXS root
Q
o)
vydrazen .
Pred vydrazit
IPRED
vydrazen
QO o) Q o] o
Dort bude v pi . / \\
Sb AuxV AuxP AuxP AuxK W e .
#Gen dort prosinec / akce
1§ |3 ACT PAT TWHEN/ TPAR
L . Dort prosinci v akci
prosinci jakci
Adv Adv /
o benefién{
benefi¢ni RSTR;W ,
Adv*Noun parent benefiéni
T .

id: Atree

g Scale 2402 [an

Figure 1: Annotation tool TrEd: Dependency syntax annotation of the sentence Dort bude v prosinci vydraZen pri
beneficni akci “The cake will be auctioned at a charity event in December.’” (on the left) with syntactic-semantic
annotation of the same sentence available in a separate window (on the right), displayed in the stylesheet available
to annotators during the annotation. In the dependency syntax annotation, the output of the automatic “online”
checking procedure is also shown: there is an error in the incorrectly assigned afun Adv to a node that depends on
the noun. According to the annotation guidelines, any node that depends on a noun gets the afun Atr.

of affixes can combine with each other, increasing the
total number of possible afuns to 200[]

An example of dependency syntax annotation dis-
played in the annotation tool (Sect.) is shown in
Fig. [T] (compared to syntactic-semantic annotation of
the same sentence; read more in Sect. [4.3)).

4. Annotation Tools Used

For manual annotation, we use the TrEd annotation tool
(Pajas and Stépéanek, 2008). The basic editing capabil-
ities of TrEd allow the user to easily modify the tree
structure with drag-and-drop operations. The annota-
tion process is greatly accelerated by a set of functions

*Some combinations of afun and affix are in principle un-
acceptable, but the annotation tool (Sect. @) allows to cre-
ate any of them, so when measuring the results of our ex-
periment (Sect. [5.2), we take into account both the num-
ber of basic afuns (25) and the number of all possible afuns
(25 % 23 = 200). Unacceptable combinations of afun and
affix are then subject to automatic checks (Sect. 4 2). Also, it
should be noted that the rules for some afuns, ellipsis and af-
fixes differ slightly from the original guidelines as referenced
above.

called macros (activated by keyboard shortcuts), cus-
tomized to simplify the most common tasks done by
the annotators (e.g., in our annotation task (Sect. ,
macros are available for assigning any of the afun val-
ues). TrEd provides many tools to customize the editor
for various tasks. When annotating dependency syntax,
we also utilize the possibility to write macros that in-
corporate consistency tests into the annotation process
(Sect. [A.2). TrEd can also display more than one an-
notation (more than one tree) in one editing window.
An annotator can thus check his/her annotation against
another (Sect. [£3). The annotation tool TrEd as we
use it for the annotation task described here is shown in

Fig.

4.1. Pre-annotation

To perform automatic pre-annotation, we selected a de-
pendency parser achieving the best published perfor-
mance on the Prague Dependency Treebank (PDT). To
our best knowledge, that is the UDPipe 2 dependency
parser combined with RobeCzech (Straka et al., 2021)),
where RobeCzech is a Czech variant of RoBERTa.

We trained the parser on the PDT-style syntax including
the afun affixes, using the train portion of PDT-C 1.0

2911

(Haji¢ et al., 2020), reaching UAS 94.18% and LAS
91.37% on the PDT evaluation test set (the etest sec-
tion). To ascertain the effect of out-of-domain data, we
also evaluated the parser performance on 2,000 manu-
ally annotated sentences from PCEDT part of PDT-C,
obtaining UAS 93.25% and LASE] 90.93%, close to the
PDT result despite the change of domain.

4.2. Annotation Checking Rules

To get a higher quality and a greater consistency of an-
notated data, a set of automatic “online” checking pro-
cedures has been proposed and created in accordance
with the annotation guidelines and incorporated into
the annotation process to prevent the annotator from
making accidental mistakes, e.g. because of poor at-
tention. The “online” checks are based on the fact that
many annotation rules imply that particular phenomena
cannot (or have to) occur in the annotation output. They
mainly work with the combination of attribute values
and the structure of a tree. In our experiments, 9 sets of
automatic checking rules were available.

Some of the checking rules utilize the multi-layered
structure of the PDT-C and use information from the
lower morphological layer (e.g. morphological cate-
gories, lemmas). For example a rule states that an at-
tribute (afun At r) never depends on a verb and a node
that depends on the noun is an attribute (afun Atr), or
a rule states that a nominal part of a predicate (afun
Pnom) always depends on a verb byt ‘to be’ and its
variants.

