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Abstract
Speech is considered as a multi-modal process where hearing and vision are two fundamentals pillars. In fact, several studies
have demonstrated that the robustness of Automatic Speech Recognition systems can be improved when audio and visual cues
are combined to represent the nature of speech. In addition, Visual Speech Recognition, an open research problem whose
purpose is to interpret speech by reading the lips of the speaker, has been a focus of interest in the last decades. Nevertheless,
in order to estimate these systems in the currently Deep Learning era, large-scale databases are required. On the other hand,
while most of these databases are dedicated to English, other languages lack sufficient resources. Thus, this paper presents
a semi-automatically annotated audiovisual database to deal with unconstrained natural Spanish, providing 13 hours of data
extracted from Spanish television. Furthermore, baseline results for both speaker-dependent and speaker-independent scenarios
are reported using Hidden Markov Models, a traditional paradigm that has been widely used in the field of Speech Technologies.
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1. Introduction

Despite the fact that speech perception is commonly
considered as a purely auditory process, the truth is
that it is a process involving multiple senses, as well
as high-level knowledge related with grammar and se-
mantics (Dupont and Luettin, 2000). In fact, the study
carried out by McGurk and MacDonald (1976) demon-
strated the importance of visual information and its re-
lationship with the sounds produced. Nevertheless, for
deaf or hearing-impaired people, who are totally or par-
tially dependent on their sense of sight, speech under-
standing poses a great challenge since, as Duchnowski
et al. (2000) support, only 30% of speech informa-
tion is visible. For this reason, different areas of re-
search have focused their efforts on speech recogni-
tion when the auditory sense is not functional, such
as lipreading (Kaplan et al., 1987; Rodrı́guez Ortiz,
2008), cued speech (Cornett, 1967), or silent speech
interfaces (Denby et al., 2010).
Regarding the field of Speech Technologies in its ori-
gins, Automatic Speech Recognition (ASR) systems
were focused only on processing the acoustic signal.
Nowadays, this type of systems reaches high-quality
performances (Chan et al., 2016). However, these ap-
proaches suffer a deterioration in quality when the au-
dio signal is damaged or corrupted (Juang, 1991). As
a consequence, in order to deal with this issue, the
research was impulsed towards Audio-Visual Speech
Recognition (AVSR) approaches (Potamianos et al.,
2003; Dupont and Luettin, 2000). In this way, as the
above mentioned studies demonstrate, it was shown
that the combination of acoustic and visual cues could
represent the nature of speech more robustly. On the
other hand, as Fernandez-Lopez and Sukno (2018)
present, in the last decades there has been an increas-
ing interest in the Visual Speech Recognition (VSR)

task, an open research problem where the automatic
system aims to interpret speech by reading the lips of
the speaker. In fact, the current state-of-the-art in this
challenging task has been achieved thanks to the incor-
poration of acoustic cues during the training phase (Ma
et al., 2022; Afouras et al., 2018).
Notwithstanding, it is well-known that data is a funda-
mental pillar for this area of research. Thus, two rel-
evant aspects must be taken in consideration. First, in
the currently Deep Learning (DL) era, large-scale au-
diovisual databases are required in order to estimate the
immense amount of parameters that form this type of
systems. On the other hand, there is a language unbal-
anced proportion, since while most of these databases
are dedicated to English, other languages lack of suf-
ficient resources (Fernandez-Lopez and Sukno, 2018;
Zadeh et al., 2020).
Contributions: due to the above presented reasons,
this paper presents an audiovisual database to deal with
unconstrained natural Spanish, following the so-called
in the wild philosophy. More precisely, around 13
hours of data extracted from Spanish broadcast televi-
sion have been semi-automatically collected. In this
way, we intended to ensure the quality of the com-
piled data. On the other hand, baseline results for both
speaker-dependent and speaker-independent scenarios
are reported using Hidden Markov Models (HMMs), a
traditional paradigm that has been widely used in the
field of Speech Technologies (Gales and Young, 2008).
Furthermore, different input modalities, i.e., acoustic,
visual or audiovisual features, have been studied. In
fact, an audio-only approach was considered as the
lower bound for our proposed task.

