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Abstract
Video-and-Language learning, such as video question answering or video captioning, is the next challenge in the deep learning
society, as it pursues the way how human intelligence perceives everyday life. These tasks require the ability of multi-modal
reasoning which is to handle both visual information and text information simultaneously across time. In this point of view,
a cross-modality attention module that fuses video representation and text representation takes a critical role in most recent
approaches. However, existing Video-and-Language models merely compute the attention weights without considering the
different characteristics of video modality and text modality. Such naive attention module hinders the current models to
fully enjoy the strength of cross-modality. In this paper, we propose a novel Modality Alignment method that benefits the
cross-modality attention module by guiding it to easily amalgamate multiple modalities. Specifically, we exploit Centered
Kernel Alignment (CKA) which was originally proposed to measure the similarity between two deep representations. Our
method directly optimizes CKA to make an alignment between video and text embedding representations, hence it aids the
cross-modality attention module to combine information over different modalities. Experiments on real-world Video QA tasks
demonstrate that our method outperforms conventional multi-modal methods significantly with +3.57% accuracy increment
compared to the baseline in a popular benchmark dataset. Additionally, in a synthetic data environment, we show that learning

the alignment with our method boosts the performance of the cross-modality attention.
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1. Introduction

For deep learning researchers, multi-modality recently
became an important keyword as multi-modal mod-
els have shown the ability to collate plentiful informa-
tion scattered over various modalities (Cadene et al.,
2019; L1 et al., 2020b; [Shen et al., 2018)). In particu-
lar, Video-and-Language learning which includes both
video modality and text modality is attracting a huge
attention (Lei et al., 2020a;; [Zellers et al., 2021} [Li et
al., 2020a; Miech et al., 2019; |Yu et al., 2019; |Yang
et al., 2021)). Specifically, Video-and-Language learn-
ing such as video captioning or video question answer-
ing require the ability of reasoning over both time and
multiple modality. For example, a video question an-
swering model should be able to find appropriate vi-
sual information in a video frame sequence with a given
question. That is to say, capturing the relationship be-
tween video information and text information is impor-
tant for a multi-modal model for Video-and-Language
learning.

Cross modality attention module which combines cor-
relation over different modalities becomes a critical
component for Video-and-Language learning (Ye et al.,
2019; [Lu et al., 2019; |Chen et al., 2020b).Generally,
the attention mechanism induces a model to learn the
most important representation among the whole se-
quence with a given query. For single modality mod-
els, the attention module finds crucial parts to concen-
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trate, greatly improves the performance of the model
(Vaswani et al., 2017). However, the cross-modal at-
tention mechanism in multi-modal models is less ef-
fective than in single modality models because of the
noticeable differences characteristics between multiple
modalities. Existing Video-and-Language models do
not take this into account and merely utilize the atten-
tion mechanism as the same way as in single modality
models, which hinders the models to fully enjoy the
strength of the attention mechanism.

In this paper, we propose a novel Modality Align-
ment method that optimizes the alignment between rep-
resentation structures of the video modality and the
text modality. Our method leverages Centered Kernel
Alignment (CKA) as an auxiliary objective to be max-
imized. As training the auxiliary loss via gradient de-
scent frameworks, the embedding representation struc-
tures of both modalities are also trained to be similar.
Therefore, our Modality Alignment method enhances
the cross modality attention module inside a multi-
modal model to be more aware of correlated informa-
tion, eventually improving the final performance.

CKA was originally designed to measure similarity be-
tween neural networks representations (Cristianini et
al., 2002). Recently, [Kornblith et al. (2019) discovered
the robustness of CKA, which comes from the invari-
ance to orthogonal transformations and isotropic scal-
ing. In this work, we reveal another desirable prop-
erty of CKA that can be directly optimized through
gradient descent frameworks. With the robustness and
trainability of CKA, we utilize CKA in order to align
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multi-modal representations. As far as we know, this is
the first attempt to exploit CKA as a training objective
in handling multi-modality. Also, our Modality Align-
ment method can be easily applied to various multi-
modal tasks.

