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Abstract

Progress in sentence simplification has been hindered by a lack of labeled parallel simplification data, particularly in languages
other than English. We introduce MUSS, a Multilingual Unsupervised Sentence Simplification system that does not require
labeled simplification data. MUSS uses a novel approach to sentence simplification that trains strong models using sentence-
level paraphrase data instead of proper simplification data. These models leverage unsupervised pretraining and controllable
generation mechanisms to flexibly adjust attributes such as length and lexical complexity at inference time. We show that this
paraphrase data can be mined in any language from Common Crawl using semantic sentence embeddings, thus removing the
need for labeled data. We evaluate our approach on English, French, and Spanish simplification benchmarks and closely match
or outperform the previous best supervised results, despite not using any labeled simplification data. We push the state of the
art further by incorporating labeled simplification data.

1. Introduction
Sentence simplification is the task of making a sen-
tence easier to read and understand by reducing its lex-
ical and syntactic complexity, while retaining most of
its original meaning. Simplification has a variety of
important societal applications, for example increas-
ing accessibility for those with cognitive disabilities
such as aphasia (Carroll et al., 1998), dyslexia (Rello
et al., 2013), and autism (Evans et al., 2014), or for
non-native speakers (Paetzold and Specia, 2016). Re-
search has mostly focused on English simplification,
where source texts and associated simplified texts ex-
ist and can be automatically aligned, such as English
Wikipedia and Simple English Wikipedia (Zhang and
Lapata, 2017). However, such data is limited in terms
of size and domain, and difficult to find in other lan-
guages. Additionally, simplifying a sentence can be
achieved in multiple ways, and depend on the target au-
dience. Simplification guidelines are not uniquely de-
fined, outlined by the stark differences in English sim-
plification benchmarks (Alva-Manchego et al., 2020a).
This highlights the need for more general models that
can adjust to different simplification scenarios.
In this paper, we propose to train controllable models
using sentence-level paraphrase data only, i.e. paral-
lel sentences that have the same meaning but phrased
differently. In order to generate simplifications and
not paraphrases at test time, we use ACCESS (Mar-
tin et al., 2020) to control attributes such as length,
lexical and syntactic complexity. Paraphrase data is
more readily available, and opens the door to training
flexible models that can adjust to more varied simpli-
fication scenarios. Our original goal was to mine sim-
plifications from the web, but we surprisingly discov-
ered that mining paraphrases leads to controllable mod-
els with better simplification performance while being

more straightforward and requiring less prior assump-
tions (cf. Section 5.5). We gather such paraphrase data
in any language by mining sentences from Common
Crawl using semantic sentence embeddings. Simplifi-
cation models trained on mined paraphrase data prove
to work as well as models trained on large existing En-
glish paraphrase corpora (cf. Appendix D).
Our resulting Multilingual Unsupervised Sentence
Simplification method, MUSS, is unsupervised be-
cause it can be trained without relying on labeled sim-
plification data,1 even though we mine using super-
vised sentence embeddings.2 We apply MUSS on En-
glish, French, and Spanish to closely match or outper-
form the supervised state of the art in all languages.
MUSS further improves the state of the art on all En-
glish datasets by incorporating additional labeled sim-
plification data. We make the following contributions:

• We introduce a novel approach to training sim-
plification models with paraphrase data only and
propose a mining procedure to create large para-
phrase corpora for any language.

• Our approach obtains strong performance. With-
out any labeled simplification data, we match or
outperform the supervised state of the art in En-
glish, French and Spanish. We further improve the

1We use the term labeled simplifications to refer to paral-
lel datasets where texts were manually simplified by humans.

2Previous works have also used the term unsupervised
simplification to describe works that do not use any labeled
parallel simplification data while leveraging supervised com-
ponents such as constituency parsers and knowledge bases
(Kumar et al., 2020), external synonymy lexicons (Surya et
al., 2019), and databases of simplified synonyms (Zhao et al.,
2020). We shall come back to these works in Section 2.
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English state of the art by incorporating labeled
simplification data.

• We release pretrained models, paraphrase data,
and code for mining and training.3

2. Related work
Data-driven methods have been predominant in En-
glish sentence simplification in recent years (Alva-
Manchego et al., 2020b), requiring large supervised
training corpora of complex-simple aligned sentences
(Wubben et al., 2012; Xu et al., 2016; Zhang and La-
pata, 2017; Zhao et al., 2018; Martin et al., 2020).
Methods have automatically aligned English and Sim-
ple English Wikipedia articles (Zhu et al., 2010; Coster
and Kauchak, 2011; Woodsend and Lapata, 2011;
Kauchak, 2013; Zhang and Lapata, 2017). Professional
quality datasets such as Newsela (Xu et al., 2015) exist,
but they are rare and come with restrictive licenses that
hinder reproducibility and widespread usage.
Simplification in other languages has been explored
in Brazilian Portuguese (Aluı́sio et al., 2008), Span-
ish (Saggion et al., 2015; Štajner et al., 2015), Italian
(Brunato et al., 2015; Tonelli et al., 2016), Japanese
(Goto et al., 2015; Kajiwara and Komachi, 2018; Kat-
suta and Yamamoto, 2019), and French (Gala et al.,
2020). Research is hindered by a lack of large parallel
corpora. In this work, we show that training on mined
data can reach state-of-the-art results in each language.
When labeled parallel simplification data is unavail-
able, systems rely on unsupervised simplification, of-
ten inspired from machine translation. The prevail-
ing approach splits a monolingual corpora into sets of
complex and simple sentences using readability met-
rics. Then simplification models are trained using au-
tomatic sentence alignments (Kajiwara and Komachi,
2016; Kajiwara and Komachi, 2018), auto-encoders
(Surya et al., 2019; Zhao et al., 2020), unsupervised
machine translation (Katsuta and Yamamoto, 2019), or
back-translation (Aprosio et al., 2019). Other unsu-
pervised approaches iteratively edit the sentence un-
til a certain criterion is reached (Kumar et al., 2020),
or use machine translation data to adapt English sim-
plification models for other languages (Mallinson et
al., 2020). The performance of unsupervised methods
are often below their supervised counterparts. MUSS
bridges the gap with supervised method and removes
the need for deciding in advance how complex and sim-
ple sentences should be separated, but instead trains di-
rectly on paraphrases mined from the raw corpora.
Previous work on parallel dataset mining have been
used mostly in machine translation using document re-
trieval (Munteanu and Marcu, 2005), language models
(Koehn et al., 2018; Koehn et al., 2019), and embed-
ding space alignment (Artetxe and Schwenk, 2019b)
to create large corpora (Tiedemann, 2012; Schwenk

