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Abstract
BERT models used in specialized domains all seem to be the result of a simple strategy: initializing with the original BERT
and then resuming pre-training on a specialized corpus. This method yields rather good performance (e.g. BioBERT (Lee
et al., 2020), SciBERT (Beltagy et al., 2019), BlueBERT (Peng et al., 2019)). However, it seems reasonable to think that
training directly on a specialized corpus, using a specialized vocabulary, could result in more tailored embeddings and thus help
performance. To test this hypothesis, we train BERT models from scratch using many configurations involving general and
medical corpora. Based on evaluations using four different tasks, we find that the initial corpus only has a weak influence on the
performance of BERT models when these are further pre-trained on a medical corpus.

Keywords: word embeddings, contextualized embeddings, BERT, medical, biomedical, specialized domain, domain
adaptation.

1. Introduction
Recent years have witnessed the widespread use of trans-
fer learning techniques in Natural Language Processing
(NLP) (Pan and Yang, 2010; Ruder, 2019). In fact, after
being successful in speech processing (Wang and Zheng,
2015) and computer vision (He et al., 2017), transfer
learning was applied in NLP as well with methods like
ULMFiT (Howard and Ruder, 2018) showing that pre-
trained language models can be successfully adapted
through a sequential transfer learning process to bring
performance gains to text classification. Shortly after,
Radford et al. (2018) generalized these results to other
tasks like natural language inference, text comprehen-
sion, etc.
Following the excitement around transfer learning in
NLP, word embedding models moved from the static
embedding paradigm (e.g. GloVe (Pennington et al.,
2014), fastText (Bojanowski et al., 2017)) to the more
dynamic contextual embeddings (ELMo (Peters et al.,
2018), BERT (Devlin et al., 2019)) that are able to com-
pute context-dependent word representations. Despite
the performance gains that are brought by such models
(see GLUE benchmark), using them in practice is sig-
nificantly more costly than earlier static methods1. As
a result, NLP practitioners tend to rely on pre-trained
versions rather than training these models from scratch.
Today, the most popular contextual embedding model
seems to be BERT and the BERT-like models, for which
there are pre-trained versions both for the general do-
main and for more specialized domains (e.g. BioBERT
(Lee et al., 2020), BlueBERT (Peng et al., 2019), Clini-

1Pre-training BERT from scratch may require multiple
GPUs for multiple weeks. The benchmarks performed by
NVIDIA and available here give a good idea about the cost of
the training and the fine-tuning of BERT models.

calBERT (Alsentzer et al., 2019a), and PubMedBERT
(Gu et al., 2021) for the medical domain, SciBERT
(Beltagy et al., 2019) for the scientific domain). Where
general versions are pre-trained fully on general domain
corpora, these specialized versions seem to all be the
result of the same process: starting from a pre-trained
general BERT and re-train it on a specialized corpus.
This strategy brings undeniable improvements over us-
ing a general domain BERT (Alsentzer et al., 2019a;
Si et al., 2019). However, the question remains: how
do these re-trained models compare to models that are
trained from scratch on specialized corpora without go-
ing through a general domain pre-training?
In this work, we will focus on the medical domain for
which we will study the impact of three parameters on
the downstream performance of BERT: the domain
of its reference vocabulary (general vs. medical), the
initial pre-training corpus (general vs. medical vs. both)
and the second specialization corpus (none vs. medical).
For a fairer comparison, we pre-train all the models
ourselves using exactly the same hyper-parameters,
then we evaluate these models on a variety of medical
(clinical and biomedical) tasks: clinical concept
detection (i2b2/VA 2010 (Uzuner et al., 2011)), clinical
language inference (MEDNLI (Romanov and Shivade,
2018)), and biomedical relation extraction (ChemProt
(Krallinger et al., 2017) and DDI (Herrero-Zazo et al.,
2013)). This work focuses on the English language.