We validate our proposed method through experiments
in three steps. Firstly, we show that aligning the em-
bedding representations through maximizng CKA can
effectively boost the performance on cosine similar-
ity learning, which is a basis of the attention mecha-
nism. Secondly, our experiments in Image Captioning
task demonstrate that our Modality Alignment method
helps especially the cross modality attention module
where the attention score is computed on cosine simi-
larity. Finally, in the real world Video QA task, we em-
pirically demonstrate that out method makes a multi-
modal model to effectively learn the cross-modal atten-
tion. For TVQA (Lei et al., 2018) and TVQA+ (Lei et
al., 2020a), which are challenging benchmarks in Video
QA, the models applied with our method outperforms
the baseline models.

Namely, our contributions are listed as followings:

* We show that Centered Kernel Alignment, a sim-
ilarity measurement between neural network rep-
resentations, can be exploited to align two embed-
ding representations from different modalities.

* We demonstrate that our Modality Alignment
method which optimizes the similarity between
embedding representations is helpful for the
cross-modal attention.

* We examine that our Modality Alignment method,
which can be easily applied to existing models,
improves the performance in various multi-modal
tasks through extensive experiments.

2. Related Works

2.1. Representation Similarity between
Modalities

Several works have attempted to analyze the similarity
between representation in neural networks to achieve
interpretability. The most fundamental measurements
that can be used with this neural network similarity are
correlation and Canonical Correlation Analysis (CCA)
(Hardoon et al., 2004).

An alignment method using the correlation of neuron
responses has been proposed to share core representa-
tions between different networks (Li et al., 2015)). Sim-
ilarly, Singular Vector Canonical Correlation Analysis
(SVCCA) (Raghu et al., 2017) has been introduced in
order to pick out perturbing directions from representa-
tions with applying CCA as a similarity measure. [Mor-
cos et al. (2018)) subsequently have proposed Projection
Weighted CCA (PWCCA) which is more reflective to
subspaces of representations via projection. More re-
cently, [Kornblith et al. (2019) have shown that Cen-
tered Kernel Alignment (CKA) is a appropriate mea-

sure for representation similarity because CKA is ro-
bust to the lack of data.

Also, there have been studies that use these similar-
ity measures between neural networks directly or in-
directly in deep representation learning. By applying
CCA, SVCCA, and CKA, Maheswaranathan et al.
(2019) have discovered that the geometry of Recur-
rent Neural Network (RNN) architecture varies by task
while the underlying scaffold is universal. On multilin-
gual machine translation task, Kudugunta et al. (2019)
have leveraged SVCCA across languages to show that
there are shared representations among language rep-
resentations. Bau et al. (2018)) have applied SVCCA to
identify meaningful directions in machine translation
and concluded that the top-few directions of SVCCA
similarity indicates a key representation.

Unlikely, we propose a method that directly optimizes
CKA between multi-modal representation structures to
be maximized. The robustness in CKA enables our
method in the way that CKA is reliable even in a mini-
batch where the number of data is small.

2.2. Video Question Answering

Video-and-Language learning requires fine-grained in-
teraction with information from multiple modalities. To
study the fusion of visual modality and text modality,
Image QA task which takes a single image input with
a question in natural language has attracted the atten-
tion of many researchers (L1 et al., 2020b; |[Zhang et al.,
2021} |Chen et al., 2020a)). However, unlike single im-
age processing, video information is made up of a large
number of image frames in a sequence, which is much
larger and includes additional temporal information.
To date, the de facto way to solve the Video QA task
is to fuse and learn both modality information using
cross-modal attention after processing the video input
and text input respectively. The video processing part
has been developed based on existing video analysis
schemes, such as recurrent networks of frame functions
(Kim et al., 2017) or 3D convolution operators for ac-
tion recognition (Tran et al., 2018). Video representa-
tion is then fused via a co-attention module with textual
input as query (Jang et al., 2017} |Ye et al., 2017), a hier-
archical attention (Liang et al., 2019;Zhao et al., 2018)),
or a memory networks module (Wang et al., 2019; [Kim
et al., 2019). These methods have applied their novel
methods on how to fuse two modality information well,
but they all merely combine multi-modality informa-
tion without considering the differences in modality
characteristics.