2. Related Work
As Fernandez-Lopez and Sukno (2018) suggest, ad-
vances achieved in the field of audiovisual Speech
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Audio Resolution 16 kHz mono-channel 16 bit-depth WAV format
Video Resolution 25 frames/second RGB images PNG format

Duration ∼13 hours 10,352 overlapped samples 1,168,087 frames
Speakers Total: 323 Males: 163 Females: 160

ROIs Average Size FitMouth: 27×16 pixels WideMouth: 45×30 pixels FaceROI: 55×58 pixels
Vocabulary 9308 unique words Running Words: 140,123 words
Phonemes 24 unique phonemes Running Phonemes: 654,368 phonemes
Characters 28 unique characters Running Characters: 801,830 characters

Speech Rate (words/second) Min: 0.58 Median: 2.94 Max: 9.73
Words per Utterance Min: 1 Median: 12 Max: 62

Phonemes per Utterance Min: 4 Median: 55 Max: 270
Characters per Utterance Min: 4 Median: 68 Max: 343

Seconds per Utterance Min: 0.97 Median: 4.00 Max: 15.97

Table 1: Overall details regarding the compiled LIP-RTVE Audiovisual Database.

Technologies have been conditioned, among other rea-
sons, by the available audiovisual databases at the time.
In its origins, these databases began by collecting data
in order to deal with simple tasks like alphabet or digit
recognition, such as AVLetters (Matthews et al., 2002)
and CUAVE (Patterson et al., 2002) corpora, respec-
tively. Nonetheless, in the last decade numerous large-
scale publicly available audiovisual databases which
address natural speech recognition have been compiled
(Fernandez-Lopez and Sukno, 2018). Thus, due to the
nature of our contribution, this section is focused on
this type of databases, with special emphasis on those
that follow the so-called in the wild philosophy.

With respect to databases that have been recorded in
a controlled setting, the 4-hours RM-3000 (Howell et
al., 2016) database is focused on natural speech, but
the main inconvenient is that this corpus only has one
speaker. Another database we have to mention, de-
spite having also been recorded in controlled condi-
tions, is the TCD-TIMIT (Harte and Gillen, 2015) cor-
pus, which offers around 7 hours of data collected from
62 different speakers. On the other hand, in relation
with realistic scenarios, we must mention the LRS2-
BBC (Chung et al., 2017; Afouras et al., 2018), MV-
LRS (Chung and Zisserman, 2017), and LRS3-TED
(Afouras et al., 2018) corpora, all of them automati-
cally collected from mass media. In this way, each one
of these databases offers hundreds of recorded hours,
providing an adequate support for training architectures
based on DL techniques. However, a noteworthy fact is
that all these resources are dedicated to English.

Regarding Spanish, our language of interest, there has
been an increase in available resources in the last years.
Nevertheless, it is not comparable with the vast amount
of data mentioned above. First, we must mention the
VLRF (Fernandez-Lopez et al., 2017) corpus, where
25 speakers provide around 3 hours of natural sen-
tences but recorded in controlled conditions. Further-
more, speakers were asked to strive to vocalize in an
appropriate and expressive way. On the other hand,

the recent multilingual CMU-MOSEAS (Zadeh et al.,
2020) database covers 4 low-resources languages, in-
cluding Spanish. Concretely, although a large amount
of data was compiled, only about 18 hours of samples
were annotated for each one of these languages. Ad-
ditionally, this is an interesting corpus, as it provides
a multi-modal point of view, supplying information re-
lated with the emotions and subjectivity expressed by
the speaker. Finally, Córdova-Esparza et al. (2019) de-
fined, inspired by the large-scale English-based corpora
previously mentioned, a process to automatically col-
lect audiovisual data from Youtube videos. In this way,
a database with around 100,000 annotated samples and
the employed automatic collector software were made
publicly available.

3. LIP-RTVE Database
The compiled audiovisual database is composed of
around 13 hours of semi-automatically collected and
annotated data, whose main overall details and statis-
tics are depicted in Table 1.
Nonetheless, as it is reflected along this section, it is
necessary to mention that the LIP-RTVE database was
conceived at the first instance as a corpus focused on
the Automatic Lipreading or VSR task. Thus, our pur-
pose was to increase the available language resources to
support the research regarding VSR for unconstrained
and natural Spanish in the wild. However, in our ex-
periments (see Section 5), different input modalities
were studied, among which the audio-only approach
was considered as the lower bound for our proposed
task.