Our contributions are the following:

• we conduct a preliminary analysis of the impact of
the domain of BERT’s WordPiece vocabulary and
show notable differences between a general and
medical vocabulary when handling medical terms;

• we compare multiple BERT models with varying

https://gluebenchmark.com/leaderboard
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/LanguageModeling/BERT#pre-training-loss-results
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Figure 1: Comparison of the tokenization of a medical corpus by vocabularies from different domains.

degrees of specialization and observe that the stan-
dard strategy that consists in re-training a general
model on specialized texts performs at the same
level as a model that is trained from scratch on a
specialized corpus using a specialized vocabulary;

• we share our code and pre-trained models for the
benefit of the NLP community and to help the
reproducibility of our experiments.

We will first introduce the principles of BERT (Sec-
tion 2), in particular, those relative to the hypotheses
we would like to test (Section 3), then we present our
experiments (Section 4) and their results (Section 5)
before a final conclusion (Section 6).

2. The Problem of BERT’s Tokenization
BERT and BERT-like models such as RoBERTa (Liu et
al., 2019), XLNet (Yang et al., 2019), or ALBERT (Lan
et al., 2019), rely on a tokenization method that lever-
ages subwords in order to keep the vocabulary small
and handle potential out-of-vocabulary tokens by de-
composing them into a sequence of known WordPieces
(Wu et al., 2016). This allows striking a good balance
between the efficiency of full words and the flexibility
of characters, especially when constructing a model for
a domain that is known in advance such as the default
general domain. This WordPiece vocabulary is gener-
ally learned using a variant of BPE2 (Gage, 1994), a
compression algorithm that was adapted for tokeniza-
tion purposes (Sennrich et al., 2016) such that the most

2The exact implementation used for BERT seems
to be internal to Google. However, most subse-
quent iterations like RoBERTa rely on the sup-
posedly comparable BPE algorithm (see https:
//github.com/google/sentencepiece#
comparisons-with-other-implementations).

frequent symbols are iteratively merged—forming char-
acter bi-grams, tri-grams, etc—and added to a subword
vocabulary until a target size is reached. As a result, the
output vocabulary is highly dependent on the corpus it
was trained on—more specifically, its domain—which
may entail some issues when the downstream appli-
cations cannot be expected to remain within the same
original domain.
In practice, the subword vocabulary is learned using the
exact same corpus that is used for pre-training, which
ensures this vocabulary is a perfect match for the pre-
training domain. However, a mismatch occurs when the
pre-trained model is used on a task from a different do-
main, which, given the cost of training domain-specific
versions of such large models, is likely in practice. Fur-
thermore, when the resources for training such models
for the target domain are available, the most popular ap-
proach seems to be re-training existing general-domain
systems on specialized corpora (e.g. SciBERT3 (Beltagy
et al., 2019), ClinicalBERT (Alsentzer et al., 2019b)),
probably in an attempt to leverage pre-existing knowl-
edge within the model and speed up convergence. As a
result, these models also re-use the original subword vo-
cabulary, which could affect the pre-training procedure
in a way that may be harmful, especially in specialized
domains such as the medical domain where technical
terms are very present.

3. Effect of BERT’s Vocabulary on
Tokenization

To study the effect of using general-domain vocabularies
in specialized domains, we first look into the tokeniza-
tion results. Here, we assume that we have access to the

3There are versions of SciBERT that use a custom scientific
vocabulary as well.