Many checks combine several rules, for example a
check examines whether the afun Pred for predicate
is a head of the tree, except cases when it is denoted as
a parenthesis, or a member of coordination or apposi-
tion by affixes _P, _Co, or _Ap. Further checking rules
are defined by enumeration, for example a check states
that the head of a tree has only a limited set of pos-
sible afuns: Coord for coordination head, Apos for
apposition head, Pred for predicate, Denom for noun
phrase, Partl for interjection. Also some combina-
tions of afun and affix are excluded, for example the
punctuation marks AuxX and AuxG are never comple-
mented with any affixes.

It is recommended to the annotators to run the checks
after annotation of every single tree and consequently
check and fix possible errors. In Fig. (I} we can see an
example of output of the automatic checks. The auto-
matic “online” checking procedure revealed an error in
the incorrectly assigned afun Adv to a node that de-
pends on the noun. As mentioned above, according to
the annotation guidelines, any node that depends on a
noun gets the afun Atr.

*Please note that the LAS score referred to here is using
a full set of the original afuns, including the original affixes,
such as _Co; later in this paper, we define LAS differently
and add one more metric (Sect. @

4.3. Availability of Other Annotation

The dependency syntax annotation can take advantage
of the availability of other manual annotation on the
same data. Especially the higher, syntactic-semantic
layer manual annotation with its tree structure can serve
as a guidance because both layers are derived from the
same syntactic theory developed in the framework of
Functional Generative Description (Sgall et al., 1986).
The main difference between the two syntactic layers
lies in the fact that at the dependency syntax layer, ev-
ery word of a sentence is represented by a node of its
own and at the same time, no added nodes are allowed
(cf. Sect. 3), while at the syntactic-semantic layer, only
the content words are represented by a separate node
and the function words such as prepositions, conjunc-
tions, auxiliary or modal verbs do not have their own
node: their meaning is captured by attributes of the
nodes for the respective content words. Moreover, the
cases of surface deletion are resolved by inserting new
nodes into the tree structure]

As an illustration, note the differences between the two
layers in Fig. [1| depicting annotation of the sentence
Dort bude v prosinci vydraZen pri beneficni akci. “The
cake will be auctioned at a charity event in December’ ﬁ
Fig. [T] shows that at the dependency syntax layer, the
auxiliary verb bude ‘will’ has its own node with label
AuxV, while at the syntactic-semantic layer, its func-
tion is captured within the node for the predicate. It
is similar for prepositions (v ‘in’, p#i ‘at’) that have
their nodes (with label AuxP) at the dependency syn-
tax layer, but not at the syntactic-semantic one. Oth-
erwise, there is an added node for the so called gen-
eral actor (with lemma #Gen) at the syntactic-semantic
layer, which is not expressed in the surface shape of
the sentence. The semantic labels such as ACT (Actor),
PAT (Patient), TWHEN (When) and RSTR (Restriction)
usually correspond to afuns Sb, Ob3j, Adv and Atr
respectively at the dependency syntax layer. However,
there are several exceptions such as in case of passive
constructions, etc.

Annotators see both trees side by side during the an-
notation, so they can check their annotation against
the other one Although the principles of the anno-
tation on both layers are different and the resulting tree
structure may also be very dissimilar, we assume that
the availability of (largely) semantic annotation during

3Detailed annotation rules can be found in the annotation
guidelines (Mikulova et al., 2006 Mikulova, 2014).

The TrEd concept of stylesheets allows to visually differ-
entiate nodes, edges by color, shape, etc. and also visualize
cross-layer relations. The trees in Fig. [T] are shown in the
stylesheet available to annotators during the annotation. Un-
der a lemma in the syntactic-semantic tree (on the right side),
the function words belonging to the given node are displayed
in orange.

"The annotators do not have to have a full knowledge of
the other annotation structure and guidelines; it is sufficient
they know the principles in order to be able to “read” the
annotation as shown in TrEd.

2912

the dependency syntax annotation speeds up the un-
derstanding of a sentence structure (especially in the
case of long sentences), helps in ambiguous and com-
plicated cases, both in solving the syntactic structure
and in determining afuns; and finally increases the con-
sistency of the annotated data.

