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Abstract
The growing popularity of various forms of Spoken Dialogue Systems (SDS) raises the demand for their capability of implicitly
assessing the speaker’s sentiment from speech only. Mapping the latter on user preferences enables to adapt to the user and
individualize the requested information to increase user satisfaction.
In this paper, we explore the integration of rank consistent ordinal regression into a speech-only sentiment prediction task
performed by ResNet-like systems. Furthermore, we use speaker verification extractors trained on larger datasets as low-level
feature extractors. An improvement of performance is shown by fusing sentiment and pre-extracted speaker embeddings
reducing the speaker bias of sentiment predictions. Numerous experiments on CMU Multimodal Opinion Sentiment and
Emotion Intensity (CMU-MOSEI) databases show that we beat the baselines of state-of-the-art unimodal approaches. Using
speech as the only modality combined with optimizing an order-sensitive objective function gets significantly closer to the
sentiment analysis results of state-of-the-art multimodal systems.

Keywords: speech sentiment analysis, sentiment intensity prediction, (speech) emotion recognition, acoustic emotion
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1. Introduction

In the past decade, the development of spoken dialogue
systems and the variety of techniques to meet the users’
needs have grown rapidly. For instance, natural lan-
guage displays a straightforward way to communicate
for humans and thus, also interactions with comput-
ers via spoken language are perceived more comfort-
able and natural for users. Therefore, it is required
that SDS are capable of managing complex, human-
like interactions and learn how to adapt to users and
their preferences. There are various approaches to de-
tect user preferences in SDS. Many literature refer-
ences estimate user preferences only in a static manner
e.g. through historical user behaviors and profiles or by
exploiting the interaction history (Liu and Mazumder,
2021). In Gao et al. (2021) conversational recom-
mender systems and their possibilities to explicitly ob-
tain the exact preference of users are investigated. An-
other explicit approach is shown by Zeng et al. (2018)
where the user’s preferences on food are elicited by in-
terviewing the user directly. Furthermore, we (Aicher
et al., 2021) introduced the argumentative dialogue sys-
tem BEA which estimates the users’ preferences (pre-
ferring or rejecting a presented argument) via explicit
user feedback by using weighted Bipolar Argumenta-
tion Graphs (wBAGs) (Amgoud and Ben-Naim, 2016;
Amgoud and Ben-Naim, 2018). As explicit feedback
entails the risk of a repetitive course of the dialogue,
which might bore or annoy the user, instead we aim
for an implicit preference detection. Rach et al. (2019)
previously suggested to use the information on multi-
modal emotion recognition techniques to implicitly ob-
tain user preferences on certain aspects of a topic. As
the role of the user within this scenario is passive (non-
speaking), they analyze facial expressions, gestures and

postures as a source for affective cues that represent the
current emotional state (Rach et al., 2019).
Since often only one modality is accessible in spoken
dialogue systems, we herein investigate techniques that
are able to retrieve sentiment information from audio
input only. Especially, as we envision the use of our
approach in an argumentative spoken dialogue system,
visual features from video recordings are rather hard to
come by.
Furthermore, textual cues might be misleading as ar-
gumentative scenarios might require the user to ref-
erence or quote system utterances (and argumentative
content) which are likely to be misinterpreted as the
user’s own stance (preference of an argument (positive
stance), rejection of an argument (negative stance)) and
thus, sentiment. Thereby one may overcome the depen-
dence on explicit feedback/preference user statements,
by implicit analysis of the spoken user utterance within
argumentative discourses1. Henceforth, in this work
we introduce and investigate an approach to detect user
sentiment analyzing the spoken speech-signal of a user
which can in future work be used to be linked to user
preferences.
The remainder of the paper is as follows: Section 2
gives a short overview over related work. Section 3
examines the architecture of our approach, followed by
the objectives in Section 4. Section 5 introduces the
experimental setup and Section 6 discusses our results.
We conclude and give a short outlook in Section 7.