https://github.com/google/sentencepiece#comparisons-with-other-implementations
https://github.com/google/sentencepiece#comparisons-with-other-implementations
https://github.com/google/sentencepiece#comparisons-with-other-implementations
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original BERT model—which uses a general-domain
WordPiece vocabulary—and investigate how this gen-
eral vocabulary holds against specialized texts in the
medical domain. In practice, after learning a medical
WordPiece vocabulary, we randomly select a large sam-
ple (∼ 1 million tokens) from the same medical corpus4

and tokenize it using either BERT’s original vocabulary
(general domain) or our custom specialized vocabulary
(medical domain). Figure 1 shows the cumulative pro-
portion of word types (i.e. distinct tokens) and word
occurrences (i.e. counting each token as many times as
they occur) against the number of resulting subwords
after tokenization.
If we look at the frequency of splitting an unknown
token into multiple WordPieces, we realize that the med-
ical vocabulary produces overall fewer WordPieces than
the general version. Moreover, we see that ≈ 13% of
occurrences are never split as they are already part of
the medical vocabulary but are decomposed into two or
more WordPieces by the general vocabulary.

Reference Vocabulary Tokenization

paracetamol medical [paracetamol]
paracetamol general [para, ce, tam, ol]

choledocholithiasis medical [choledoch, olithiasis]
choledocholithiasis general [cho, led, och, oli, thi, asi, s]

borborygmi medical [bor, bor, yg, mi]
borborygmi general [bo, rb, ory, gm, i]

Table 1: Comparison of the tokenization of specific
medical terms by vocabularies from different domains.

When looking closer at the quality of the produced
WordPieces (see Table 1), we see that in addition to pro-
ducing fewer subwords, the specialized vocabulary also
seems to produce more meaningful units (e.g. choledoch
and olithiasis).

4. Experiments
When training a specialized version of BERT, the usual
approach consists in using a specialized corpus to re-
sume the pre-training of the original BERT, which uses a
general-domain vocabulary and was already pre-trained
on a corpus of the general domain. In order to compare
this approach with the other natural method consisting
in pre-training a specialized version from scratch on a
specialized corpus using a specialized vocabulary, we
pre-train multiple BERT models with different vocabu-
laries (general vs. medical), initial pre-training corpora
(general vs. medical vs. mix of both) and specialization5

corpora (none vs. medical).
In what follows, we will be using the BERT (base, un-
cased) architecture that consists of L = 12 Transformer

4The sample is taken from the medical corpus described in
Section 4.1 of this paper. More details about the vocabularies
are also available in the same section.

5The specialization corpus is used to resume the pre-
training of an already pre-trained model.

layers, each using H = 12 attention heads and produc-
ing 768-dimensional representations. All our models
are trained on lowercase English texts.

4.1. Different Configurations of BERT

Domain Corpora # of documents # of words

General
Wikipedia (EN) 11.9 million 2.14 billion
OpenWebText 3.15 million 1.28 billion

Medical
MIMIC-III 4.17 million 0.5 billion
PubMed 4.65 million 0.5 billion

Table 2: Detail of the pre-training corpora.

We represent each configuration with a tuple cor-
responding to the values of the studied parameters:
(V = vocabulary, C1 = pre-training corpus, C2 =
specialization corpus).

(V = general, C1 = general, C2 = ∅) For a fairer
comparison, we pre-train our own general domain
model. Despite the redundancy with the open-
source models from (Devlin et al., 2019), pre-
training our own general-domain model guarantees
that all the models we compare were trained in the
same conditions. However, we use the same vocab-
ulary as the original BERT: a vocabulary built from
English Wikipedia and BooksCorpus (Zhu et al.,
2015). During pre-training, we use a general cor-
pus (see Table 2) made of English Wikipedia and a
part of the OpenWebText6 corpus (Gokaslan and
Cohen, 2019). We sample enough data from Open-
WebText to achieve a final corpus that is compara-
ble in size to the one used in Devlin et al. (2019).

(V = general, C1 = general, C2 = medical) Here
we aim to reproduce the usual approach that
re-trained a model from the general domain on
a set of specialized texts. More precisely, while
keeping the general vocabulary, we resume the
pre-training of the previous model on a medical
corpus made of clinical notes from MIMIC-III
(Johnson et al., 2016) and biomedical paper
abstracts from PubMed (Fiorini et al., 2018).