We observe that there is a significant difference in char-
acteristics between the two modalities which may ag-
gravate the cross modality attention. Thus, our method
increases the similarity between multi-modality repre-
sentation structures to enhance the fusion more effec-
tive. We validate our proposed method for synthetic
dataset first, and then apply it to a real-world VideoQA
dataset which has significant differences in characteris-
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tics between the two modalities.

3. Aligning Multi-modal Representations

With a new use of CKA as a learning objective, we pro-
pose a novel Modality Alignment method that directly
maximizes CKA to align representation structures be-
tween various modalities.

3.1. Centered Kernel Alignment Review

As a tool to measure similarity between two deep rep-
resentations, Centerend Kernel Alignment (CKA) has
been proposed (Cristianini et al., 2002; (Cortes et al.,
2012). Recently, [Kornblith et al. (2019) bring CKA
back to the surface, addressing that CKA can aid in
gaining a deep understanding of internal neural net-
work architectures.

CKA is obtained by normalizing Hilbert-Schmidt In-
dependence Criterion (HSIC) (Gretton et al., 2005).
For a pair of neural network representations X; =
(xi1,$i2...7$iN)T and Xj = (l'jl,ith...,ZL'jN)T, we
define two matrices K;i; = K(ik, 2y) and Kjp =
K(x i, x41) wWhere & is kernel function and NV is a num-
ber of sampled data from each representation. Then,
HSIC between two representations is computed as fol-
lows:

N -1

where C' is a centering matrix C' = I — %IIT a
is a vector of ones and IV is the number of sampled
data). For linear kernels (e.g. x(x,y) = zTy), HSIC
computes the squared Frobenius norm of the cross-
covariance:

1
lleov(XT, xT)|% = mtr(XiXiTXij).

@3]
Thus, HSIC can be interpreted as the similarity be-
tween the inter-example similarity structures. Normal-
izing HSIC results CKA as follows:

CKA(K;, K;) — HSIC(K;, K;) .
V/HSIC(K;, K;)HSIC(K}, K;)
3
The normalizing process makes the output value of
CKA between 0 and 1 where CKA(X,Y) = 0 implies
independence. Also, this process makes CKA invariant
to isotropic scaling.

3.2. Why CKA is proper to modality
alignment

CKA exhibits desirable properties for not only mea-
suring similarity between two deep representations but
also training the alignment of inter-example similarity
structures with gradient descent. We list three proper-
ties that enable our methodology for the modality align-
ment.

origin origin

@ b

A origin
origin

() (d)

Figure 1: Main concept of Modality Alignment. (a):
During training cross modal attention module with a
given mini-batch (inside the dotted circle), the model is
trained to increase the attention score based on cosine
similarity between the vector of “dog” and the corre-
lated video frame vector. (b): After a training step, the
model is updated to narrow the gap. However, because
the inter-example similarity structures are differently
formed, there is potential harm to examples outside of
the mini-batch; the cosine similarity between the “cat”
vector and the correlated video vector decreases. (c)
and (d): Our method keep the inter-example similarity
structures to be close to each other, significantly reduc-
ing such adverse effects.

* Invariance to orthogonal transformations: Ko-
rnblith et al. (2019) especially pointed out that
CKA is invariant to orthogonal transformations
of deep representation, ie. CKA(X,Y) =
CKA(XU,YV) for any orthonormal matrices U
and V. Because neural networks are randomly ini-
tialized and trained by gradient descent with ran-
dom mini-batches, there is a high probability that
neurons are permuted even in the same networks.
Therefore, invariance to orthogonal transforma-
tions, which includes permutations, is one of the
essential characteristics required for the similarity
indexes.