5. Experiment

In this section, we describe the experiment, its design
(Sect. 5 1), results (Sect. 5 2) and evaluation (Sect. 5 3).
Input data, individual experimental annotations, and a
complete and detailed overview of the measured re-
sults are freely available (as a supplemental material to
this paper) via the LINDAT/CLARIAH-CZ repository
(Mikulovi et al., 2022)F|

5.1. Design

In line with the research questions that we want to ad-
dress and the annotators that we have available, we
choose the following experiment design.

In the experiment, we examine four annotation tasks:
annotation with no support (abbreviated no_supp), an-
notation with checking rules available (abbreviated
rules; cf. Sect. , annotation with syntactic-semantic
annotation on the same data available (abbreviated an-
not; cf. Sect. @, and annotation with checking rules
and syntactic-semantic annotation on the same data
available (abbreviated rul_annot). For each task, the
data was prepared in two modes: annotation on pre-
parsed data (abbreviated pre-parsed; cf. Sect. and
annotation “from scratch” (abbreviated from-scratch).
In the experiment, we thus examined eight different an-
notation set-ups (four tasks in two modes).

Task no_supp rules annot rul_annot
Data DI D2 | D3 D4 | D5 D6 | D7 D8
Pre- al a3 al a3 al a3 al a3
parsed a2 ad a2 a4 a2 a4 a2 ad
From- a3 al a3 al a3 al a3 al
scratch a4 a2 ad a2 a4 a2 ad a2

Table 1: Data distribution

We prepared eight datasets (D1 - DS) of 1,250 words,
two sets for each task, i.e., a total of 2,500 words per
task. We prepared each dataset in both modes (for
pre-parsed and from-scratch annotation). The datasets
were selected to be as similar as possible in terms of
the number of sentences (each dataset contains approx-
imately 60 sentences), number of nodes per sentence,
depth of tree, etc. Each dataset was a coherent, contin-
uous text. With this selection, we eliminated the data
effect on the resulting values.

Each task was annotated by four annotators (abbrevi-
ated al, a2, a3, a4) in stable (unchanged) pairs. The
annotation pairs were composed so that they were ex-
perientially balanced. Each pair thus experiences all
eight annotation set-ups and no annotator annotated
any data twice (cf. Tab.[I] of data distribution). With

$http://hdl.handle.net/11234/1-4647

Task/Mode \ Pre-parsed From-scratch
UAS

no_supp 96.5 £0.46 96.5 +£0.48

rules 96.8 £0.42 p=30.9% | 95.9 £0.50 p=79.2%

annot 97.5+0.48 p= 7.1% | 97.0 £0.48 p=24.5%

rul_annot 97.6 £0.37 p= 3.5% | 97.8 £0.32 p= 1.5%
LAS

no_supp 95.0 £0.55 94.5 +0.55

rules 95.3 £0.49 p=30.6% | 93.9 £0.59 p=74.9%

annot 96.5 £0.58 p= 3.3% | 95.9 £0.55 p= 4.7%

rul_annot 96.6 £0.45 p= 1.3% | 96.8 £0.38 p< 0.1%
FULL

no_supp 94.5 £0.56 94.3 £0.56

rules 95.1 £0.50 p=23.6% | 93.5 £0.60 p=80.1%

annot 96.1 £0.60 p= 3.5% | 95.2 £0.63 p=14.4%

rul_annot 96.4 £0.47 p= 0.8% | 96.6 £0.40 p< 0.1%

Table 2: Accuracy of annotation in various set-ups; the
standard deviations are estimated using bootstrap re-
sampling with 1M samples, and p stands for a p-value
that the given configuration is statistically significantly
better than the corresponding no_supp configuration,
estimated by a Monte Carlo permutation test with 1M
samples (Fay and Follmann, 2002).

this setting, we eliminated the learning effect and re-
duced the impact of the experience and “style” of the
annotators on the resulting (averaged) values.

For each dataset, a gold standard data annotation was
also created. As follows from the data distribution (cf.
Tab.[T)), each dataset was annotated four times (twice in
from-scratch mode and twice in pre-parsed mode). The
annotations were then diff-ed and disagreements were
resolved by the guideline setters.

5.2. Results

5.2.1.

We measured the accuracy of the annotation against the
gold data. We measured the unlabeled and labeled at-
tachment score for each dataset in each task for each
mode, separately for each annotator. For each anno-
tation set-up (for each task in the given mode) we ob-
tained four values (cf. al to a4 in each cell of Tab. [T,
from which we then calculated the average value.

Measuring accuracy

We distinguish two labeled attachment scores. The first
score, abbreviated LAS, measures accuracy on 25 ba-
sic labels (afuns), ignoring the three types of affixes.
Afuns including affixes (increasing the number of la-
bels to 200, cf. Sect. 3) are taken into account in the
LAS score variant abbreviated as FULL.