3https://github.com/facebookresearch/
muss

Type # Sequence # Avg. Tokens
Pairs per Sequence

WikiLarge Labeled Parallel 296,402 original: 21.7
(English) Simplifications simple: 16.0
Newsela Labeled Parallel 94,206 original: 23.4
(English) Simplifications simple: 14.2

English Mined 1,194,945 22.3
French Mined 1,360,422 18.7
Spanish Mined 996,609 22.8

Table 1: Statistics on our mined paraphrase training
corpora compared to standard simplification datasets
(see section 4.3 for more details).

et al., 2019). We focus on paraphrasing for sentence
simplifications, which presents new challenges. Unlike
machine translation, where the same sentence should
be identified in two languages, we develop a method
to identify varied paraphrases of sentences, that have
a wider array of surface forms, including different
lengths, multiple sentences, different vocabulary usage,
and removal of content from more complex sentences.
Previous unsupervised paraphrasing research has
aligned sentences from parallel corpora (Barzilay and
Lee, 2003) with multiple objective functions (Liu et
al., 2019). Bilingual pivoting relied on MT datasets
to create large databases of word-level paraphrases
(Pavlick et al., 2015), lexical simplifications (Pavlick
and Callison-Burch, 2016; Kriz et al., 2018), or
sentence-level paraphrase corpora (Wieting and Gim-
pel, 2018). This has not been applied to multiple lan-
guages or to sentence-level simplification. We also use
raw monolingual data to create our paraphrase corpora
instead of relying on parallel MT datasets.

3. Method
We now describe MUSS, our approach to training con-
trollable simplification models on mined data.

3.1. Mining Paraphrases in Many Languages
Extracting Sequences Simplification consists of
multiple rewriting operations, some of which span mul-
tiple sentences (e.g. sentence splitting or fusion). To
allow such operations to be represented in our mined
data, we extract chunks of text composed of multiple
sentences that we call sequences.
We extract such sequences by first tokeniz-
ing a document into individual sentences
{s1, s2, . . . , sn} using NLTK (Bird and Loper,
2004). We then extract sequences of adjacent sen-
tences with maximum length of 300 characters:
{[s1], [s1, s2], [s1, . . . , sk], [s2], [s2, s3], ...}. Noisy
sequences are filtered out when they have more than
10% punctuation characters and when they have low
language model probability according to a 3-gram
language model trained with kenlm (Heafield, 2011)
on Wikipedia.
Source texts are taken from CCNet (Wenzek et al.,
2019), an extraction of Common Crawl (snapshot of

https://github.com/facebookresearch/muss
https://github.com/facebookresearch/muss
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the web). For English and French, we extract 1 bil-
lion sequences. For Spanish we extract 650 millions
sequences, the maximum for this language in CCNet
after filtering out noisy text.

Creating a Sequence Index Using Embeddings
To automatically mine our paraphrase corpora, we
first compute n-dimensional embeddings for each ex-
tracted sequence using LASER (Artetxe and Schwenk,
2019b). LASER provides joint multilingual sentence
embeddings in 93 languages that have been success-
fully applied to the task of bilingual bitext mining
(Schwenk et al., 2019). In this work, we show that
LASER can also be used to mine monolingual para-
phrase datasets but also highlights its limits (cf. Section
5.4). For each language we then index embeddings for
each sequence using faiss (Johnson et al., 2019) for
fast nearest neighbor search.

Mining Paraphrases We use each sequence as a
query qi against the billion-scale faiss index to re-
trieve the top-8 nearest neighbor in the LASER em-
bedding space (L2 distance). We then use an upper
bound on L2 distance and a margin criterion follow-
ing (Artetxe and Schwenk, 2019a) to filter out near-
est neighbors with low similarity. We refer the reader
to Appendix Section A.1 for more technical details.
The remaining nearest neighbors constitute a set of
candidate aligned paraphrases to the query sequence:
{(qi, ci,1), . . . , (qi, ci,k)}. We finally filter out poor
alignments: sequences that are almost identical with
Levenshtein distance ≤ 20%, sequences contained in
one another, or that were extracted from two overlap-
ping sliding windows of the same original document.
We report statistics of the mined corpora in English,
French and Spanish in Table 1, examples of mined
paraphrases in Appendix Table 7, and limits of this
mining method in Section 5.4. Models trained on
these mined paraphrases obtain similar performance
than models trained on existing paraphrase datasets (cf.
Appendix Section D).

3.2. Simplifying with ACCESS
In this section we describe how we adapt ACCESS
(Martin et al., 2020) to train controllable sequence-to-
sequence models on mined paraphrases, instead of la-
beled parallel simplifications. ACCESS is a method to
make any sequence-to-sequence model controllable by
conditioning on simplification-specific control tokens.