(V = medical, C1 = medical, C2 = ∅) Contrary to
previous models, this version is directly trained
on medical texts. Moreover, here we use a medical
vocabulary that we build from the medical corpus
(see Table 2) using the SentencePiece library that
implements the BPE algorithm (Sennrich et al.,
2015)7.

6Given that the BooksCorpus is not available anymore, we
replaced it with OpenWebText, which aims to reproduce the
WebText corpus that was used for training the GPT-2 model
from Radford et al. (2019).

7It is important to note that the algorithm that was used to
build the original BERT vocabulary is not available. Therefore,
we need to use similar algorithms to build new vocabularies.

https://github.com/google-research/bert#pre-trained-models
https://github.com/google-research/bert#pre-trained-models
https://github.com/google/sentencepiece
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(V = medical, C1 = medical, C2 = medical) From
the model that is pre-trained directly on a
medical corpus, we pre-train a second time
on the same corpus, which is equivalent to
performing the pre-training on the medical
corpus for twice as many epochs. This is done
to achieve a model that is trained as long as
(V = general, C1 = general, C2 = medical).

4.2. Evaluation Tasks
Pre-trained models are evaluated on five medical tasks
after adding task-specific output layers as detailed in
Devlin et al. (2019).

Medical Entity Recognition We evaluate on the
i2b2/VA 2010 (Uzuner et al., 2011) clinical
concept extraction task, which aims to extract
three types of medical concepts: PROBLEM (e.g.
headache), TREATMENT (e.g. oxycodone), and
TEST (e.g. MRI). An example is given in Figure 2.

Figure 2: Example from i2b2/VA 2010.

Natural Language Inference We also evaluate on the
clinical natural language inference task MEDNLI
(Romanov and Shivade, 2018), which aims to clas-
sify sentence pairs into three categories: CONTRA-
DICTION, ENTAILMENT, and NEUTRAL. Exam-
ples are given in Figure 3.

Figure 3: Examples from MEDNLI.

Relation Classification For more variety, we also eval-
uate on two biomedical relation classification
tasks: ChemProt (Krallinger et al., 2017) from

the BioCreative VI challenge and DDI (Herrero-
Zazo et al., 2013) from SemEval 2013 - Task
9.2. The goal of ChemProt is to detect and clas-
sify chemical-protein interactions as ACTIVATOR
(CPR:3), INHIBITOR (CPR:4), AGONIST (CPR:5),
ANTAGONIST (CPR:6), or SUBSTRATE (CPR:9).
The goal of DDI is to detect and classify drug-drug
interactions into the following categories: ADVISE
(DDI-advise), EFFECT (DDI-effect), MECHANISM
(DDI-mechanism), and INTERACTION (DDI-int).
Examples are given in Figure 4.

Figure 4: Examples from ChemProt and DDI.

The number of training, validation, and test examples
of each task is reported in Table 3.

i2b2 MEDNLI ChemProt DDI

Train 24.757 11.232 19.460 18.779
Val. 6.189 1.395 11.820 7.244
Test 45.404 1.422 16.943 5.761

Table 3: Number of examples of each evaluation task.

4.3. Implementation Details
In order to help reproduce our results, we share our
pre-training and fine-tuning parameters. Moreover, we
provide all of our pre-trained models as well as the code
we used8.

4.3.1. Pre-training Parameters
We train each model using 16 Tesla V100-SXM2-16GB
GPUs and following the implementation and parameters
in the NVIDIA codebase9. Each complete pre-training
phase consists of two steps:

8https://github.com/helboukkouri/
recital_2020

9More specifically, we adapt these scripts to our needs.

https://biocreative.bioinformatics.udel.edu/resources/corpora/chemprot-corpus-biocreative-vi/
https://www.cs.york.ac.uk/semeval-2013/task9/
https://www.cs.york.ac.uk/semeval-2013/task9/
https://github.com/helboukkouri/recital_2020
https://github.com/helboukkouri/recital_2020
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/LanguageModeling/BERT
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Model Evaluation task