All three scores are calculated in the same way: the
number of agreements divided by the total number of
edges. The agreement means the same head for a node
for UAS, the same head and the same afun for LAS,
and the same head and the same afun including affixes
for FULL. The results are presented in Tab.

2913

http://hdl.handle.net/11234/1-4647

5.2.2. Inter-annotator agreement

Inter-annotator agreement among annotators is a stan-
dard way to determine consistency in the process of
annotation. We use a widely used measure, Cohen’s
kappa, x (Cohen, 1960) for measuring agreement be-
tween annotators. Although there has been criticism
of the inadequacy of this method for structure annota-
tion (Skjerholt, 2014), it provides a standardized way
of estimating the agreement rate between annotators.
Similarly to Sect. [5.2.1] we measured three different
kappas: unlabeled, labeled, and full. But the details
were quite different: for the traditional formula

,%:1—7(1_]90)

(1—pe)
the values of pg (actual agreement) and p. (probability
of a random agreement) were calculated as follows:

* For unlabeled kappa, po = ap/n where ap is the
number of nodes with the same head in both an-
notations, while n is the total number of nodes (as
nodes are not added or removed, the number is al-
ways the same for both the annotators); p. = 571
where 5 is the average sentence size.

* For labeled kappa, py = ar,/ap, i.e. we only con-
sider the edges that are common to both the anno-
tations and we check their labels (a, is the number
of agreements on afuns); p. = 1/25 where 25 is
the number of all possible labels (afuns).

* The full labeled kappa is similar: py = ar/ap
and p. = 1/200 (where ap is the number of
agreements on labels including affixes). Clearly,
the probability of a random agreement is very low
for such a high number of labels.

We measured the inter-annotator agreement for each
pair of annotators. For each task in the given mode,
we obtained two values (cf. pairs al-a2 and a3-a4 in
each cell of Tab. , from which we then calculated the
average values. The results are presented in Tab.

5.2.3. Annotation time
In Tab.] we report the total time taken in annotation
for each annotation set-up of each annotator.

5.3. Evaluation

In this section, we judge the results of the experiment
(presented above in Sect. [5.2)) with respect to the re-
search questions stated in the Sect. [I]

5.3.1. Does annotation quality remain acceptably
high if pre-annotation is used?

To answer the main research question, we compare the
values obtained for the pre-parsed and for from-scratch
data for accuracy (cf. Tab. [J), inter-annotator agree-
ment (cf. Tab.[3), and annotation time (cf. Tab. @).
From Tab.[2] it is clear that the annotation accuracy re-
mained, more or less, the same for both modes of anno-

tation, with a fluctuation (as measured by the standard

Task/Mode | Pre-parsed | From-scratch
Unlabeled
no_supp 0.96 0.95
rules 0.97 0.94
annot 0.97 0.96
rul_annot 0.97 0.97
Labeled x
no_supp 0.99 0.96
rules 0.98 0.97
annot 0.99 0.98
rul_annot 0.99 0.99
Full-labeled
no_supp 0.98 0.96
rules 0.98 0.97
annot 0.98 0.97
rul_annot 0.98 0.99

Table 3: Agreement rate in various set-ups

Task/Mode Pre-parsed | From-scratch
no_supp al 66 150
a2 125 231
a3 80 140
a4 200 280
rules al 90 156
a2 216 252
a3 60 150
a4 150 180
annot al 111 130
a2 212 205
a3 70 180
a4 210 230
rul_annot | al 80 150
a2 200 245
a3 50 160
a4 180 155

Table 4: Time in various set-ups (in mins)

deviation) of around 0.5 percentage points. Cf. also
Fig. 2]which depicts overall accuracy only on the anno-
tation of no-support task.

To find out how much manual correction of automatic
pre-annotation increases the quality, we also measured
the accuracy of the parser used (i.e., the accuracy of
the input data for tasks in "pre-parsed” mode) against
the gold data. An overview of the obtained values for
parser, annotation on pre-parsed data (no-support task)
and annotation on from-scratch data (no-support task)
is shown in Fig.

Lower parsing accuracy (compared to the values stated
in Sect. are due to the fact that we have changed the
domain and also some annotation rules (cancellation of
some afuns, addition of new ones, etc., even if only a
small minority, occurrence-wise) compared to the pre-
vious dataset on which the parser has been trained. The
graph shows that manual annotation (whether on pre-
parsed data or not) produces higher quality data than
the output from the parser.