3.1. Source Data
In order to provide an appropriate support to estimate
robust automatic systems against realistic scenarios, we
decided to extract our corpus from TV broadcast pro-
grammes. Thus, we compiled it from a subset of the
RTVE database (Lleida et al., 2018) which has been
employed in the Albayzı́n evaluations (Lleida et al.,
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2019). Concretely, despite the fact that this database
is made up of different programmes broadcast by Ra-
dio Televisión Española, we compiled our corpus only
from the news programme 20H.
Thereby, the corpus belongs to the so-called in the wild
philosophy, offering a large number of speakers in a
wide range of scenarios, either inside a record studio
or in outdoor locations, where the speaker does not al-
ways maintain a frontal plane but can sometimes adopt
tilted postures. Furthermore, it includes variations on
intra-personal aspects, light conditions, or in distance
from the speaker to the camera. It is remarkable that
not all the compiled speakers are well-trained televi-
sion professionals, but a considerable number of them
are interviewees who speak naturally, making mistakes
or hesitating. In fact, these and other types of sponta-
neous speech phenomena, as it is described in Section
3.6, were identified throughout the entire database.
On the other hand, regarding the details of the record-
ing setting, this subset contains MP4-format files with a
48 kHz two-channel stereo audio resolution and videos
recorded with a resolution of 480×270 pixels at 25 fps.
One aspect that must be noted is that the RTVE
database is protected by a Non-Disclouse Agreement
(NDA)1, which implies the signing of this license to
be able to access our source data. In any case, this li-
cense allows to freely use the audiovisual material for
research purposes.

3.2. Methodology
The MP4-format files provided by the source data
had to be pre-processed since, on numerous occasions,
voice-over was used or more than one speaker appeared
on the scene, aspects that were not suitable to deal with
the VSR task. Therefore, we defined a methodology to
obtain samples that were appropriate for both ASR and
VSR at the same time.
For this reason, in order to ease the collecting process,
our first step was to implement an automatic software
to obtain extracts from the MP4 files where at least one
face appeared on the scene. This stage was made pos-
sible thanks to the use of the face detection tools de-
scribed in Section 3.3. Then, once these extracts were
obtained, we selected those where a unique speaker
was talking for a maximum of 15 seconds. Neverthe-
less, those scenes where other people appeared in the
background did not pose a problem and were accepted
as new samples of the database, since the Region of
Interest (ROI) extraction process was implemented to
capture the face that occupies the largest area in the
scene. This process was manually supervised, since in
certain situations the largest face did not always corre-
spond to the person speaking.
Subsequently, one aspect which must be mentioned is
that we split each long sample into smaller ones, as
long as the speaker made pauses in his or her speech

1http://catedrartve.unizar.es/
rtvedatabase.html

that allowed us to make an adequate division of the
message. In this way, at expense of building a corpus
with overlap, we were able to increase the amount of
available data.
Finally, each sample of the database was manually
annotated, obtaining its corresponding transcription.
The pre-processing details regarding these transcrip-
tions are described in Section 3.5.

3.3. Region of Interest Extraction
When facing VSR it is necessary to apply Computer
Vision techniques in order to extract our ROIs. In this
case, we are talking about the face of the speaker, a
region where it is contained the information related
with face expressions that would allow us to address
the lipreading task. Thus, by using open-source re-
sources2,3 (Deng et al., 2020; Bulat and Tzimiropou-
los, 2017), an automatic software to identify 68 facial
landmarks (Sagonas et al., 2016) was implemented and
released together with the database.
Once these landmarks were found, by selecting some
of them, we were able to define the three types of ROIs
depicted in Figure 1. Henceforth, these ROIs, from the
smallest to the largest size, are referenced as fitMouth,
wideMouth, and faceROI, whose average sizes are re-
flected in Table 1. As we have previously suggested
in Section 3.2, in each frame the face occupying the
largest area on the scene was selected in order to avoid
confusion with people in the background.