Although other similarities such as CCA
(Hardoon et al., 2004) or SVCCA (Raghu et
al., 2017) are invariant to affine transformations,
Kornblith et al. (2019) spotted the limitation
of invariance to affine transformations that it
requires more examples than the size of dimen-
sion to robustly measure the similarity between
representations. This limitation makes CCA and
SVCCA unsuitable for training objective where
the number of examples in a mini-batch is usually
smaller than the size of dimension. However,
unlike CCA or SVCCA, CKA shows robustness
even with a small number of data (e.g. in a
mini-batch).
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* Invariance to isotropic scaling: CKA is also in-
variant to isotropic scaling, i.e. CKA(X,Y) =
CKA(aX, B3Y) for any o, 3 € R™T. Invariance to
isotropic scaling implies that CKA value remains
the same even if each representation is scaled
respectively, which often happens in neural net-
works training. Kornblith et al. (2019) also men-
tioned that invariance to non-isotropic scaling is
not a desired property because a similarity index
that is invariant to both orthogonal transforma-
tions and non-isotropic scaling is invariant to any
invertible linear transformation, which lacks the
robustness.

e Trainabilty via gradient descent methods: As
CKA is calculated with fully differentiable op-
erations such as dot-product, CKA itself is also
differentiable with respect to the parameters of
neural networks. That said, CKA itself can be
used as a training objective for gradient de-
scent algorithms. [Yun et al. (2021) reported that
CKA between representations of different layers
in a model can be minimized or maximized via
stochastic gradient descent. We exploit the train-
ability of CKA in order to align each representa-
tion in different modalities.

Using above three properties of CKA, we set CKA be-
tween video representation and text representation as
an auxiliary training objective to be maximized. Note
that maximizing CKA does not assure two representa-
tions to be overlapped. Nevertheless, it urges the inter-
example structures of the two representations to be sim-
ilar. For example, maximizing CKA between video rep-
resentation and text representation makes the cosine
similarity between a word “dog” and a word “cat” close
to the similarity between a video frame with a dog and
a video frame with a cat.

Meanwhile, the cross modality attention module com-
putes its attention score based on cosine similarity be-
tween two vectors. In other words, the cosine similarity
between a frame-level video embedding vector and a
word-level text embedding vector becomes higher as
the cross modality attention module is optimized, if
there is semantic correlation between the video frame
and the word. Maximizing CKA can enhance the train-
ing of the attention module since the inter-example
structures of two different modalities are kept aligned.
Figure[I]further depicts the main concept of our Modal-
ity Alignment method. The objective of a cross atten-
tion module is to narrow the gap between two vec-
tors with semantic correlation. Suppose fitting a cross
attention module with a mini-batch which includes a
word “dog” and a video frame with the dog ((a) of fig-
ure [I). After one training step, the parameters of net-
works are updated to narrow the angle between “dog”
and the frame with the dog ((b) of figure I). However,
the cosine similarity between a word “cat” and a video
frame with the cat decreases after the training step due

Cross Modality Attention Module

CKA LOSS

Visual Modality
Representation

Text Modality
Representation

Visual Text
Embedding Embedding
Module Module

<what><room>...<found> <him><?>

Visual inputs

Text inputs

Figure 2: Our proposed method. The input of each
modality is embedded into the representation vector
through each encoder module. CKA between represen-
tation vectors with different modalities is directly max-
imized to align the inter-example structure of each rep-
resentation.

to the difference of inter-example similarity structures.
On the other side, with our Modality Alignment, such
adverse effects are significantly reduced because the
inter-example structures are also trained to be similar
((c) and (d) of figure[I). Hence, maximizing CKA be-
tween multi-modal representations can boost the train-
ing of cross modality attention, resulting fast conver-
gence and higher performance.

3.3. Our Proposed Method

Our proposed Modality Alignment method computes
CKA between the output representation of the video
embedding module and that of the text embedding
module in each mini-batch and directly maximizes it
as an auxiliary objective.