2914

98.0 96.5 96.5

96.0 94.9 945 94.5 943
94.0
920 gg0
90.0
88.0 86.8 86.5
86.0
84.0
82.0
80.0
UAS LAS FULL

parser Hpre-parsed ®from-scratch

Figure 2: Accuracy of the annotation of no-support
task in comparison with accuracy of the parser

1.00 559

0.99 0.98

0.98

097 596 0.96 0.96
0.96 0.95

0.95

0.94

0.93

0.92

0.91

Labeled k

mpre-parsed = from-scratch

Unlabeled k Full-labeled k

Figure 3: Agreement rate of no-support annotation

Fig. 3] depicts total agreement rate for annotation on
the no-support task. From the Fig. 3] it is obvious that
the pre-annotation contributes to the consistency of the
annotation. This can be attributed to the fact that judg-
ments of annotators are influenced by the output of au-
tomatic pre-annotation. However, as stated above, pre-
annotation does not affect the quality of the result.

We can also observe that the variance in the annotation
speed between individual annotators is large, from 50
to 200 minutes per task of pre-parsed data and from
130 to 280 minutes per task of from-scratch data (cf.
Tab. @) On average, the annotation on from-scratch
data takes almost 1.7 times longer than annotation on
pre-parsed data.

It follows from these results that the answer to the
first research question is in the affirmative: the quality
of the annotation is not hurt by the pre-parsing mode
while the speed is up and inter-annotator agreement in-
creases.

5.3.2. What effect do the used tools have on
annotation quality and efficiency?

To answer the question how the quality and speed of
annotation changes when using other support tools, we
compare in detail the figures obtained for each task in
Tables[2} B} and 4]

As mentioned in the previous section, the annotation
accuracy remained, more or less, the same for both
modes. As can be seen from the figures in Tab. 2] we

can observe how much the addition of a support tool
(rules, annot, rul_annot) has increased the quality of
annotation. While the differences seem small, some of
them are significant when compared to the no_supp task
(see the p-values in Tab.). Detailed insight through
the significance tests shows that especially the combi-
nation of the “online” checking rules and the possibil-
ity to easily visually check the other type of annotation
(the syntactic-semantic one) and make changes under
its guidance (line rul_annot in Tab. [2)) did improve the
quality of the annotation significantly for all of UAS,
LAS, and FULL metrics, in some cases very convinc-
ingly (as demonstrated by a very small p-value). Even
the use of the other annotated data alone (line annot in
Tab.[2) improved some metrics in at least one mode sig-
nificantly, even if less convincingly: LAS for both the
pre-parsed and from-scratch mode, and FULL for the
pre-parsed mode; UAS for the pre-parsed mode lies on
the boundary of acceptable significance.

The apparently small influence when using the check-
ing rules as the only support (line rules in Tab. [2)) can
be attributed to the fact that there were relatively only
a few sets of checks available at the time of the exper-
iment. The more interesting it is then to observe that
the combination of the “online” checking rules and the
availability of the other annotation (rul_annot) has in-
creased the quality so convincingly.

Regarding the consistency of annotation, the figures in
Tab. [3] show the total agreement rate for each task on
pre-parsed and from scratch data. We can observe that
the use of annotation at the syntactic-semantic layer as
a support lead to higher consistency of the annotation,
especially on from-scratch input data. If pre-annotation
is used, the effect of other tools (including other anno-
tation support) on the consistency of annotation is un-
clear.

250
200 200 185 186 17g
151
150 118 129 128
100
50
0
pre-parsed from-scratch
no_supp “rules ®annot Mrul_annot

Figure 4: Time of annotation

It is hard to draw any conclusions regarding the cor-
relation of speed of the annotation and the use of the
support tools, due to the high variation of the speed of
annotation across the annotators. But perhaps this is in
fact good news: the annotation time does not increase
(too much) due to the use of checking rules, neither
when annotators have the other annotation available to
check against (cf. Tab.[d]and detailed graph in Fig.).

2915

5.3.3. Which set-up is most useful for manual
dependency syntax annotation?

The experiment confirms the usefulness of automatic
pre-annotation for efficiency of annotation and quality
of the result. It significantly increases the speed of an-
notation and does not reduce the quality of data.