Figure 1: The Region of Interest extraction process.
White box: fitMouth. Green box: wideMouth. Yel-
low box: faceROI.

The reason why we decided to define ROIs with dif-
ferent sizes was due to the differences that exist be-
tween the approaches based on end-to-end DL struc-
tures (Chan et al., 2016; Chung et al., 2017; Afouras et
al., 2018; Ma et al., 2022) and those based on the tra-
ditional paradigm of HMMs (Gales and Young, 2008;
Thangthai et al., 2015). The latter is made up of several
modules where each of them is independent from the
other. This fact implies that visual speech features will
be static during the training phase of the speech mod-
ule and, therefore, a smaller and specific ROI should
be more convenient. Conversely, by employing end-to-
end approaches, all their parameters, including those
in charge of extracting the visual speech features, are
estimated according to the mistakes found during the

2https://github.com/hhj1897/face_
alignment

3https://github.com/hhj1897/face_
detection

http://catedrartve.unizar.es/rtvedatabase.html
http://catedrartve.unizar.es/rtvedatabase.html
https://github.com/hhj1897/face_alignment
https://github.com/hhj1897/face_alignment
https://github.com/hhj1897/face_detection
https://github.com/hhj1897/face_detection
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Dataset Duration Speakers Utterances Running
Words

Vocabulary Language Model

Males Female Total Perplexity OOV words

SI
TRAIN ∼9 hours 10 19 29 7142 99449 7524 98.9 755

DEV ∼2 hours 86 65 151 1638 20541 2932 107.1 191
TEST ∼2 hours 67 76 143 1572 20133 2983 104.2 193

SD
TRAIN ∼9 hours 163 160 323 7355 96174 8244 100.5 782

DEV ∼2 hours 100 119 219 1597 22670 4316 98.5 192
TEST ∼2 hours 55 68 123 1400 21259 4133 105.4 165

Table 2: Details regarding the training (TRAIN), development (DEV), and testing (TEST) data sets defined in LIP-
RTVE for both speaker-independent (SI) and speaker-dependent (SD) scenarios. For each data set, the perplexity
and the number of Out Of Vocabulary (OOV) words were computed based on the language model described in
Section 4.5.

message decoding phase. In this way, end-to-end ap-
proaches are able to identify or select relevant features
in a wider ROI which might additionally provide more
useful information (Zhang et al., 2020).

3.4. Audio Files
The acoustic signal from each sample was transformed
into a 16 kHz mono-channel with 16 bit-precision WAV
file, as detailed in Table 1. This process was made pos-
sible by using the open-source library FFmpeg (Tomar,
2006). In the same way as with the ROIs, a software
was released to process the acoustic signals.

3.5. Transcriptions
As a pre-processing, after lowercasing all the text, all
punctuation marks as well as accents were removed.
Finally, transcriptions were coded using the UTF-8
standard.

3.6. Identified Challenges
The database presents all those challenges that could be
expected in a realistic scenario, as it is reflected in Table
1. Some details we must comment are that, in certain
samples, the speaker may speak too quickly, as it is
often the case on news programmes. Another feature
is that there are samples with considerable differences
in length, from samples where we can find numerous
words to samples where the speaker only pronounces
a word. Additionally, there is a remarkable unbalance
between the participation of the each one of speakers
in terms of seconds.
Regarding acoustic signals, there are many occasions
where we found background noises that could compli-
cate the understanding of the message. Nevertheless,
as we have mentioned at the beginning of this section,
the LIP-RTVE database was primarily designed to ad-
dress the VSR task. For this reason, we must highlight
the following identified lipreading-related challenges:

• Complex silence modelling (Thangthai, 2018).
We could consider that the speaker is silent when
his or her mouth is closed or when there is no lip
movements. The former is not always true and,
additionally, there are certain phonemes, such as

the sound /p/, that are produced by bringing the
lips together. Regarding the lack of lip move-
ments, there are sounds that are mainly produced
from the throat with an imperceptible participa-
tion of the tongue or lips.

• Visual ambiguities, since several phonemes can be
associated with one viseme, i.e. the basic speech
unit in the video domain (Fisher, 1968). In other
words, there is no one-to-one correspondence be-
tween both entities. The clearest example would
be the ambiguity that exists when visually discern-
ing between the phonemes /p/, /b/, and /m/.