In Video-and-Language learning, a model usually con-
sists of a video embedding module, a text embed-
ding module, and a video-text fusion module. Let
V = [v1,...,vr] be a sequence of video frames v; and
T = [t1,...,tam] be a sequence of word tokens t;. A
video embedding module f,;; encodes the sequence
of video frames into the video embedding representa-
tion: fuiq(V) = X, where X € RL*4 is a sequence of
embedded video representation vectors with dimension
size of d. Similarly, a text embedding module f;.,; en-
codes the sequence of tokens into the text embedding
representation: fye.:(7) = Y, where Y € RM>4 g
a sequence of text representation vectors. We randomly
sample N-many representation vectors from both video
representation tensor X and text representation tensor
Y in order to match the number of examples. Finally,
the modality alignment s between two representations
is measured with equation (3)).

2762



sampled synthetic data

Figure 3: t-SNE visualization of our synthetic data dis-
tribution. We sampled two groups from different distri-
butions and set one-to-one alignments to emulate hard
attention.

We directly maximize the CKA as an auxiliary objec-
tive of the original loss to align two representations.
Specifically, with a scaling hyperparameter A.;,, we
construct the final loss objective for minimizing by sub-
tracting CKA loss term L.k, to the original loss term
Lorig as follows:

Efinal = Eorig — Aeka * Leka- €]

Thus, our method can be applied to any model that han-
dles multi-modality with cross attention module based
on cosine similarity. We search the appropriate value of
Ackq by grid-searching in each experiment.

One can interpret our Modality Alignment method as
a new variant of contrastive learning since our method
takes account of relationships between data examples
within a mini-batch. Our method has a novel strength
in the respect that it can optimize the whole represen-
tation structures at every training step because of the
robustness of CKA, while most of contrastive learning
methods maximize the gap between irrelevant exam-
ples only in a mini-batch (Pan et al., 2021}, [Schroff et
al., 2015).

4. Experiments

We conduct three experiments to thoroughly verify our
Modality Alignment method. Firstly, we show that the
auxiliary CKA loss term boosts cosine similarity learn-
ing with a synthetic dataset. Secondly, we empirically
examine that our method improves the cross modal at-
tention on image captioning task with qualitative ex-
amples. Lastly, we manage the real-world experiment
on Video QA task in which our method outperforms
conventional baselines. All three experiments demon-
strate that our Modality Alignment method enhances
the cross modal attention module, consequently result-
ing higher performance of the multi-modal model. All
experimental codes will be publicly available.

4.1. Cosine Similarity Learning with CKA
We empirically verify that optimizing CKA is help-
ful for cosine similarity learning. The attention mecha-

nism learns cosine similarity between two correspond-
ing source representation and target representation to
be increased during training. However, because there
are no ground truth attention weights in most real-
world datasets, directly evaluating the performance of
cross attention module is difficult. In order to verify
that our method improves the performance of cross at-
tention module, we conduct an experiment with a syn-
thetic dataset in which a model is trained to maximize
cosine similarity with one-to-one correspondence.

4.1.1. Experiment settings

We make a synthetic dataset which simulates two dif-
ferent modalities with completely different characteris-
tics as following three steps.

* We sample 10,000 class ‘A’ examples from a mul-
tivariate normal distribution with dimension size
of 64.

* We also sample 10,000 class ‘B’ examples from
a intricately designed mixture of multivariate nor-
mal distribution with the same dimension size.

* To simulate ground truth hard attention, we ran-
domly make one-to-one correspondences between
each example of ‘A’ and ‘B’.

* The goal is to train two encoders for both ‘A’ and
‘B’ in the way that maximizes cosine similarity
between two corresponding embedded vectors.

The main criterion for evaluation is the averaged co-
sine similarity between all corresponding examples of
class ‘A’ and class ‘B’. Figure [3] describes the t-SNE
visualization of our synthetic dataset.