Training with Control Tokens At training time,
the model is provided with control tokens that give
oracle information on the target sequence, such as the
amount of compression between the target and the
source (length control). For example, when the target
sequence is 80% of the length of the source sequence,
the control token <NumChars 80%> is provided. At
inference time generation can be controlled by select-
ing a given target control value. We adapt the original
Levenshtein similarity control to only consider replace

operations but otherwise use the same controls as (Mar-
tin et al., 2020). The controls used are: character length
ratio, replace-only Levenshtein similarity, aggregated
word frequency ratio, and dependency tree depth ratio.
We thus prepend to every source in the training set
the following 4 control tokens with sample-specific
values: <NumChars XX%> <LevSim YY%>
<WordFreq ZZ%> <DepTreeDepth TT%>. We
refer the reader to the original paper (Martin et al.,
2020) and Appendix A.2 for details on ACCESS and
how those control tokens are computed.

Selecting Control Values at Inference After train-
ing with oracle controls, we can adjust them at infer-
ence to obtain the desired type of simplifications, for
instance using shorter sentences for people with cog-
nitive disabilities, or using more frequent words for
second language learners. It is important that super-
vised and unsupervised simplification systems can be
adapted to different conditions: (Kumar et al., 2020)
choose operation-specific weights of their unsuper-
vised simplification model for each benchmark and
(Surya et al., 2019) select different models using SARI
(Xu et al., 2016) on each validation set. Similarly,
we set the 4 control hyper-parameters of ACCESS us-
ing SARI on each validation set and keep them fixed
for samples in the test set.4. These control hyper-
parameters are intuitive and easy to interpret: when no
validation set is available, they can also be set using
prior knowledge on the task and still lead to solid per-
formance (cf. Appendix C).

3.3. Leveraging Unsupervised Pretraining
We combine our controllable models with unsuper-
vised pretraining. For English, we finetune the pre-
trained generative model BART (Lewis et al., 2019)
with ACCESS control tokens on our newly created
training corpora. BART is a pretrained sequence-
to-sequence model that generalizes other recent pre-
trained methods such as BERT (Devlin et al., 2018) for
encoder-decoder models. For non-English, we use its
multilingual version MBART (Liu et al., 2020), pre-
trained on 25 languages.

4. Experimental Setting
We assess the performance of our approach on three
languages: English, French, and Spanish. Technical
details for mining and training can be found in Ap-
pendix Section A. In all our experiments, we report
scores on the test sets averaged over 5 random seeds
with 95% confidence intervals.

4.1. Baselines
In addition to comparisons with previous works, we
implement multiple baselines to assess the perfor-
mance of our models, especially for French and Span-
ish where no previous simplification systems have
open-source implementations.

4Details in Appendix A.2
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ASSET (en) TurkCorpus (en) Newsela (en)
SARI ↑ FKGL ↓ SARI ↑ FKGL ↓ SARI ↑ FKGL ↓

Baselines and Gold Reference

Gold Reference 44.87±0.36 6.49±0.15 40.04±0.30 8.77±0.08 — —

Unsupervised Systems

BTRLTS (Zhao et al., 2020) 33.95 7.59 33.09 8.39 37.22 3.80
UNTS (Surya et al., 2019) 35.19 7.60 36.29 7.60 — —
RM+EX+LS+RO (Kumar et al., 2020) 36.67 7.33 37.27 7.33 38.33 2.98

MUSS (mined data only) 42.65±0.23 8.23±0.62 40.85±0.15 8.79±0.30 38.09±0.59 5.12±0.47

Supervised Systems

EditNTS (Dong et al., 2019) 34.95 8.38 37.66 8.38 39.30 3.90
DMASS-DCSS (Zhao et al., 2018) 38.67 7.73 39.92 7.73 — —
ACCESS(Martin et al., 2020) 40.13 7.29 41.38 7.29 — —

MUSS (labeled data only) 43.63±0.71 6.25±0.42 42.62±0.27 6.98±0.95 42.59±1.00 2.74±0.98

MUSS (labeled + mined data) 44.15±0.56 6.05±0.51 42.53±0.36 7.60±1.06 41.17±0.95 2.70±1.00

Table 2: Unsupervised and Supervised Sentence Simplification for English. We display SARI and FKGL on
ASSET, TurkCorpus and Newsela test sets for English. Supervised models are trained on WikiLarge for the first
two test sets, and Newsela for the last. Best SARI scores within confidence intervals are in bold.

Identity The entire original sequence is kept un-
changed and used as the simplification.
Truncation The original sequence is truncated to the
first 80% words. It is a strong baseline according to
standard simplification metrics.
Pivot We use machine translation to use English
models in other languages. The source non-English
sentence is translated to English, simplified with our
best supervised English model, and translated back into
the source language. For French and Spanish transla-
tion, we use CCMATRIX (Schwenk et al., 2019) to train
Transformer models with LayerDrop (Fan et al., 2019).
We use MUSS trained on mined data + WikiLarge as
the English simplification model.
Gold Reference We report gold reference scores for
multi-reference datasets ASSET and TurkCorpus. We
evaluate each reference against all others in a leave-
one-out scenario, and then average the scores.

4.2. Evaluation Metrics
We evaluate with the standard metrics SARI and FKGL
(Kincaid et al., 1975). We report BLEU (Papineni et
al., 2002) only in Appendix Table 11 due its dubious
suitability for simplification (Sulem et al., 2018).
SARI Sentence simplification is commonly evalu-
ated with SARI (Xu et al., 2016), which compares
model-generated simplifications with the source se-
quence and gold references. It averages F1 scores for
addition, keep, and deletion operations. We compute
SARI with the EASSE simplification evaluation suite
(Alva-Manchego et al., 2019).5

5We use the EASSE library (Alva-Manchego et al., 2019)
to compute SARI. We recompute scores using previous

ALECTOR (fr) Newsela (es)
Baselines SARI ↑ SARI ↑

Identity 26.16 16.99
Truncate 33.44 27.34
Pivot 33.48±0.37 36.19±0.34

MUSS† 41.73±0.67 35.67±0.46

Table 3: Unsupervised Sentence Simplification in
French and Spanish. We display SARI scores in
French (ALECTOR) and Spanish (Newsela). Best
SARI scores within confidence intervals are in bold.
†MBART+ACCESS model.