1For instance, positive sentiment indicates a rather posi-
tive user stance, indifferent sentiment indifference and neg-
ative sentiment a rather negative user stance towards a pre-
sented argument.
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2. Related Work
The vast majority of recent literature introduces fusion
approaches to multimodal sentiment analysis (Zadeh et
al., 2017; Cambria et al., 2017). For example fused
textual, visual and acoustic modalities on the CMU-
MOSEI-Dataset2 are investigated by Li et al. (2021). A
unimodal approach with extensive studies on facial ex-
pressions is introduced by Ekman and Keltner (1997).
There also exist approaches in visual sentiment anal-
ysis and emotion recognition (retrained for sentiment
analysis) (Byeon and Kwak, 2014; Ebrahimi Kahou et
al., 2015). Bertero et al. (2016) explore speech emo-
tion and sentiment recognition from raw audio samples
by using a Convolutional Neural Network (CNN) with
a single filter. In contrast, Tian et al. (2015) study
the performance of knowledge-inspired disfluency and
non-verbal vocalization features. Whereas their emo-
tional encoding was done by either SVM or LSTM-
RNN, we focus on heavier neural network classifiers
using Mel-scaled filter banks (Heo et al., 2020; Gusev
et al., 2020b).
Siriwardhana et al. (2020) explores the techniques to
fine-tune Speech-BERT and RoBERTa Transformers
pre-trained on a large-scale text dataset to perform
multimodal discrete sentiment intensity label pre-
diction for a given pair of spoken utterance and its
transcription. Similarly (Kumar and Vepa, 2020)
treats sentiment labels as cardinal labels and explores
cross-attention-based text and speech modalities
fusion. Lu et al. (2020) use an ASR-based encoder
to extract features rich in both acoustic and linguistic
characteristics. Whereas we consider sentiment
intensity levels, they treat the sentiment prediction
as a cross-entropy-aided multi-class classification
task considering neutral, positive or negative classes.
Likewise, we reuse the model trained on the data
of the same modality, however, the distillation and
acoustic features post-processing is different. Similar
to our approach they consider the uni-modal scenario,
with only speech available for both test and training
times. Still the fine-tuning of the model is trained with
audio and text pairs, which still implicitly introduces
dependencies to phonology and linguistics.
The previously mentioned literature defines emotional
input on a discrete scale. Moreover, it is assumed
that emotions/sentiment are order agnostic. Al-
though, Mohammadi and Vuilleumier (2019) show
that emotions/sentiment intensities are ordinal and
a misclassification should not be penalized equally.
Thus, we focus on speech-only opinion-level sentiment
intensity recognition taking the ordinal and continuous
nature of sentiment intensity labels into account.

2Multimodal Opinion Sentiment and Emotion Intensity,
http://multicomp.cs.cmu.edu/resources/
cmu-mosei-dataset/, last accessed 04.05.2022

3. Architecture
The architecture of our sentiment analysis system is
shown in Figure 1. Its components are explained in
the following.
As a backbone model, we use a ResNet34-like(He et
al., 2016) architecture. We chose a ResNet backbone
as it is well established, shows a state-of-the-art per-
formance for many tasks and is well-suited for speech
data. Furthermore in comparison with X-vectors, Effi-
cientNets and ECA-ResNets, ResNet achieved the best
results. The first two blocks of the ResNet backbone,
referred to as Speaker Recognition network-based Ex-
tractor (SRExt), are taken from the pre-trained speaker
verification model. The configurations of the last two
blocks vary and are referred to as StExt. The backbone
features are passed to the two parallel decoders which
are either a Combination of multiple Global Descrip-
tors (CGD) (Gusev et al., 2020a) block or a CGD block
with a speaker embedding fusion.
Then the first output is processed by the regression
stream predicting a number indicating the intensity
value on a continuous scale. The second output is
passed to the COnsistent RAnk Logits (CORAL) (Cao
et al., 2020) stream which predicts the vector of proba-
bilities for each of the 6 sentiment intensity bins.