Then, we build two neural networks models to sub-
stitute for embedding modules. Each neural networks
takes samples of each class as input respectively and
encodes them into output vectors. We regard the out-
put of each networks as two different representations
of different modalities. Both encoders have the same
architecture but do not share the weights. Each encoder
has three fully-connected layers with the hidden size
of 32, each layer followed by the ReLU activation and
Batch Normalization. The mini-batch size is set to 512
and A\cka value is 0.1. We train the model with ADAM
optimizer with initial learning late of 0.001, 8; = 0.9,
and B = 0.999.

We test three methods for comparison; (a) directly
maximize only the averaged cosine similarity, (b) di-
rectly maximize CKA only, and (c) our Modality
Alignment method that optimize both the criterion and
CKA loss Ljq. In the experiment with our method,
we observe that pre-training CKA alone for few steps
before optimizing the final loss Lnq; as a warm-up
increases the performance. All experiments with our
method in this paper are also performed this warm-up.
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Figure 4: Cosine similarity learning results on the synthetic dataset. (Left) t-SNE visualizations of both encoded
representations after 1, 5, and 10 epochs. (Right top) Training curve of the averaged cosine similarity over training
steps. (Right bottom) Training curve of CKA between two representations over training steps.

Baseline

Our method

Figure 5: Attention map visualizations from Image captioning models. Our method produces correct captions
with much richer expressions. Aligned modality using CKA enhances the cross-modal attention to capture wider
meaningful area (e.g. dog), resulting in performance improvements.

4.1.2. Experiments Results

We summarize the results in Figure ] The t-SNE vi-
sualizations of encoded representations over epochs re-
veals an interesting effect of our method (Left of Fig-
ure ). Comparing the first column (trained with only
cosine similarity loss) and the second column (trained
with only CKA loss), only maximizing cosine similar-
ity like existing multi-modal models does not make two
representations similar as shown as CKA value drops
from 0.498 to 0.305. In contrast, training with only
CKA loss makes two encoders learn the inter-example
structures extremely well. Also, it even increases the
average cosine similarity slightly implying that there
is indeed a correlation between inter-example structure
similarity and cosine similarity. Finally, our method
which optimizes both CKA loss and cosine similarity
outperforms the conventional methods (CosSim_only),
showing that our method can boost the training of cross
attention module (Right top of Figure ).

4.2. Multi-modal Scenario: Image
Captioning

Secondly, we verify that CKA is effective in cross-
modal attention by helping cosine similarity learning in
multi-modal settings. We construct an image caption-
ing experiment to verify the improvement of the cross
model attention through an attention map. The baseline
model used is the Show, attend and tell model
with the Flickr8k dataset. We conduct a qual-
itative analysis through the attention map to analyze
that our proposed method improves the cross-modal at-
tention. As shown in Figure[5] a baseline model that has
not learned with CKA generates false phrases like run-
ning through the water. Otherwise, in the case of our
model, it creates a caption that is correct and rich in ex-
pressiveness. The captioning performance measured in
BLEU-4 with the test data also increases from 0.1560
to 0.1617. These results show that our method directly
helps cross-modal attention, leading to improve the
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Model CKA(Videmb»QAemb) CKA(SubembaQAemb) CKA(Cptemb,QAemb)
Multi-modality Uni-modality(Text) Uni-modality(Text)

TVQA e 0.3907 0.8798 -

TVQA, . + CKA 0.7815 0.8528 -

STAGE 0.2694 0.8999 -

STAGE + Caption 0.3998 0.8625 0.8741

STAGE + Caption + CKA 0.6708 0.8878 0.9215

Table 1: CKA between various modalities. In the case of uni-modality, the CKA value is initailly high, which
means that the similarity between the representations is high, but the case of multi-modality is not. However, after
CKA learning through our method, multi-modality also shows a high CKA value, increasing the similarity between

the representations.

Model QA Accuracy (%)
TVQA  pe 67.70
TVQA4p + CKA 69.38
STAGE (video only) 52.75
STAGE (sub only) 67.99
STAGE 70.31
STAGE + CKA 72.89
STAGE + CKA + Caption 73.88

Table 2: VideoQA results evaluated with QA accuracy.

multi-modal model’s performance. We put additional
details and results of the image captioning experiment
in Appendix.