The influence of the support tools is not as positive
as expected, especially when using the checking rules
alone. This contradicts our previous experience (e.g.
Mikulové and Stépanek (2010)). Perhaps it will help
to develop more checking rules throughout the annota-
tion project, once it starts in full. Regarding the use of
annotation at the syntactic-semantic layer, the agree-
ment rate figures measured on the from-scratch data
show that the other annotation support has the potential
to increase the consistency of the annotation, as well
as the quality if used in conjunction with the check-
ing rules. Therefore, and because these tools do not
increase annotation time too much (cf. Fig. E[), we will
use them in the annotation project proper (together with
pre-parsing).

8000
7000
6000
5000
4000 -
3000 =
2000 —
1000
0

Time in hours

0.5 1 15 2 25
Number of tokens (millions)

From-scratch no_supp
Pre-parsed no_supp

—o—Pre-parsed rul_anot

Figure 5: Extrapolated hours of annotation needed

A graph in Fig. [5| depicts the extrapolated time for an-
notation using just manual work (from scratch with no
annotation support) vs. the time needed when using
pre-parsed data (with and without the additional anno-
tation support) as presented in this paper. We leave the
calculation of financial savings to the readers, based on
their usual hourly rates. Please note that any hourly
savings of the primary annotation induce additional
savings of technical support, supervision etc., which is
however harder to quantify.

In our case, for the PDT-C corpora annotation with a to-
tal of about 2 million tokens, the primary saving will be
approx. 2,000 hours (5,400-3,400) per single annota-
tion pass (71.3 person-years, or at least about $21,000)
if we compare the annotation with no support and the
annotation with all available support; with the usual
double annotation, it is then also double the savings in
both time and cost.

6. Conclusions and Future Work

In the paper, we presented pre-annotation bias ex-
periment for a mid-level annotation complexity task—
dependency syntax annotation within the Prague De-
pendency Treebank - Consolidated 2.0 project which is
now ongoing. We judged efficiency and quality of an-
notation performed under various experimental set-ups:
annotation with no support (‘“from-scratch”) and anno-
tation supported by the use of automatic pre-annotation
(using a high-accuracy parser), availability of other an-
notation on the same data, and “online” checking rules
(implemented in such a way that the annotator can
check the manual annotation immediately).

The experiment confirmed that pre-annotation using
UDPipe 2 is an efficient tool for manual syntactic anno-
tation, which increases the speed and consistency of the
resulting annotation without reducing its quality. Thus
we can conclude it is highly recommended to use au-
tomatic pre-annotation in syntactic annotation projects,
even if the other tools are not available.

The influence of the other support tools (online an-
notation checking rules and the availability of a re-
lated, even if largely not directly comparable syntactic-
semantic annotation on the same data) on efficiency
and quality of annotation was not as positive as ex-
pected. However, when used together they significantly
increase the quality of the annotation, in both the pre-
parsed and from-scratch modes. As these tools do not
increase annotation time (much), we will use them in
the upcoming large-scale PDT-C dependency syntax
annotation process.

We plan to repeat the experiment at half-time of the
project to re-evaluate the influence of the chosen anno-
tation set-up on the quality and efficiency of the anno-
tation.

7. Acknowledgements

We thank the annotators for their commitment in the
implementation of the experiment.

The research and language resource work re-
ported in the paper has been supported by the
LINDAT/CLARIAH-CZ project funded by Ministry
of Education, Youth and Sports of the Czech Republic
(project LM2018101) and by the EXPRO project
LUSyD, funded by the Grant Agency of the Czech
Republic as project No. GX20-16819X.

8. Bibliographical References

Artstein, R. and Poesio, M. (2008). Inter-coder agree-
ment for computational linguistics. Computational
Linguistics, 34(4):555-596.

Braggaar, A. and van der Goot, R. (2021). Creat-
ing a Universal Dependencies Treebank of Spoken
Frisian-Dutch Code-switched Data.

Chiou, F.-D., Chiang, D., and Palmer, M. (2001).
Facilitating treebank annotation using a statistical
parser. In Proceedings of the First International

2916

Conference on Human Language Technology Re-
search.

Chou, W.-C., Tsai, R. T.-H., Su, Y.-S., Ku, W., Sung,
T.-Y., and Hsu, W.-L. (2006). A semi-automatic
method for annotating a biomedical Proposition
Bank. In Proceedings of the Workshop on Frontiers
in Linguistically Annotated Corpora 2006, pages 5—
12, Sydney, Australia, July. Association for Compu-
tational Linguistics.

Cohen, J. (1960). A coefficient of agreement for nomi-
nal scales. Educational and psychological measure-
ment, 20(1):37-46.