3.1. SRExt
To extract rich latent features out of Mel-scaled fil-
ter bank (MFB) acoustic features, we took two lower
SE3 (Hu et al., 2018) ResNet blocks from the SR-
SEResNet34 system trained for the speaker verifica-
tion task on a database of human voices with the much
bigger hours of speech compared to CMU-MOSEI. In
the following, these 2 lower ResNet blocks are re-
ferred to as Speaker Recognition network-based Ex-
tractor (SRExt). We use those two blocks in evalua-
tion mode, with no further fine-tuning for 2/2SRExt,
and with fine-tuning of the second block for 1/2SRExt.
These first convolutional blocks are supposed to ex-
tract speech-related low-level features to simplify the
task for the weaker network trained for sentiment pre-
diction on a smaller dataset of voices. For the detailed
architecture and training strategy description of the SR-
SEResNet34 we refer to Gusev et al. (2021). We
adopted their design of DG-SE-ResNet34 but excluded
the domain generalization head.

3.2. StExt
Blocks 3 and 4 maintain the original design of the
blocks from SEResNet. Their widths are both set to 64
and the number of layers being fixed to 2 and 1, respec-
tively (for the SEResNet-16 version). Regarding the
SEResNet-34 version 128 and 256 convolutional filters
were used in 6-layered 3rd and 3-layered 4th blocks, re-
spectively.
Decoder: CGD The output frame-level features are

3Squeeze-and-Excitation

http://multicomp.cs.cmu.edu/resources/cmu-mosei-dataset/
http://multicomp.cs.cmu.edu/resources/cmu-mosei-dataset/
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Figure 1: Architecture of the sentiment analysis system.

passed to the two parallel pooling + segment-level net-
work (sln) blocks. We use a CGD-inspired parallel
Generalized-Mean (GeM) (Radenović et al., 2018) and
global average pooling, as segment-level network a lin-
ear layer with a Rectified Linear Unit (ReLU) and ap-
plied non-learnable batch normalization. The outputs
of the two pooling and segment level blocks are then
concatenated to a single vector.

3.3. Decoder: Speaker Verification Feedback
(SpE)

To reduce the speaker bias the model suffers from,
we fused the pre-extracted speaker embedding with
the output of CGD block. The embeddings were
extracted by another pre-trained speaker verification
ResNet-NAS-based network, which was previously in-
troduced by Gusev et al. (2021). It is larger than
the SR-SEResNet34 used for the acoustic features pre-
processing. During the training time of the senti-
ment recognition network, we retrieve the correspond-
ing speaker embedding for the input samples and con-
catenate the speaker embedding with the output of the
segment-level part of the sentiment recognition system.
The resulting 128+512 or 512+512 vector is passed to
the final classification head.

3.4. Regression Head

Afterward, the two sentiment embeddings extracted by
two parallel CGD blocks are passed to two streams.
The first regression stream is composed of a single lin-
ear layer.

3.5. CORAL Head
The second stream is the Ordinal regression managed
by the CORAL head. Let K be the number of dis-
cretized sentiment classes, then the second rank con-
sistent ordinal regression stream is composed of a lin-
ear layer predicting a single probability value and a
bias vector of K − 1 values that are used to construct
a vector of sentiment class probabilities. This vec-
tor indicates the probability of each sentiment being
present in a given speech segment in a multi-label clas-
sification. The K − 1 binary tasks are designed to
share the same weight parameters but have independent
bias units which enables to achieve rank-monotony
and guarantees binary classifier consistency (Theorem
1 pointed out by Cao et al. (2020)). To get the final pre-
diction from the CORAL head we transform each class
probability to binary classes, such that it is set to 0 for
no sentiment being present and 1 for sentiment being
present. Then, the final sentiment value is the sum over
all K − 1 binary classes.