FKGL We report readability scores using Flesch-
Kincaid Grade Level (FKGL) (Kincaid et al., 1975),
that combines of sentence lengths and word lengths.
FKGL was designed to be used on English texts only,
we do not report it on French and Spanish.

4.3. Training Data
For all languages we use the mined data described in
Table 1 as training data. In English we show that train-
ing with additional labeled simplification data leads to
better performance. We use two labeled datasets: Wik-
iLarge (Zhang and Lapata, 2017) and Newsela (Xu et
al., 2015). WikiLarge is composed of 296k simplifi-
cations automatically aligned from English Wikipedia
and Simple English Wikipedia. Newsela is a collection
of news articles with professional simplifications, later
aligned into 94k simplifications by (Zhang and Lapata,

work’s system predictions available in EASSE.
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2017).6

4.4. Evaluation Data
English We evaluate our English models on ASSET
(Alva-Manchego et al., 2020a), TurkCorpus (Xu et al.,
2016) and Newsela (Xu et al., 2015). TurkCorpus and
ASSET were created using the same 2000 valid and
359 test source sentences and they respectively con-
tain 8 and 10 reference simplifications per source sen-
tence. ASSET features more varied set of rewriting
operations than TurkCorpus, and is considered simpler
by human judges (Alva-Manchego et al., 2020a). For
Newsela, we evaluate on the split from (Zhang and La-
pata, 2017), which includes 1129 validation and 1077
test sentence pairs.

French We use the French ALECTOR dataset (Gala
et al., 2020). ALECTOR is a collection of literary
(tales, stories) and scientific (documentary) texts along
with their manual document-level simplified versions.
These documents were extracted from material avail-
able to French primary school pupils. We split the
dataset in 450 validation and 416 test sentence pairs
(see Appendix A.3 for details).

Spanish We use the Spanish part of Newsela (Xu
et al., 2015). We use the alignments from (Aprosio et
al., 2019), composed of 2794 validation and 2795 test
sentence pairs. Even though sentences were aligned us-
ing the CATS simplification alignment tool (Štajner et
al., 2018), some alignment errors remain and automatic
scores should be taken with a pinch of salt.

5. Results
5.1. English Simplification
We report MUSS scores in Table 2. We also compare
to other state-of-the-art supervised models: DMASS-
DCSS (Zhao et al., 2018), EditNTS (Dong et al., 2019),
ACCESS (Martin et al., 2020); and unsupervised mod-
els: UNTS (Surya et al., 2019), BTRLTS (Zhao et al.,
2020), and RM+EX+LS+RO (Kumar et al., 2020).

MUSS Unsupervised Results On the ASSET
benchmark, with no labeled simplification data, MUSS
obtains a +5.98 SARI improvement with respect to pre-
vious unsupervised methods, and a +2.52 SARI im-
provement over the state-of-the-art supervised meth-
ods. For the TurkCorpus and Newsela datasets, the
unsupervised MUSS approach achieves strong results,
either outperforming or closely matching unsupervised
and supervised previous works.

MUSS Supervised Results When incorporating la-
beled data from WikiLarge and Newsela, MUSS ob-
tains state-of-the-art results on all datasets. Using la-
beled data along with mined data does not always help
compared to training only with labeled data, especially

6We experimented with other alignments (wiki-auto and
newsela-auto (Jiang et al., 2020)) but with lower perfor-
mance.

with the Newsela training set. Newsela is a high qual-
ity dataset focused on the specific domain of news arti-
cles. It might not benefit from additional lesser quality
mined data.

Examples of Simplifications Various examples from
our unsupervised system are shown in Table 4. Ex-
amining the simplifications, we see reduced sentence
length, sentence splitting, and simpler vocabulary us-
age. For example, the words in the town’s western out-
skirts is changed into near the town and aerial nests is
simplified into nests in the air. We also witnessed er-
rors related factual consistency. For instance related to
named entity hallucination or disappearance. Tackling
this problem would be interesting for future work.

5.2. French and Spanish Simplification
Our unsupervised approach to simplification can be ap-
plied to any language. Similar to English, we create
a corpus of paraphrases composed of 1.4 million se-
quence pairs in French and 1.0 million sequence pairs
in Spanish (cf. Table 1). We replace the monolin-
gual BART with its multilingual counterpart MBART,
trained on 25 languages. We report the performance of
models trained on the mined corpus in Table 3. Un-
like English, where labeled parallel training data has
been created using Simple English Wikipedia, no such
datasets exist for French or Spanish. Similarly, no other
simplification systems are available in these languages.
We thus compare to the identity, truncation and pivot
baselines.

Results MUSS outperforms our strongest baseline
by +8.25 SARI for French, while matching the pivot
baseline performance for Spanish.
Besides using state-of-the-art machine translation mod-
els, the pivot baseline relies on a strong backbone sim-
plification model that has two advantages compared to
the French and Spanish simplification model. First the
simplification model of the pivot baseline was trained
on labeled simplification data from WikiLarge, which
obtains +1.5 SARI in English compared to training
only on mined data. Second it uses the stronger mono-
lingual BART model instead of MBART. In Appendix
Table 11, we can see that MBART has a small loss in
performance of 1.54 SARI compared to its monolin-
gual counterpart BART, due to the fact that it handles
25 languages instead of one. Further improvements
could be achieved by using monolingual BART models
trained for French or Spanish, possibly outperforming
the pivot baseline.

5.3. Human Evaluation
We further validate our approach with a human evalu-
ation in all languages according to adequacy, fluency,
and simplicity and report the results in Table 5.