V C1 C2 i2b2/VA 2010 MEDNLI ChemProt DDI

general general ∅ 85.66 ± 0.18 77.31 ± 0.71 67.47 ± 0.99 75.81 ± 1.02
general general medical 89.00 ± 0.17 84.91 ± 0.46 72.29 ± 0.58 78.82 ± 1.11

medical medical ∅ 88.80 ± 0.10 83.54 ± 0.43 71.30 ± 0.51 79.40 ± 1.15
medical medical medical 89.20 ± 0.20 84.32 ± 0.73 72.97 ± 0.46 80.11 ± 0.79

BERT (base) (Devlin et al., 2019) 86.42 ± 0.31 77.85 ± 0.63 69.22 ± 0.56 77.89 ± 0.92
BlueBERT (base) (Peng et al., 2019) 88.70 ± 0.21 84.53 ± 0.76 68.35 ± 0.61 77.89 ± 0.65

Table 4: Evaluation results. The performance of i2b2/VA 2010 is computed in terms of strict F1 over the entities to
detect, the performance of MEDNLI is given in terms of accuracy, and the performances of ChemProt and DDI are
expressed in terms of micro-F1 measure. The best performance is shown in bold and the second best is underlined.

Step 1 3,519 updates with a total batch size10 of 8,192
on sequences of size 128 with a learning rate of
6.10−3.

Step 2 782 more updates with a batch size of 4,096 on
sequences of size 512 with a lower learning rate of
4.10−3.

During pre-training, we use the LAMB optimizer (You
et al., 2020) as this has been shown to speed up conver-
gence for large language models. We also use a linear
schedule where the learning rate grows linearly during a
certain number of training updates—i.e. 1000 steps for
phase 1 and 100 steps for phase 2—before reaching its
desired value and decreasing linearly to zero. Finally,
we use a weight decay of 0.01 as is often the case with
these models to further regularize training.

4.3.2. Fine-tuning Parameters
Each model is fine-tuned for a maximum of 15 epochs
on the training data using a batch size of 32. After each
iteration, we evaluate the model on the validation set
and save the version with the best performance. After
the 15 epochs are complete, we load the model from the
best epoch and evaluate it on the test set.

5. Results and Discussion
To account for the randomness in the training and evalu-
ation procedures, we run each fine-tuning with 10 dif-
ferent random seeds and compute a final model perfor-
mance on each task as (mean± std). The results are
shown in Table 4.

Pre-training Sanity Check Given the complexity of
BERT’s pre-training procedure, it is useful to com-
pare our general-domain model to the original BERT:
BERT (base). We observe that both models have similar
performances with an advantage to the original BERT.
However, this difference may be explained by either the
different pre-training corpora (OpenWebText in our case

10We use gradient accumulation for larger batch sizes.

instead of BooksCorpus) or the different pre-training
parameters11. Therefore, given the similarity of the re-
sults, we can suppose that our pre-training procedure is
correct.

One pre-training step: General BERT < Medical
BERT First, we compare the models that are only
pre-trained once (C2 = ∅). As expected, we can see
that the model that is trained on a medical corpus using
a medical vocabulary (V = medical, C1 = medical,
C2 = ∅) gets systematically better results that the gen-
eral domain version: an average of +3.14 F1, +6.23 Acc,
+3.83 F1, and +3.59 F1 on i2b2, MEDNLI, ChemProt,
and DDI respectively. Incidentally, it seems that using
a medical vocabulary and training a model directly on
a medical corpus (V = M, C1 = M, C2 = ∅) leads
to better results than BlueBERT (except for MEDNLI),
which re-trains the original BERT on a similar medical
corpus12. This could hint at using a specialized vocab-
ulary and training directly on in-domain data as being
possibly better than the plain re-training of a general
model on a specialized corpus.