• Co-articulation caused by context influence. As
Fernandez-Lopez and Sukno (2017) suggest in
their study, there are phonemes whose visual cor-
respondence can suffer noticeable changes de-
pending on their surrounding context.

• Finally, certain aspects, such as wetting the lips,
poor vocalization, errors and rectifications, or
even lowering the head to read notes, could hinder
the correct learning of the system in some way.

Thus, we must be aware of the challenges that the lack
of the auditory sense implies in the automatic speech
recognition field.

3.7. Public Release
Unfortunately, several details related with the NDA li-
cense of the RTVE database must be considered before
sharing our contribution with the rest of the research
community. For this reason, the entire LIP-RTVE
database has not yet been publicly released. Never-
theless, as the data is processed, all the details and
resources needed to obtain our database in a license-
respecting way will be available on the authors’ Github
Repository4 as soon as possible.

4https://github.com/david-gimeno/
LIP-RTVE

https://github.com/david-gimeno/LIP-RTVE
https://github.com/david-gimeno/LIP-RTVE
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4. Experimental Setup
4.1. Data Sets
The LIP-RTVE database offers two partitions both for a
speaker-dependent (SD) and speaker-independent (SI)
scenario. Each partition, in order to define an ex-
perimental benchmark, was split in specific training
(TRAIN), development (DEV) and testing (TEST) sets.
Nonetheless, due to the nature of the source data, there
is a significant unbalance regarding the participation
of each speaker in the compiled corpus. For this rea-
son, with the intention of providing the best possible
learning to the automatic system, the speakers with the
longest appearances were allocated first to the training
set until reaching the 70% of the total data. Then, the
remaining samples were randomly assigned to the DEV
or TEST set, gathering, for each of them, around 15%
of data. The main details regarding these data sets for
each scenario are depicted in Table 2. We must mention
that in the SD scenario different aspects were taken into
account in order to provide a non-overlapping partition.

4.2. Acoustic Features
The standard representation in the field of ASR was
applied on acoustic signals. More specifically, the
39-dimensional Mel Frequency Cepstral Coefficients
(MFCC) and their corresponding first- and second-
order dynamic differential parameters (∆+∆∆) (Gales
and Young, 2008) were extracted at 100 fps.

4.3. Visual Features
Unlike acoustic ASR, there is no consensus on which is
the best option to represent the nature of visual speech
(Fernandez-Lopez and Sukno, 2018). Thus, as this
concept has been widely studied in the field of VSR
(Thangthai et al., 2017; Lan et al., 2009), we decided to
extract the appearance-based features known as eigen-
lips. By selecting 25 random frames from each training
sample, we computed the Principal Component Analy-
sis (PCA) technique (Wold et al., 1987), reducing each
frame into 16 components. These eigenlips are shown
in Figure 2, where we can observe how each compo-
nent focuses on different aspects, such as lip contours
or zones where we can find teeth and tongue.

Figure 2: The eigelips obtained in the speaker-
independent scenario.

On the other hand, as it was explained in Section 3.3,
due to the nature of traditional ASR paradigms, as it is
the case of our experiments (see Section 4.4), we con-
sidered to use the fitMouth ROIs as the better option to
extract the visual speech features. More specifically, all
these ROIs were normalized to a resolution of 32×16
pixels, converted to gray-scale images and, in addition,
a histogram equalization was applied to them.

4.4. Automatic Speech Recognition System
The ASR system employed in our research was de-
signed in the Kaldi toolkit (Povey et al., 2011),
where several workflows or recipes to build different
paradigms in the field of Speech Technologies are pro-
vided. Concretely, we defined a traditional HMM-
based system in combination with Gaussian Mixture
Models (GMMs) (Gales and Young, 2008), taking as
a reference the Wall Street Journal (WSJ) recipe5. In
order to facilitate the understanding of the results re-
ported in Section 5, we must briefly describe the dif-
ferent stages that compound the estimation process of
a GMM-HMM system. In this way, we distinguish the
following phases:

• MONO: a context-independent GMM-HMM is
estimated from scratch applying, over the raw fea-
tures, the Cepstral Mean and Variance Normaliza-
tion (CMVN) technique and ∆+∆∆ coefficients
(Gales and Young, 2008).