Human Ratings Collection For human evaluation,
we recruit volunteer native speakers for each language
(5 in English, 2 in French, and 2 in Spanish). Simplifi-
cation are evaluated on a 5 point Likert scale (0-4) ac-
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Original History Landsberg prison, which is in the town’s western outskirts, was completed in 1910.
Simplified The Landsberg prison, which is near the town, was built in 1910.

Original The name ”hornet” is used for this and related species primarily because of their habit of making aerial
nests (similar to the true hornets) rather than subterranean nests.

Simplified The name ”hornet” is used for this and related species because they make nests in the air (like the true hornets)
rather than in the ground.

Original Nocturnes is an orchestral composition in three movements by the French composer Claude Debussy.
Simplified Nocturnes is a piece of music for orchestra by the French composer Claude Debussy.

Table 4: Examples of Generated Simplifications. We show simplifications generated by our best unsupervised
model: MUSS trained on mined data only. Bold highlights differences between original and simplified.

Seq2Seq BART+ACCESS
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45
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RI

Paraphrases
Simplifications

(a) Simplifications vs. Paraphrases

1K 10K 100K 1.2M (full)
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(b) Large-Scale Mining

Seq2Seq ACCESS BART BART
+ACCESS
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(c) BART and ACCESS

Figure 1: Ablations We display averaged SARI scores on the English ASSET test set with 95% confidence inter-
vals (5 runs). (a) Models trained on mined simplifications or mined paraphrases, (b) MUSS trained on varying
amounts of mined data, (c) Models trained with or without BART and/or ACCESS.

cording to: adequacy (is the meaning preserved?), flu-
ency (is the simplification fluent?) and simplicity (is the
simplification actually simpler?). For each system and
each language, 50 simplifications are annotated. Each
simplification is rated once. The simplifications are
sampled from ASSET (English), ALECTOR (French),
and Newsela (Spanish).

Discussion Table 5 displays the average ratings with
95% confidence intervals. Human judgments show that
MUSS models are more fluent and produce simpler
outputs than previous work (Martin et al., 2020). They
are deemed as fluent and simpler than the human sim-
plifications on ASSET test set, indicating that MUSS
is able to reach a high level of simplicity thanks to the
control mechanism. In French and Spanish, the unsu-
pervised MUSS model performs better or similar than
the supervised pivot baseline which has been trained on
labeled English simplifications.

5.4. Fine-grained Analysis of MUSS Outputs
In table 6, we analyse the types of simplifications
that MUSS performs using quality estimation features
computed with the EASSE library. We decompose the
SARI score into its three building blocks: F1 scores
accounting for n-gram additions, deletions and keeps.

Copying the Source Over Simplification systems
have suffered from not modifying the source sentence
enough and often fall back to keeping it entirely un-
changed (Wubben et al., 2012; Martin et al., 2020).
MUSS on the other hand almost never resorts to ex-
actly copying the source sentence which leads to higher

addition and deletion F1.

Mined Data limits Sentence Splitting MUSS rarely
perform sentence splitting when trained on mined data
only (3.45% of the time) while it becomes way better
at this operation when incorporating labelled data from
WikiLarge (34.26%). Investigating the mined data re-
veals that our mining approach was not able to mined
sentence splitting examples. Our intuition is that this
is due to the fact that LASER embeddings do not work
well across multiple sentences, thus preventing single
sentences to be matched with multiple corresponding
sentences. We identify mining sentence splitting ex-
amples as a promising direction of future work.

5.5. Ablations
Mining Simplifications vs. Paraphrases In this
work, we mined paraphrases to train simplification
models. This has the advantage of making fewer as-
sumptions earlier on, by keeping the mining and mod-
els as general as possible.We also compared to directly
mining simplifications using heuristics that enforces
the target sentence to be simpler than the source similar
to (Kajiwara and Komachi, 2016; Surya et al., 2019).
We do so by first mining paraphrases without any con-
straints and then keeping only pairs that either contain
sentence splits, reduced sequence length, or simpler
vocabulary. We tuned these heuristics with validation
SARI. The resulting dataset has 2.7 million simplifica-
tion pairs. Figure 1a shows that seq2seq models trained
on mined paraphrases achieve better performance. A
similar trend exists with BART and ACCESS, con-
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English French Spanish
Adequacy Fluency Simplicity Adequacy Fluency Simplicity Adequacy Fluency Simplicity

ACCESS (Martin et al., 2020) 3.10±0.32 3.46±0.28 1.40±0.29 — — — — — —
Pivot baseline — — — 1.78±0.40 2.10±0.47 1.16±0.31 2.02±0.28 3.48±0.22 2.20±0.29

Gold Reference 3.71±0.18 3.78±0.18 1.78±0.30 3.56±0.21 3.92±0.10 1.71±0.32 3.12±0.29 3.52±0.25 1.70±0.46

MUSS (mined data) 3.20±0.28 3.84±0.14 1.88±0.33 2.88±0.34 3.50±0.32 1.22±0.25 2.26±0.29 3.48±0.25 2.56±0.29

MUSS (mined + labeled data) 3.12±0.34 3.90±0.14 2.22±0.36 — — — — — —

Table 5: Human Evaluation Human ratings of adequacy, fluency and simplicity for ACCESS (Martin et al.,
2020), pivot baseline, reference human simplifications, and MUSS. Scores are averaged over 50 ratings per system
with 95% confidence intervals.