4. Objectives
4.1. Regression Loss
We use the Mean Absolute Error (MAE) as the first op-
tion to model the loss with varying penalization for the
misclassifications depending on the absolute difference
between ground truth and predicted classes. Thus,

MAE = N−1
N∑
i=1

|yi − gr(f(xi))|, (1)

where N denotes the number of training samples, gr
the regression head and f the output of the decoder.
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4.2. Rank Consistent Ordinal Regression
Loss

The prediction of sentiment labels on a discrete scale
is performed by applying CORAL (Cao et al., 2020).
Let K denote the number of discretized sentiment in-
tensity labels, namely {-3, -2, -1, 0, 1, 2, 3}. Fur-
thermore, f shall denote the stack of layers up to the
regression/CORAL heads with the sentiment embed-
ding as its output (the output of the decoder). Then
gc(f(xi),W ) describes the output of the penultimate
layer, that shares a single weight with all K − 1 nodes
in the final layer. Next, K − 1 independent bias units
are added to gc(f(xi),W ), resulting in K − 1 binary
classifier outputs, undergoing sigmoid, to result in the
binary class probabilities, denoted as pk. Thus, we ob-
tain the final target function:

σ(z) =
1

(1 + exp(−z))
, (2)

pk = σ(gc(f(xi),W ) + bk), (3)

L = −
N∑
i=1

K−1∑
k=1

[log(pk)y
k
i + log(1− pk)(1− yki )],

(4)

where N is the number of training samples, and yi de-
notes the labels one-hot-encoded in a cumulative man-
ner, such that

yi = ∩K−1
j=1 1{yi > j}. (5)

Hence, the final prediction is obtained by

K−1∑
k=1

1{pk > 0.5}. (6)

5. Experimental Setup
In the following the experimental setup is explained,
i.e. the data processing, acoustic feature extraction and
configuration optimization. The described setup and
design choices were adjusted during the experiments
and tailored to tackle encountered challenges and in-
crease the system’s performance.

5.1. Data
The following subsections give a deeper insight data
processing in our pipeline.

5.1.1. Speaker Recognition
Both the SR-SEResNet34 as well as the ResNet-NAS-
based SpE extractor were trained using the SdSVC
2021 Challenge train dataset (Zeinali et al., 2020). It
consists of VoxCeleb 1 and VoxCeleb 2 (SLR47), Lib-
riSpeech, Mozilla Common Voice Farsi and DeepMine
(Task 2 Train Partition). The overall number of speak-
ers in the resulting set is 11939. VoxCeleb 1 and the
whole Voxceleb 2 together include approx. 2k hours

of speechs, LibriSpeech about 2k hours, Mozilla Com-
mon Voice Farsi 70 hours and DeepMine 480 hours.
Thus adding up to approximately 4550 hours of speech
in total.

5.1.2. Sentiment Recognition
CMU-MOSEI (Zadeh et al., 2018) is one of the largest
speech emotion recognition datasets from 1000 online
YouTube speakers denoting the intensity of sentiment
with continuous labels in the range [-3, 3] (from highly
negative, to highly positive). It contains more than
23,500 single-speaker sentence utterance videos (more
than 65 hours of annotated videos), containing mostly
feedback and reviews. Hence, it is suited for predicting
user sentiment in argumentative dialogues. The audios
are segmented into non-opinion and opinion frames.
Emotional and sentiment tagging is performed only for
the latter ones.

5.2. Acoustic Features Extraction
5.2.1. Mel-filter Bank Energies 80
The input features for all models in this paper are
80-dimensional log Mel-filter bank energies extracted
from a 16 kHz raw signal with 25ms frame-length and
15ms overlap. Additionally, we use per-utterance Cep-
stral Mean Normalization (CMN) over a 3 s sliding
window over the stack of MFBs to compensate for the
channel effects and noise by transforming data to have
zero mean (Furui, 1981). In order to remove silence
frames from the utterances we make use of a U-net-
based Voice Activity Detector (VAD) (Gusev et al.,
2020b; Lavrentyeva et al., 2020).