4.3. Real-World Scenario: Video QA

Lastly, we verify our Modality Alignment method in
Video Question Answering tasks as real-world scenar-
ios. Video QA is one of the most challenging among
multi-modal tasks because there exhibits a great deal
of differences between the video and text modalities,
causing severe text bias problem. With two standard
benchmarks, following experiments demonstrate that
our Modality Alignment method also improves conven-
tional models even in video QA tasks as our method
closes the gap between two modalities.

4.3.1. Datasets and baseline models

We evaluate our approach on two benchmarks: TVQA
(Lei et al., 2018) and TVQA+ (Lei et al., 2020al).
TVQA is a large-scale video question answering
dataset based on six popular TV shows: The Big
Bang Theory, How I Met Your Mother, Friends, Grey’s
Anatomy, House, Castle. As a baseline model, we uti-
lize TVQA,s. which is proposed together with the
TVQA benchmark. We apply CKA loss between the
video embedding representation and the QA embed-
ding representation of TVQA 4. to apply our Modality
Alignment.

TVQA+ is a subset of TVQA that only uses The Big
Bang Theory clips yet contains additional bounding
box annotation for visual region feature. The training,
validation, and test-public set consist of 23,545, 3,017,
and 2,821 questions, respectively. We utilize STAGE

as a baseline, a model proposed in TVQA+ benchmark
paper. In STAGE model, the input images are encoded
with pretrained Faster R-CNN as a visual embedding
module and the input texts are encoded with pretrained
BERT encoder as a text embedding module. We com-
pute and maximize CKA between video representaion
and text representation before the cross-modal atten-
tion layer. We apply grid-searching method to find the
value of Aok 4. Additional details of the dataset and
the models are provided in Appendix.

4.3.2. Experiments Results

We report the experimental results evaluated with QA
accuracy in Table [2] and corresponding CKA values in
Table[Il

In experiments on TVQA dataset, QA accuracy of
the baseline (TVQAp.) is 67.70%, while our Modal-
ity Alignment method increases the accuracy up to
69.38%. CKA value between video embedding rep-
resentation and QA representation is also increased
significantly from 0.3907 to 0.7815. We suppose that
the trained alignment between two different modalities
leads to the final performance improvement.

Similarly in experiments on TVQA+ dataset, compar-
ing STAGE and STAGE+CKA in Table [2] shows a sig-
nificant accuracy improvement from 70.31 to 72.89
with our Modality Alignment method. CKA value also
shows a large increase from 0.2694 to 0.6708 in Table
[T] indicating the inter-example similarity structures of
image representation and text representation are well
trained to be similar. Through these results, we con-
clude that training the representational alignment be-
tween multiple modalities improves a Video QA model
by enhancing the cross attention module.

In addition to our Modality Alignment method, we ex-
ploit the generated caption in order to reduce the text
bias by a video captioning model (Lei et al., 2020b).
In Table [2, STAGE (video only) indicates the result
of the model using only video features without subti-
tle information, and STAGE (sub) is the result of vice
versa. The significant accuracy drop in STAGE (video
only) implies that STAGE model is biased toward text
modality as known as the text bias problem (Cadene et
al., 2019). We generate additional captions with Multi
Modal Transformer (MMT) model (Le1 et al., 2020b).
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The generated captions are passed to the model as ad-
ditional text inputs. With our aligning method plus the
generated captions, we achieve the best result as shown
at the bottom of Table[2]showing an additional 0.99 ac-
curacy improvement finally resulting 73.88 accuracy.
We also examine the impact of our Modality Align-
ment method on embedding representation similarity
of multiple modalities. As shown in Table [T} both
CKA(CptembaQAemb) and CKA(SUbembaQAemb) are
high because the subtitles, the generated captions and
the QA pairs have the same text modality. How-
ever, CKA(Vide,,p,QAc,np) values are low without our
method, indicating the different characteristics between
two modalities. Applying our Modality Alignment,
CKA(Videmp,QAcmp) values become high as CKA of
a single modality. Thus, our aligning method closes the
gap between the video modality and the text modality.
In a nutshell, all three experiments verify that learn-
ing the representational alignment with CKA fits two
different representations to have similar structures,
enhances the cross attention module, and eventually
leads to the performance improvement in Video-and-
Language learning. In addition, our method can be eas-
ily applied to not only Video QA models but also any
models for multi-modal tasks.