Two pre-training steps When we look at the perfor-
mance of the same models after being re-trained on a
medical corpus, both models get similar results: on av-
erage +0.20 F1, -0.59 Acc, +0.68 F1 and +1.29 F1 on
i2b2, MEDNLI, ChemProt and DDI respectively for the
purely medical model (V = medical, C1 = medical,
C2 = medical), which seems to improve slightly on
(V = general, C1 = general, C2 = medical) when it
comes to tasks in the biomedical domain (ChemProt
and DDI).
Finally, we observe that our re-trained general model

11Due to server limitations, we trained our models for half
the number of steps suggested in NVIDIA’s implementation.
This could mean that our models are overall under-trained.

12Their corpus, however, includes 8 times as many biomed-
ical texts as we do. Interestingly, we outperform this model
on ChemProt and DDI, both of which are from the biomedical
domain.
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gets better results than BlueBERT13 on the biomedi-
cal tasks, especially on Chemprot (+3.07 F1), despite
being pre-trained on similar corpora (MIMIC-III and
PubMed).

Is Training from Scratch Really Better? Even
though our medical model performs better than Blue-
BERT, a version that retrains the original BERT on a
medical corpus, we see that training from scratch with
a specialized vocabulary is not necessarily better, since
re-training our general model on a specialized corpus
(V = general, C1 = general, C2 = medical) eventually
leads to better results. This reaffirms the importance of
training models in similar conditions and warrants the
inclusion of a medical model that is trained a second
time on the same medical corpus. In fact, by re-training
the purely medical model a second time (V = med-
ical, C1 = medical, C2 = medical), we manage to
improve over the previously mentioned re-trained ver-
sion on most evaluation tasks, except for MedNLI. This
goes to show that the overall training time of these mod-
els does matter, and to a point where a purely special-
ized model may perform worse than a model relying
on general-domain representations if the former is not
trained properly.

6. Conclusion
In a context where BERT-like representation models are
more and more popular, we evaluate the usual way such
models are used in a specialized domain: re-training the
original BERT on a specialized corpus before adapting
it to a task of interest. While focusing on the medical
domain, we compared two methods where the model
is first pre-trained on an initial corpus (general domain
vs. medical domain) using an appropriate vocabulary
(general / medical) before being re-trained on a medical
corpus. We observe that despite the initial differences
between the two models both of them perform at a sim-
ilar level when re-trained on a specialized corpus. We
conclude, after taking into account the resource cost of
each method, that it is preferable to re-train the origi-
nal BERT on a specialized corpus instead of training a
model from scratch with a specialized vocabulary.
Another strategy adopted by several recent studies
(Hong et al., 2021; Tai et al., 2020; Diao et al., 2021) for
dealing with the discrepancy between the vocabulary of
the general domain and the vocabulary of a more spe-
cialized domain like the medical domain is to propose
methods for extending the vocabulary of the general
domain model to include the vocabulary of the special-
ized domain or a part of it. The evaluation of these
methods in the same framework as our work would be
an interesting extension of the results presented in this
article.

13This is the version of BlueBERT trained on PubMed and
MIMIC-III.

7. Acknowledgements
This work has been funded by the French National Re-
search Agency (ANR) under the ADDICTE project
(ANR-17-CE23-0001). We gratefully acknowledge Ju-
nichi Tsujii and the Artificial Intelligence Research Cen-
ter (AIRC)14 for allowing us to use the ABCI cluster15

to run our experiments.

8. Bibliographical References
Alsentzer, E., Murphy, J., Boag, W., Weng, W.-H., Jindi,

D., Naumann, T., and McDermott, M. (2019a). Pub-
licly available clinical BERT embeddings. In Pro-
ceedings of the 2nd Clinical Natural Language Pro-
cessing Workshop, pages 72–78, Minneapolis, Min-
nesota, USA, June. Association for Computational
Linguistics.