5.2.2. SpecAugment
To increase the data variability in training we use
SpecAugment as a widely used data augmentation
technique in speech recognition. It applies a random
number of random-width masks on the time and spec-
tral dimensions of the 80-dim MFB features.

5.2.3. Weighted Data Sampling
The training dataset is highly imbalanced regarding its
classes. Even though this imbalanced labels distribu-
tion is close to the test case scenario, it forces the model
to be biased favoring the most frequent samples. Thus,
due to the huge class imbalance convergence is not
achieved and some of the minority classes are ignored
by the network. To resolve this imbalance we randomly
oversample values of each class with the probability of
the inverse class frequency. As a result, the Gaussian-
like distribution of classes is almost transformed into a
uniform one, as shown in Figure 2. The blue bars de-
note the original distribution of continuous sentiment
intensity labels for the training data. The oversampling
applied to the original distribution of training labels is
given in orange. In green, the distribution of training
labels rounded to the nearest integer prior to oversam-
pling is shown. Finally, the red bars mark the original
distribution of labels in the test data.
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Figure 2: The distribution of sentiment intensity labels over the training and test sets.

5.3. Configurations Optimization
All system variants are trained on random 4 s chunks
with a random spatio-temporal masking SpecAugment
with maximum number of masks set to 2, maximum
time and frequency mask widths equal to 10 and 5. The
Adam optimizer is utilized with a multistep learning
rate scheduler which decreases the learning rate of 1e-
3 10 times as soon as the training converges. In order to
transform labels to fit the CORAL approach, they are
rounded to the closest integer and afterwards the level
transformation described in Section 3 is applied. It is
essential that all labels are present in both, the train and
valid sets of the data4. Regarding the regression, the
labels remain unchanged (no rounding). The usage of
the pre-trained low-level features extractor is necessary
to assure convergence of the model optimized by MAE
loss. CORAL and MAE are used separately and also
jointly, where both are added up with equal weights
of 1 and optimized together. Thus, during training the
sum of both loss functions is optimized. Note, that the
outputs of both heads are not fused, but either one of
them is used to compute the metric as described in the
following.

6. Results and Discussion
To evaluate our approach against previous baselines,
four performance metrics5 based on Sun et al. (2019)
are reported: 1) mean absolute error (MAE), 2) F1-
score for 7 sentiment intensity levels, 3) binary accu-
racy (Acc. 2-class), where labels in [−3, 0) considered
as negative sentiment and in (0, 3] as positive and 4)
7-class sentiment intensity accuracy (Acc. 7-class). In

4Please note that the model is trained either with two
heads (CORAL and Regression MAE) or with one of them.
Whereas CORAL uses discrete labels (rounded integers), Re-
gression (MAE) uses continuous labels.

5Regarding Accuracy and F1-score higher is better, in
contrast to the mean absolute error (MAE), where lower is
better.

the case of the two-headed models, we report the met-
rics for both of the heads either the regression head
(“reg”) and the CORAL head (“class”). The results
of our systems compared to the ones of current state-
of-the-art literature are shown in Table 1. Our results
show that the regression loss is stable in the optimum
and beats unimodal baselines (MULT Audio (Tsai et
al., 2019) and ICCN Audio (Sun et al., 2019)). The fu-
sion of pre-trained speaker and sentiment embeddings
together with the minimization of the rank consistent
ordinal regression loss in our system “1-34 + SpE +
C” enables us to reduce the overfitting effect and in-
crease the complexity of the StExt. Before the utiliza-
tion of SpE the heaviest model to converge with no
overfitting was SRExt-SEResNet-16 and after became
SRExt-SEResNet-34. This increase in complexity led
to a better performance with regard to MAE and both
accuracies.