Fay, M. P. and Follmann, D. A. (2002). Design-
ing Monte Carlo Implementations of Permutation or
Bootstrap Hypothesis Tests. The American Statisti-
cian, 56(1):63-70.

Fort, K. and Sagot, B. (2010). Influence of pre-
annotation on POS-tagged corpus development. In
Proceedings of the Fourth Linguistic Annotation
Workshop, pages 56—63, Uppsala, Sweden, July. As-
sociation for Computational Linguistics.

Grouin, C., Lavergne, T., and Névéol, A. (2014). Op-
timizing annotation efforts to build reliable anno-
tated corpora for training statistical models. In Pro-
ceedings of LAW VIII-The 8th Linguistic Annotation
Workshop, pages 54-58.

Gupta, M., Yadav, V., Husain, S., and Sharma, D. M.
(2010). Partial parsing as a method to expedite de-
pendency annotation of a Hindi treebank. In Pro-
ceedings of the Seventh International Conference
on Language Resources and Evaluation (LREC’10),
Valletta, Malta, May. European Language Resources
Association (ELRA).

Hajic, J., Panevov4, J., Burdniovd, E., UreSov4, Z., and
Bémova, A. (1999). Annotation at analytical level.
Technical report, Institute of Formal and Applied
Linguistics, Charles University, Prague, Czech Re-
public.

Hajic, J., Bejcek, E., Hlavacova, J., Mikulova, M.,
Straka, M., St&panek, J., and Stépankov4, B. (2020).
Prague Dependency Treebank - Consolidated 1.0.
In Proceedings of the 12th Language Resources
and Evaluation Conference, pages 5208-5218, Mar-
seille, France, May. European Language Resources
Association.

Hajic, J. (1998). Building a syntactically annotated
corpus: The Prague Dependency Treebank. In Is-
sues of Valency and Meaning. Studies in Honour of
Jarmila Panevovd (ed. Eva Haji¢ovd). Karolinum,
Charles University Press, Prague, ISBN 80-7184-
601-5.

Marcus, M., Santorini, B., and Marcinkiewicz, M. A.
(1993). Building a large annotated corpus of En-
glish: The Penn Treebank.

Mikulovd, M. and Stdpanek, J. (2010). Ways of
evaluation of the annotators in building the Prague
Czech-English Dependency Treebank. In Proceed-
ings of the 7th International Conference on Lan-

guage Resources and Evaluation (LREC 2010),
pages 1836-1839, Valletta, Malta. European Lan-
guage Resources Association.

Mikulovd, M., Bémova, A., Haji¢, J., Hajicovd, E.,
Havelka, J., Kolafov4, V., Kucovd, L., Lopatkova,
M., Pajas, P, Panevovd, J., Razimova, M., Sgall,
P, étépének, J., UreSova, Z., Vesela, K., and
Zabokrtsky, Z. (2006). Annotation on the tec-
togrammatical level in the Prague Dependency Tree-
bank. Annotation manual. Technical Report 30, In-
stitute of Formal and Applied Linguistics, Charles
University, Prague, Czech Republic.

Mikulovd, M. (2014). Annotation on the tectogram-
matical level. Additions to annotation manual (with
respect to PDTSC and PCEDT). Technical Report
TR-2013-52, Institute of Formal and Applied Lin-
guistics, Charles University, Prague, Czech Repub-
lic.

Nguyen, K.-H. (2018). BKTreebank: Building a Viet-
namese Dependency Treebank. In Proceedings of
the Eleventh International Conference on Language
Resources and Evaluation (LREC 2018), Miyazaki,
Japan, May. European Language Resources Associ-
ation (ELRA).

Pajas, P. and St&panek, J. (2008). Recent advances in
a feature-rich framework for treebank annotation. In
Donia Scott et al., editors, The 22nd International
Conference on Computational Linguistics - Proceed-
ings of the Conference, volume 2, pages 673-680,
Manchester, UK. The Coling 2008 Organizing Com-
mittee.

Rehbein, I., Ruppenhofer, J., and Sporleder, C. (2009).
Assessing the benefits of partial automatic pre-
labeling for frame-semantic annotation. In Proceed-
ings of the Third Linguistic Annotation Workshop
(LAW III), pages 19-26, Suntec, Singapore, August.
Association for Computational Linguistics.

Rosset, S., Grouin, C., Lavergne, T., Ben Jannet, M.,
Leixa, J., Galibert, O., and Zweigenbaum, P. (2013).
Automatic named entity pre-annotation for out-of-
domain human annotation. In Proceedings of the 7th
Linguistic Annotation Workshop and Interoperabil-
ity with Discourse, pages 168—177, Sofia, Bulgaria,
August. Association for Computational Linguistics.