Alsentzer, E., Murphy, J., Boag, W., Weng, W.-H., Jindi,
D., Naumann, T., and McDermott, M. (2019b). Pub-
licly available clinical BERT embeddings. In Pro-
ceedings of the 2nd Clinical Natural Language Pro-
cessing Workshop, pages 72–78, Minneapolis, Min-
nesota, USA, June. Association for Computational
Linguistics.

Beltagy, I., Lo, K., and Cohan, A. (2019). SciBERT:
A pretrained language model for scientific text. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 3606–3611.

Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T.
(2017). Enriching word vectors with subword infor-
mation. Transactions of the Association for Compu-
tational Linguistics, 5:135–146.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
(2019). BERT: Pre-training of deep bidirectional
transformers for language understanding. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 4171–4186, Min-
neapolis, Minnesota, June. Association for Computa-
tional Linguistics.

Diao, S., Xu, R., Su, H., Jiang, Y., Song, Y., and Zhang,
T. (2021). Taming Pre-trained Language Models
with N-gram Representations for Low-Resource Do-
main Adaptation. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 3336–3349, Online, August. Associa-
tion for Computational Linguistics.

Gage, P. (1994). A new algorithm for data compression.
C Users Journal, 12(2):23–38.

Gu, Y., Tinn, R., Cheng, H., Lucas, M., Usuyama,
N., Liu, X., Naumann, T., Gao, J., and Poon, H.

14https://www.airc.aist.go.jp/en/intro/
15https://abci.ai/

https://github.com/ncbi-nlp/bluebert
https://www.airc.aist.go.jp/en/intro/
https://abci.ai/


2632

(2021). Domain-specific language model pretraining
for biomedical natural language processing. ACM
Transactions on Computing for Healthcare, 3(1), oct.

He, K., Gkioxari, G., Dollár, P., and Girshick, R. B.
(2017). Mask R-CNN. CoRR, abs/1703.06870.

Hong, J., Kim, T., Lim, H., and Choo, J. (2021). AV-
ocaDo: Strategy for Adapting Vocabulary to Down-
stream Domain. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing, pages 4692–4700, Online and Punta
Cana, Dominican Republic, November. Association
for Computational Linguistics.

Howard, J. and Ruder, S. (2018). Universal lan-
guage model fine-tuning for text classification. arXiv
preprint arXiv:1801.06146.

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma,
P., and Soricut, R. (2019). ALBERT: A lite BERT for
self-supervised learning of language representations.
arXiv preprint arXiv:1909.11942.

Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So,
C. H., and Kang, J. (2020). BioBERT: a pre-
trained biomedical language representation model for
biomedical text mining. Bioinformatics, 36(4):1234–
1240.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen,
D., Levy, O., Lewis, M., Zettlemoyer, L., and
Stoyanov, V. (2019). RoBERTa: A robustly opti-
mized BERT pretraining approach. arXiv preprint
arXiv:1907.11692.

Pan, S. J. and Yang, Q. (2010). A Survey on Trans-
fer Learning. IEEE Transactions on Knowledge and
Data Engineering, 22(10):1345–1359, October.

Peng, Y., Yan, S., and Lu, Z. (2019). Transfer learn-
ing in biomedical natural language processing: An
evaluation of BERT and ELMo on ten benchmarking
datasets. In Proceedings of the 2019 Workshop on
Biomedical Natural Language Processing (BioNLP
2019), pages 58–65.

Pennington, J., Socher, R., and Manning, C. D. (2014).
GloVe: Global vectors for word representation. In
Empirical Methods in Natural Language Processing
(EMNLP), pages 1532–1543.

Peters, M., Neumann, M., Iyyer, M., Gardner, M., Clark,
C., Lee, K., and Zettlemoyer, L. (2018). Deep con-
textualized word representations. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 2227–2237, New Orleans, Louisiana,
June. Association for Computational Linguistics.