• DELTAS: in this phase, a context-dependent
GMM-HMM is trained, employing a decision
tree-based triphone state clustering (Young et al.,
1994). The input features remain identical to the
previous step.

• LDA+MLLT: in this stage, the Linear Discrimi-
nant Analysis (LDA) (Rao, 1965) and Maximum
Likelihood Linear Transform (MLLT) (Gopinath,
1998) techniques are applied to compute the
known as HiLDA features (Potamianos et al.,
2001), whose purpose is to reduce the feature di-
mensionality and capture contextual information.
Thus, the GMM-HMM is re-estimated.

• SAT: the last GMM-HMM is obtained by apply-
ing a Speaker Adaptive Training (SAT) (Anas-
tasakos et al., 1997) based on the feature space
Maximum Likelihood Linear Regression (fM-
LLR) method (Gales, 1998).

Finally, the decoding phase is based on a Weighted
Finite-State Transducer (Mohri et al., 2008) which in-
tegrates the morphological model, phonetic context-
dependencies, the lexicon, and the language model.

4.5. Lexicon and Language Models
In order to estimate both models, around 80k sentences
were collected from other news programmes broadcast
by RTVE during the same period of time.
In this way, the lexicon model was built, integrating a
vocabulary of 45247 unique words. The foundations of
this model are based on a vocabulary of 24 phonemes
defined according to Spanish phonetic rules (Quilis,
1997) in addition to the default silence phones of Kaldi.
On the other hand, a 4-gram word-based language
model was estimated using the SRLIM toolkit (Stolcke,

5https://github.com/kaldi-asr/kaldi/
tree/master/egs/wsj/s5

https://github.com/kaldi-asr/kaldi/tree/master/egs/wsj/s5
https://github.com/kaldi-asr/kaldi/tree/master/egs/wsj/s5
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2002). Nonetheless, as it is detailed in Table 2, the high
perplexity and the considerable number of Out Of Vo-
cabulary (OOV) words offered by this language model
over both DEV and TEST data sets must be taken into
consideration along our experiments.

4.6. Tool Setup

As we have commented in Section 4.4, the configura-
tion of our recognition system is mainly based on the
WSJ recipe. For the training phase, default parame-
ters were kept. For decoding, we set a value of 13.0
to pruning beam and 6.0 to lattice beam. The language
model covers scale factors between 1 and 20, while the
speech model scale factor has a value of 0.08333. On
the other hand, based on the BABEL recipe6, word in-
sertion penalty values between -5.0 and 5.0 were stud-
ied. All these decoding parameters were evaluated in
each experimental trial but only the lowest word error
rate was considered.

4.7. Evaluation

All the results presented along our experiments are
evaluated by the well-known Word Error Rate (WER)
with 95% confidence intervals obtained by the boot-
strap method as described in (Bisani and Ney, 2004).

5. LIP-RTVE Baseline Performance

A context-dependent GMM-HMM system, whose de-
tails are described in Section 4.4, was employed in our
baseline experiments. Different modalities, as Tables 3
and 4 reflect, were studied over the data sets defined in
Section 2. Concretely, we report the recognition per-
formance obtained over the DEV and TEST sets along
the training phases for both a SD and SI scenario.

Regarding our audio-only experiments, henceforth
considered as the lower error bound for our task, we
employed the 39-dimensional MFCCs (described in
Section 4.2) and the standard three-state HMM’s topol-
ogy. From the results reported in Table 3, the first
aspect we must highlight is how, in both scenarios,
the system recognition performance improves as we
progress through the training stages; especially, since
we build the first context-dependent system (DELTAS).
Another aspect we must consider is that, as it might
be expected, results for the SD scenario provide better
recognition rates than those for the SI scenario.

6https://github.com/kaldi-asr/kaldi/
blob/master/egs/babel/s5/local/score_
combine.sh

Dataset Training phases

MONO DELTAS LDA+MLLT SAT

SI DEV 40.7±1.1 20.9±0.9 18.8±0.9 16.9±0.8
TEST 40.4±1.2 20.0±0.9 16.7±0.9 15.3±0.8

SD DEV 38.9±1.0 14.2±0.7 11.5±0.6 9.5±0.6
TEST 37.5±1.1 12.2±0.6 10.1±0.5 8.0±0.5

Table 3: Audio-only baseline results (WER) for each
training phase in both a speaker-independent (SI) and
speaker-dependent (SD) scenario.