Operation-specific SARI (F1 scores) ↑ Quality Estimation (%)
Additions Deletions Keeps Exact Copies Compression Sent. Splits

BTRLTS (Zhao et al., 2020) 1.99 42.09 57.77 19.22 91.72 16.43
UNTS (Surya et al., 2019) 0.83 45.98 58.75 21.45 85.34 1.39
RM+EX+LS+RO (Kumar et al., 2020) 1.29 51.33 57.40 12.81 84.73 2.51

MUSS (mined data only) 8.09±0.74 60.87±0.61 59.00±0.48 0.11±0.19 88.61±7.16 3.45±2.31

EditNTS (Dong et al., 2019) 2.41 42.69 59.73 11.70 83.74 0.00
DMASS-DCSS (Zhao et al., 2018) 4.36 51.37 60.29 5.29 88.96 6.13
ACCESS(Martin et al., 2020) 6.54 50.85 62.99 4.18 94.08 20.89

MUSS (mined + labeled data) 11.14±0.34 60.40±1.64 60.90±1.30 0.11±0.19 88.92±3.34 34.26±12.97

Table 6: Fine-grained Analysis of MUSS We compare MUSS predictions with other systems on ASSET using
the three operation-specific SARI components, % of simplifications which are exact copies of the source, average
compression ratios, and % of simplifications with sentence splits.

firming that mining paraphrases can obtain better per-
formance than mining simplifications.

How Much Mined Data Do You Need? In Fig-
ure 1b, we analyze the performance of training our best
model on English on different amounts of mined data.
By increasing the number of mined pairs, SARI drasti-
cally improves, indicating that efficient mining at scale
is critical to performance. Unlike human-created train-
ing sets, unsupervised mining allows for large datasets
in multiple languages.

Improvements from Pretraining and Control We
compare the respective influence of pretraining BART
and controllable generation ACCESS in Figure 1c.
While both BART and ACCESS bring improvement
over standard sequence-to-sequence, they work best in
combination. Unlike previous approaches to text sim-
plification, we use pretraining in our models. We find
that the main qualitative improvement from pretraining
is increased fluency and meaning preservation. For ex-
ample, in Appendix Table 10, the model trained only
with ACCESS substituted culturally akin with cultur-
ally much like, but when using BART, it is simplified to
the more fluent closely related. While our mined data
contains millions of sentences, pretraining methods are
typically trained on billions thus enhancing the fluency
and simplification performance.

6. Discussion
Since the pre-publication of this work, the pretrained
model with controllable mechanism recipe has been ex-

plored in more details for English supervised simplifi-
cation (Sheang and Saggion, 2021). Interestingly, the
authors have found that using the T5 pretrained model
(Raffel et al., 2020) in place of BART leads to an im-
provement in automatic metrics. Their T5+ACCESS
setup trained on WikiLarge increases the performance
with respectively 45.04 and 43.31 SARI on ASSET and
TurkCorpus. They also highlight that adding control to-
kens to pretrained models leads to significant boosts in
performance (up to +10.89 SARI) compared to using
pretrained models only. Training controllable models
in more settings and possibly other tasks thus appears
as an interesting area of future work.

7. Conclusion
We propose a sentence simplification approach that
does not rely on labeled parallel simplification data
thanks to controllable generation, pretraining and
large-scale mining of paraphrases from the web. This
approach is language-agnostic and matches or outper-
forms previous state-of-the-art results, even from su-
pervised systems that use labeled simplification data,
on three languages: English, French, and Spanish. In
future work, we plan to investigate how to scale this ap-
proach to more languages and types of simplification,
and to apply this method to paraphrase generation. An-
other interesting direction for future work would to ex-
amine and improve factual consistency, especially re-
lated to named entity hallucination or disappearance.
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Appendices
A. Experimental details

In this section we describe specific details of our ex-
perimental procedure. Figure 2 is a overall reminder of
our method presented in the main paper.

Figure 2: Sentence Simplification Models for Any
Language without Simplification Data. Sentences
from the web are used to create a large scale index that
allows mining millions of paraphrases. Subsequently,
we finetune pretrained models augmented with control-
lable mechanisms on the paraphrase corpora to achieve
sentence simplification models in any language.

A.1. Mining Details
Sequence Extraction We only consider documents
from the HEAD split in CCNet— this represents the
third of the data with the best perplexity using a lan-
guage model.

Paraphrase Mining We compute LASER embed-
dings of dimension 1024 and reduce dimensionality
with a 512 PCA followed by random rotation. We fur-
ther compress them using 8 bit scalar quantization. The
compressed embeddings are then stored in a faiss in-
verted file index with 32,768 cells (nprobe=16). These
embeddings are used to mine pairs of paraphrases. We
return the top-8 nearest neighbors, and keep those with
L2 distance lower than 0.05 and relative distance com-
pared to other top-8 nearest neighbors lower than 0.6.

Paraphrases Filtering The resulting paraphrases are
filtered to remove almost identical paraphrases by en-
forcing a case-insensitive character-level Levenshtein
distance (Levenshtein, 1966) greater or equal to 20%.
We remove paraphrases that come from the same docu-
ment to avoid aligning sequences that overlapped each
other in the text. We also remove paraphrases where
one of the sequence is contained in the other. We fur-
ther filter out any sequence that is present in our evalu-
ation datasets.

A.2. Training Details
Seq2Seq training We implement our models with
fairseq (Ott et al., 2019). All our models are Trans-
formers (Vaswani et al., 2017) based on the BARTLarge
architecture (388M parameters), keeping the optimiza-
tion procedure and hyper-parameters fixed to those
used in the original implementation (Lewis et al.,

2019)7. We either randomly initialize weights for the
standard sequence-to-sequence experiments or initial-
ize with pretrained BART for the BART experiments.
When initializing the weights randomly, we use a learn-
ing rate of 3.10−4 versus the original 3.10−5 when fine-
tuning BART. For a given seed, the model is trained on
8 Nvidia V100 GPUs during approximately 10 hours.