Radford, A., Narasimhan, K., Salimans, T., and
Sutskever, I. (2018). Improving language understand-
ing by generative pre-training. Technical report, Ope-
nAI.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
and Sutskever, I. (2019). Language models are unsu-
pervised multitask learners. OpenAI Blog, 1(8):9.

Ruder, S. (2019). Neural transfer learning for natural
language processing. Ph.D. thesis, NUI Galway.

Sennrich, R., Haddow, B., and Birch, A. (2015). Neural
machine translation of rare words with subword units.
arXiv preprint arXiv:1508.07909.

Sennrich, R., Haddow, B., and Birch, A. (2016). Neural
machine translation of rare words with subword units.
In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1715–1725, Berlin, Germany,
August. Association for Computational Linguistics.

Si, Y., Wang, J., Xu, H., and Roberts, K. (2019). En-
hancing clinical concept extraction with contextual
embeddings. Journal of the American Medical Infor-
matics Association, 26(11):1297–1304.

Tai, W., Kung, H. T., Dong, X., Comiter, M., and
Kuo, C.-F. (2020). exBERT: Extending Pre-trained
Models with Domain-specific Vocabulary Under Con-
strained Training Resources. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2020,
pages 1433–1439, Online, November. Association
for Computational Linguistics.

Wang, D. and Zheng, T. F. (2015). Transfer learning
for speech and language processing. In 2015 Asia-
Pacific Signal and Information Processing Associa-
tion Annual Summit and Conference (APSIPA), pages
1225–1237. IEEE.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi,
M., Macherey, W., Krikun, M., Cao, Y., Gao, Q.,
Macherey, K., et al. (2016). Google’s neural ma-
chine translation system: Bridging the gap between
human and machine translation. arXiv preprint
arXiv:1609.08144.

Yang, Z., Dai, Z., Yang, Y., Carbonell, J. G., Salakhutdi-
nov, R., and Le, Q. V. (2019). XLNet: Generalized
autoregressive pretraining for language understand-
ing. In Hanna M. Wallach, et al., editors, Advances
in Neural Information Processing Systems 32: An-
nual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, pages 5754–5764.

You, Y., Li, J., Reddi, S. J., Hseu, J., Kumar, S., Bho-
janapalli, S., Song, X., Demmel, J., Keutzer, K.,
and Hsieh, C. (2020). Large batch optimization for
deep learning: Training BERT in 76 minutes. In
8th International Conference on Learning Represen-
tations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net.

9. Language Resource References
Fiorini, N., Leaman, R., Lipman, D. J., and Lu, Z.

(2018). How user intelligence is improving PubMed.
Nature biotechnology, 36(10):937–945.

Gokaslan, A. and Cohen, V. (2019). OpenWeb-
Text corpus. http://Skylion007.github.
io/OpenWebTextCorpus.

Herrero-Zazo, M., Segura-Bedmar, I., Martı́nez, P., and
Declerck, T. (2013). The DDI corpus: An annotated

http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus


2633

corpus with pharmacological substances and drug–
drug interactions. Journal of biomedical informatics,
46(5):914–920.

Johnson, A. E., Pollard, T. J., Shen, L., Li-wei, H. L.,
Feng, M., Ghassemi, M., Moody, B., Szolovits, P.,
Celi, L. A., and Mark, R. G. (2016). MIMIC-III,
a freely accessible critical care database. Scientific
data, 3:160035.

Krallinger, M., Rabal, O., Akhondi, S. A., et al. (2017).
Overview of the BioCreative VI chemical-protein
interaction track. In Proceedings of the sixth BioCre-
ative challenge evaluation workshop, volume 1,
pages 141–146.

Romanov, A. and Shivade, C. (2018). Lessons from
natural language inference in the clinical domain.
In Proceedings of the 2018 Conference on Empir-
ical Methods in Natural Language Processing, pages
1586–1596, Brussels, Belgium, October-November.
Association for Computational Linguistics.
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