With respect to video-only experiments, the eigenlips
described in Section 4.3 were employed. Nevertheless,
we first must consider that visual data presents a lower
sample rate than audio data. Therefore, our first exper-
iments were focused on defining the optimal HMM’s
topology, either adding transitions and/or reducing the
number of states. Thus, the topology depicted in Figure
3 was found as the better approach to fit the temporary
nature of our visual data.

Figure 3: The HMM’s topology employed in video-
only experiments.

When dealing with the VSR task, as it was mentioned
in Section 3.6, their inherent challenges must be taken
into consideration. Thus, as we can see in Table 4, the
SD scenario reflects, although the recognition rates are
not comparable, an evolution similar to that observed
in the audio-only experiments, where as we progress
through the training phases, the error rate decreases.
However, SI experiments did not reach acceptable re-
sults. This behaviour is in accordance with the work
carried out by Cox et al. (2008), where the authors
studied the different challenges posed by the SI set-
ting. In any case, our results demonstrate that further
research is necessary in the VSR task, either improving
the quality of the extracted visual features or employ-
ing more powerful automatic systems.

Dataset Training phases

MONO DELTAS LDA+MLLT SAT

SI DEV 96.5±0.3 95.9±0.2 96.0±0.3 95.9±0.3
TEST 96.5±0.4 96.2±0.2 96.3±0.3 95.9±0.2

SD DEV 96.0±0.3 90.4±0.7 88.0±0.8 82.9±1.1
TEST 95.6±0.2 90.1±0.7 87.5±0.8 81.4±1.2

Table 4: Video-only baseline results (WER) for each
training phase in both a speaker-independent (SI) and
speaker-dependent (SD) scenario.

Finally, regarding the audiovisual approach, different
feature fusion methods (Potamianos et al., 2003) were

https://github.com/kaldi-asr/kaldi/blob/master/egs/babel/s5/local/score_combine.sh
https://github.com/kaldi-asr/kaldi/blob/master/egs/babel/s5/local/score_combine.sh
https://github.com/kaldi-asr/kaldi/blob/master/egs/babel/s5/local/score_combine.sh
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explored. Nonetheless, these experiments did not im-
prove the quality of the obtained audio-only results.

6. Conclusions
This paper has described a new audiovisual database
to deal with unconstrained natural Spanish, follow-
ing the so-called in the wild philosophy. More pre-
cisely, the compiled LIP-RTVE database offers around
13 hours of data semi-automatically collected from
Spanish broadcast television. Thus, our contribution
attempts to cover the relative lack of in the wild Span-
ish resources (Zadeh et al., 2020) and the increased in-
terest in VSR in recent decades (Fernandez-Lopez and
Sukno, 2018), since the LIP-RTVE database was pri-
marily conceived to address this challenging task. On
the other hand, in order to establish an experimental
benchmark, both a SI and SD partition were defined.
Baseline performances were obtained by employing the
traditional GMM-HMM paradigm (Gales and Young,
2008).
Regarding future work, we must first address the pub-
lic distribution of our corpus, which will be released as
soon as possible in a format that respects the NDA li-
cense of its source data. Once this issue is solved, we
consider organizing competitions in order to encourage
research on our database, especially in the VSR task
which remains an open problem (Fernandez-Lopez and
Sukno, 2018). On the other hand, our future research
is focused on exploring more robust and accurate sys-
tems where Deep Learning techniques would be incor-
porated. Concretely, in addition to study the combina-
tion of HMMs with Deep Neural Networks (Hinton et
al., 2012), we consider experimenting with end-to-end
architectures (Chan et al., 2016; Chung et al., 2017;
Afouras et al., 2018; Ma et al., 2022), whose possible
benefits were indicated in Section 3.3. Finally, we plan
to increase the size of the LIP-RTVE database.
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españolas, volume 43 of Cuadernos de lengua
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