Controllable Generation For controllable genera-
tion, we use the open-source ACCESS implementation
(Martin et al., 2018). We use the same control param-
eters as the original paper, namely length, Levenshtein
similarity, lexical complexity, and syntactic complex-
ity.8

As mentioned in Section ”Simplifying with
ACCESS”, we select the 4 ACCESS hyper-
parameters using SARI on the validation set. We use
zero-order optimization with the NEVERGRAD library
(Rapin and Teytaud, 2018). We use the OnePlusOne
optimizer with a budget of 64 evaluations (approx-
imately 1 hour of optimization on a single GPU).
The hyper-parameters are contained in the [0.2, 1.5]
interval.
The 4 hyper-parameter values are then kept fixed for all
sentences in the associated test set.

Translation Model for Pivot Baseline For the pivot
baseline we train models on ccMatrix (Schwenk et
al., 2019). Our models use the Transformer architec-
ture with 240 million parameters with LayerDrop (Fan
et al., 2019). We train for 36 hours on 8 GPUs follow-
ing the suggested parameters in (Ott et al., 2019).

Gold Reference Baseline To avoid creating a dis-
crepancy in terms of number of references between the
gold reference scores, where we leave one reference
out, and when we evaluate the models with all refer-
ences, we compensate by duplicating one of the other
references at random so that the total number of refer-
ences is unchanged.

A.3. Evaluation Details
SARI score computation We use the latest version
of SARI implemented in EASSE (Alva-Manchego et
al., 2019) which fixes bugs and inconsistencies from
the traditional implementation of SARI. As a conse-
quence, we also recompute scores from previous sys-
tems that we compare to. We do so by using the sys-
tem predictions provided by the respective authors, and
available in EASSE.

7All hyper-parameters and training commands for
fairseq can be found here: https://github.com/
pytorch/fairseq/blob/master/examples/
bart/README.summarization.md

8We modify the Levenshtein similarity parameter to only
consider replace operations, by assigning a 0 weight to inser-
tions and deletions. This change helps decorrelate the Leven-
shtein similarity control token from the length control token
and produced better results in preliminary experiments.

https://github.com/pytorch/fairseq/blob/master/examples/bart/README.summarization.md
https://github.com/pytorch/fairseq/blob/master/examples/bart/README.summarization.md
https://github.com/pytorch/fairseq/blob/master/examples/bart/README.summarization.md
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ALECTOR Sentence-level Alignment The ALEC-
TOR corpus comes as source documents and their man-
ual simplifications but not sentence-level alignment is
provided. Luckily, most of these documents were sim-
plified line by line, each line consisting of a few sen-
tences. For each source document, we therefore align
each line, provided it is not too long (less than 6 sen-
tences), with the most appropriate line in the simplified
document, using the LASER embedding space. The
resulting alignments are split into validation and test
by randomly sampling the documents for the valida-
tion (450 sentence pairs) and rest for test (416 sentence
pairs).

A.4. Links to Datasets
The datasets we used are available at the following ad-
dresses:

• CCNet:
https://github.com/
facebookresearch/cc_net.

• WikiLarge:
https://github.com/XingxingZhang/
dress.

• ASSET:
https://github.com/
facebookresearch/asset or https:
//github.com/feralvam/easse.

• TurkCorpus:
https://github.com/cocoxu/
simplification/ or https://github.
com/feralvam/easse.

• Newsela: This dataset has to be requested at
https://newsela.com/data.

• ALECTOR: This dataset has to be requested from
the authors (Gala et al., 2020).

B. Characteristics of the mined data
We show in Figure 3 the distribution of different sur-
face features of our mined data versus those of Wiki-
Large. Some examples of mined paraphrases are shown
in Table 7.

C. Set ACCESS Control Parameters
Without Parallel Data

In our experiments we adjusted our model to the differ-
ent dataset conditions by selecting our ACCESS con-
trol tokens with SARI on each validation set. When
no such parallel validation set exists, we show that
strong performance can still be obtained by using prior
knowledge for the given downstream application. This
can be done by setting all 4 ACCESS control hyper-
parameters to an intuitive guess of the desired compres-
sion ratio.

To illustrate this for the considered evaluation datasets,
we first independently sample 50 source sentences and
50 random unaligned simple sentences from each vali-
dation set. These two groups of non-parallel sentences
are used to approximate the character-level compres-
sion ratio between complex and simplified sentences.
We do so by dividing the average length of the simpli-
fied sentences by the average length of the 50 source
sentences. We finally use this approximated com-
pression ratio as the value of all 4 ACCESS hyper-
parameters. In practice, we obtain the following ap-
proximations: ASSET = 0.8, TurkCorpus = 0.95, and
Newsela = 0.4 (rounded to 0.05). Results in Table 8
show that the resulting model performs very close to
when we adjust the ACCESS hyper-parameters using
SARI on the complete validation set.

D. Comparing to Existing Paraphrase
Datasets

We compare using our mined paraphrase data with ex-
isting large-scale paraphrase datasets in Table 9. We
use PARANMT (Wieting and Gimpel, 2018), a large
paraphrase dataset created using back-translation on an
existing labeled parallel machine translation dataset.
We use the same 5 million top-scoring sentences that
the authors used to train their sentence embeddings.
Training MUSS on the mined data or on PARANMT
obtains similar results for text simplification, confirm-
ing that mining paraphrase data is a viable alternative
to using existing paraphrase datasets relying on labeled
parallel machine translation corpora.

E. Influence of BART on Fluency
In Table 10, we present some selected samples that
highlight the improved fluency of simplifications when
using BART.

F. Additional Scores
BLEU We report additional BLEU scores for com-
pleteness. These results are displayed along with SARI
and FKGL for English. These BLEU scores should
be carefully interpreted. They have been found to
correlate poorly with human judgments of simplicity
(Sulem et al., 2018). Furthermore, the identity base-
line achieves very high BLEU scores on some datasets
(e.g. 92.81 on ASSET or 99.36 on TurkCorpus), which
underlines the weaknesses of this metric.

Validation Scores We report English validation
scores to foster reproducibility in Table 12.