Sgall, P., Hajicova, E., and Panevova, J. (1986). The
Meaning of the Sentence and Its Semantic and Prag-
matic Aspects. Academia/Reidel Publishing Com-
pany, Prague/Dordrecht.

Skjerholt, A. (2014). A chance-corrected measure of
inter-annotator agreement for syntax. In Proceed-
ings of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 934-944, Baltimore, Maryland. Associ-
ation for Computational Linguistics.

gmilauer, V. (1947). Novoceska skladba (Syntax of
Modern Czech). Prague: Academia.

Straka, M., Néplava, J., Strakovd, J., and Samuel, D.
(2021). Robeczech: Czech RoBERTa, a monolin-

2917

gual contextualized language representation model.
In Kamil Ekstein, et al., editors, Text, Speech, and
Dialogue, pages 197-209, Cham. Springer Interna-
tional Publishing.

Voutilainen, A. and Purtonen, T. (2011). A double-
blind experiment on interannotator agreement: The
case of dependency syntax and Finnish. In Proceed-
ings of the 18th Nordic Conference of Computational
Linguistics (NODALIDA 2011), pages 319-322.

Yang, A. and Li, S. (2018). SciDTB: Discourse de-
pendency TreeBank for scientific abstracts. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 444-449, Melbourne, Australia, July.
Association for Computational Linguistics.

9. Language Resource References

Haji¢, Jan and Bejcek, Eduard and Bémova, Alevtina
and Buranov4, Eva and Fucikovd, Eva and Hajicova,
Eva and Havelka, Jifi and Hlavacova, Jaroslava
and Homola, Petr and Ircing, Pavel and Kérnik,
Jifi and Kettnerova, Véclava and Klyueva, Na-
talia and Kolafova, Veronika and Kucova, Lu-
cie and Lopatkovd, Markéta and Marecek, David
and Mikulovd, Marie and Mirovsky, Jifi and
Nedoluzhko, Anna and Novdk, Michal and Pajas,
Petr and Panevova, Jarmila and Peterek, Nino and
Polakova, Lucie and Popel, Martin and Popelka, Jan
and Romportl, Jan and Rysova, Magdaléna and Se-
mecky, Jifi and Sgall, Petr and Spoustové, Johanka
and Straka, Milan and Stranidk, Pavel and Synkova,
Pavlina and gevéfkové, Magda and gindlerové, Jana
and gtépének, Jan and gtépénkové, Barbora and
Toman, Josef and UreSova, Zdenka and Vidova
Hladka, Barbora and Zeman, Daniel and Zikanova,
Sarka and Zabokrtsk}’/, Zdenék. (2020). Prague De-
pendency Treebank - Consolidated 1.0 (PDT-C 1.0).
LINDAT/CLARIAH-CZ digital library at the Insti-
tute of Formal and Applied Linguistics (UFAL), Fac-
ulty of Mathematics and Physics, Charles Univer-
sity; http://hdl.handle.net/11234/1-3185.

Mitchell P. Marcus and Beatrice Santorini and Mary
Ann Marcinkiewicz and Ann Taylor. (1999). Penn
Treebank-3 (LDC99T42). Linguistic Data Consor-
tium, Philadelphia, PA, USA, ISLRN 141-282-691-
413-2.

Mikulova, Marie and Straka, Milan and Stépének,
Jan and §tépénkové, Barbora and Haji¢, Jan.
(2022). Quality and Efficiency of Manual An-
notation: Data from the Pre-annotation Bias
Experiment (part of the PDT-C 2.0 project).
LINDAT/CLARIAH-CZ digital library at the Insti-
tute of Formal and Applied Linguistics (UFAL), Fac-
ulty of Mathematics and Physics, Charles Univer-
sity; http://hdl.handle.net/11234/1-4647.

2918

	Introduction
	Related Work
	Annotation Task
	Annotation Tools Used
	Pre-annotation
	Annotation Checking Rules
	Availability of Other Annotation

	Experiment
	Design
	Results
	Measuring accuracy
	Inter-annotator agreement
	Annotation time

	Evaluation
	Does annotation quality remain acceptably high if pre-annotation is used?
	What effect do the used tools have on annotation quality and efficiency?
	Which set-up is most useful for manual dependency syntax annotation?

	Conclusions and Future Work
	Acknowledgements
	Bibliographical References
	Language Resource References