The application of CORAL was successfully shown.
Thus, the task of sentiment recognition in speech ut-
terances can be considered an ordinal regression task
with cumulative relations between sentiment intensity
values. Moreover, we showed that low-level features
extracted from a pre-trained speaker recognition ex-
tractor can be successfully applied for speech senti-
ment analysis. By fusing a speaker embedding to the
sentiment one we could get even closer to the mul-
timodal baselines which only use sentiment embed-
dings. Still, we perceive a gap between the mul-
timodal baselines ICCN (Sun et al., 2019) and pre-
trained BERT+RoBERTa (Siriwardhana et al., 2020)
and our results. But to the best of our knowledge,
we are significantly closer to those than any other uni-
modal approach. Training on bigger datasets as well
as reusing deep neural feature extractors pre-trained
on large-scale speech datasets with a huge inter- and
intra-speaker variability are very likely to improve our
results further. Another possible enhancement is to
optimize the VAD for the emotion/sentiment recogni-
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System MAE F1 7-class Acc. 7-class Acc. 2-class
reg class reg class reg class reg class

2/2SREx-SEResNet-16 C + R 0.715 – 42.55 41.68 42.56 41.68 87.94 87.97
1/2SREx-SEResNet-16 + C + R 0.737 41.865 42.316 41.865 42.32 41.86 87.91 86.59
1/2SREx-SEResNet-16 + R 0.851 - 36.360 - 36.360 - 86.50 -
1/2SREx-SEResNet-16 + C - 0.888 - 34.796 - 34.80 - 86.74
1/2SREx-SEResNet-34 + SpE + C - 0.712 - 43.10 - 43.16 - 88.15
TFNacoustic (Zadeh et al., 2017) 1.23 – – 65.1
Audio (Tsai et al., 2019) 0.764 – 41.4 65.6
Audio (Sun et al., 2019) 0.785 – 38.59 58.75

ICCN (Sun et al., 2019) 0.565 – 51.58 84.18
Pre-trained BERT+RoBERTa: 0.491 – 55.971 88.04
Text + Audio (Siriwardhana et al., 2020)

Table 1: Results of our ResNet-like systems, audio baselines and fused multimodal results. R denotes the usage of
Regression, C of CORAL and SpE of Speaker Embedding.

tion application. By retraining with emotion/sentiment
specific VAD would add complementary information
of non-verbal vocal expressions and reduce the uncer-
tainty of predictions.

7. Conclusions and Future Work
In this paper, we have described a speech sentiment in-
tensity level prediction system that can be utilized as
a preference detection module in (argumentative) spo-
ken dialogue systems. As visual features (video) are
not always accessible and quoting might lead to misin-
terpretations of the user’s stance and sentiment regard-
ing argumentative discourses, we focus on the single
modality speech. Consequently, we aim to narrow the
gap for speech-only to multimodal approaches by en-
hancing the robustness of the former to noisy labels. In
the future, we aim to investigate how to fuse text and
speech, by ensuring quoting and citations of system ut-
terances by the user are not interpreted as indicators for
user sentiment.
As far as we know this paper is one of the first to
use speech-only sentiment intensity recognition bench-
marked on the CMU-MOSEI database and to outper-
form unimodal baselines and thus, gets significantly
closer to the ones of state-of-the-art literature in mul-
timodal scenarios. Furthermore, to the best of our
knowledge, we are the first to apply the CORAL ap-
proach to preserve the ordinal nature of the senti-
ment intensity labels when performing speech senti-
ment analysis. Moreover, we showed that rich low-
level acoustic features can be extracted from the SR
model for speech sentiment analysis tasks.
In future work, we will test and train the herein intro-
duced systems with other datasets, (like CMU-MOSI,
ICT-MMMO, MOUD, etc.) to further investigate its
performance. Moreover, we aim to integrate our pre-
sented approach to create a sentiment-aware, intelligent
spoken argumentative dialogue system which is able to
recognize and adapt its behavior in real-time, taking the
user’s sentiment and preferences into account.
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