5. Conclusion

In multi-modal tasks such as Video QA, there is a
difference in characteristics between the two modali-
ties, which reduces the effectiveness of cross-modal at-
tention. To address this, we propose Modality Align-
ment method that optimizes the similarity between two
embedding representation structures of two different
modalities. Specifically, we maximize the similarity be-
tween representations by directly exploiting CKA as a
training objective. In our experiments, we verify that
our Modality Alignment method boosts cosine similar-
ity learning in a synthetic environment, which is the
basis of the attention method, and further improves
the performance of multi-modal models for real word
tasks. In the future, we will test the proposed method
on various multi-modal learning tasks including Video-
and-Language learning in order to confirm that it im-
proves state-of-the-art modality alignment strategies.
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8. Appendix

8.1. Additional details of image captioning
experiments

For the image captioning experiment at Section 4.2, we
use Show, attend and tell model (Xu et al., 2015) as
baseline model with the Flickr8k dataset. The Show,
attend and tell model is a representative example of
utilizing cross modal attention as an encoder-decoder
structure. Encoder uses the pre-trained RESNET-101
model, encodes to 14x14 pixels with 2048 dimensions,
and then enters it as decoder input with the golden cap-
tion labels. Decoder uses the LSTM model with teacher
forcing. In this case, we apply CKA loss between the
text embedding processed by the decoder and the im-
age embedding, which is an output of the encoder.

In the case of an experiment on verifying the boosting
effect of cross modal attention through attention map,
both the baseline model and our model use the model in
epoch 5, and the measured BLUE-4 score is the result
of the experiment in the test set. The model compared
to the baseline model through the attention map used in
the main text uses a Acxa of 0.05.
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0.13 4

—— without_cka
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— cka_le 1

0.12 4

0 2 4 6 8 10 12 14 16 18 20

Figure 6: BLEU-4 on validation set for the image cap-
tioning experiment.

8.2. Image Captioning performance on
validation set

We verify the boosting effects of cross modal attention
through attention map in the main text of our paper.
Moreover, as similar to the result of experiment 4.1,
the model using our method in the validation set learns
faster and performs better. The validation performance
can be seen in figure[6] The figure [6] shows the BLEU-
4 score according to the epoch for the validation set.
We set the A\cka as 0.05 and 0.1, and our models show
faster and better learning performance in the validation
set than baseline.

8.3. Additional details of Video QA
experiments

For TVQA 44, the pretrained Faster R-CNN and LSTM
are used as visual embedding modules, and word em-
bedding with LSTM are used as text embedding mod-
ules. And then CKA loss is configured before con-
text matching information where cross modal attention
takes place as in figure [/} The details of implementa-
tions are the same as the baseline model, Acxa value is
0.2, and the batch size is 32.

In the case of STAGE, conv encoder with the pretrained
Faster R-CNN is used as visual embedding modules,
and conv encoder with the BERT embedding is used as
text embedding modules. Thereafter, CKA loss is con-
figured before the two presentations cross-modal atten-
tion is performed. The details of implementations are
the same as the baseline model, Acka value is 0.1, and
the batch size is 4. We used a dense video captioning
model MMT (Lei et al., 2020b)) to solve text bias of the
baseline model, to create captions from video informa-
tion and use them as additional information. It can be
seen that capture information is added as input stream
in the right part of the figure 8]

In both cases, linear kernel is used for computing CKA,
based on the finding of a study by |[Kornblith et al.
(2019) that there is no significant difference from other
kernels such as RBF kernel.
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to create captions from video information and use them as additional information.
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