Seq2Seq Models on Mined Data When training a
Transformer sequence-to-sequence model (Seq2Seq)
on WikiLarge compared to the mined corpus, models
trained on the mined data perform better. It is surpris-
ing that a model trained solely on paraphrases achieves
such good results on simplification benchmarks. Previ-
ous works have shown that simplification models suffer
from not making enough modifications to the source

https://github.com/facebookresearch/cc_net
https://github.com/facebookresearch/cc_net
https://github.com/XingxingZhang/dress
https://github.com/XingxingZhang/dress
https://github.com/facebookresearch/asset
https://github.com/facebookresearch/asset
https://github.com/feralvam/easse
https://github.com/feralvam/easse
https://github.com/cocoxu/simplification/
https://github.com/cocoxu/simplification/
https://github.com/feralvam/easse
https://github.com/feralvam/easse
https://newsela.com/data
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Figure 3: Density of several text features in WikiLarge and our mined data. The WordRank ratio is a measure
of lexical complexity reduction (Martin et al., 2020). Replace-only Levenshtein similarity only considers replace
operations in the traditional Levenshtein similarity and assigns 0 weights to insertions and deletions.

Query For insulation, it uses foam-injected polyurethane which helps ensure the quality of the ice produced by
the machine. It comes with an easy to clean air filter.

Mined It has polyurethane for insulation which is foam-injected. This helps to maintain the quality of the ice it
produces. The unit has an easy to clean air filter.

Query Here are some useful tips and tricks to identify and manage your stress.
Mined Here are some tips and remedies you can follow to manage and control your anxiety.

Query As cancer cells break apart, their contents are released into the blood.
Mined When brain cells die, their contents are partially spilled back into the blood in the form of debris.

Query The trail is ideal for taking a short hike with small children or a longer, more rugged overnight trip.
Mined It is the ideal location for a short stroll, a nature walk or a longer walk.

Query Thank you for joining us, and please check out the site.
Mined Thank you for calling us. Please check the website.

Table 7: Examples of Mined Paraphrases. Paraphrases, although sometimes not preserving the entire meaning,
display various rewriting operations, such as lexical substitution, compression or sentence splitting.

ASSET TurkCor. Newsela
Method SARI ↑ SARI ↑ SARI ↑

SARI on valid 42.65±0.23 40.85±0.15 38.09±0.59

Approx. value 42.49±0.34 39.57±0.40 36.16±0.35

Table 8: Set ACCESS Controls Wo. Parallel Data
Setting ACCESS parameters of MUSS +MINED
model either using SARI on the validation set or using
only 50 unaligned sentence pairs from the validation
set. All ACCESS parameters are set to the same ap-
proximated value: ASSET = 0.8, TurkCorpus = 0.95,
and Newsela = 0.4).

ASSET TurkCor. Newsela
Data SARI ↑ SARI ↑ SARI ↑

MINED 42.65±0.23 40.85±0.15 38.09±0.59

PARANMT 42.50±0.33 40.50±0.16 39.11±0.88

Table 9: Mined Data vs. ParaNMT
We compare SARI scores of MUSS trained either on
our mined data or on PARANMT (Wieting and Gim-
pel, 2018) on the test sets of ASSET, TurkCorpus and
Newsela.

sentence and found that forcing models to rewrite the
input was beneficial (Wubben et al., 2012; Martin et

al., 2020). This is confirmed when investigating the F1
deletion component of SARI which is 20 points higher
for the model trained on paraphrases.
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Original They are culturally akin to the coastal peoples of Papua New Guinea.
ACCESS They’re culturally much like the Papua New Guinea coastal peoples.
BART+ACCESS They are closely related to coastal people of Papua New Guinea

Original Orton and his wife welcomed Alanna Marie Orton on July 12, 2008.
ACCESS Orton and his wife had been called Alanna Marie Orton on July 12.
BART+ACCESS Orton and his wife gave birth to Alanna Marie Orton on July 12,

2008.

Original He settled in London, devoting himself chiefly to practical teaching.
ACCESS He set up in London and made himself mainly for teaching.
BART+ACCESS He settled in London and devoted himself to teaching.

Table 10: Influence of BART on Simplifications. We display some examples of generations that illustrate how
BART improves the fluency and meaning preservation of generated simplifications.

Data ASSET TurkCorpus Newsela
Baselines and Gold Reference SARI ↑ BLEU ↑ FKGL ↓ SARI ↑ BLEU ↑ FKGL ↓ SARI ↑ BLEU ↑ FKGL ↓

Identity Baseline — 20.73 92.81 10.02 26.29 99.36 10.02 — — —
Truncate Baseline — 29.85 84.94 7.91 33.10 88.82 7.91 — — —
Reference — 44.87±0.36 68.95±1.33 6.49±0.15 40.04±0.30 73.56±1.18 8.77±0.08 — — —

Supervised Systems (This Work)

Seq2Seq WikiLarge 32.71±1.55 88.56±1.06 8.62±0.34 35.79±0.89 90.24±2.52 8.63±0.34 22.23±1.99 21.75±0.45 8.00±0.26

MUSS WikiLarge 43.63±0.71 76.28±4.30 6.25±0.42 42.62±0.27 78.28±3.95 6.98±0.95 40.00±0.63 14.42±6.85 3.51±0.53

MUSS WikiLarge + MINED 44.15±0.56 72.98±4.27 6.05±0.51 42.53±0.36 78.17±2.20 7.60±1.06 39.50±0.42 15.52±0.99 3.19±0.49

MUSS Newsela 42.91±0.58 71.40±6.38 6.91±0.42 41.53±0.36 74.29±4.67 7.39±0.42 42.59±1.00 18.61±4.49 2.74±0.98

MUSS Newsela + MINED 41.36±0.48 78.35±2.83 6.96±0.26 40.01±0.51 83.77±1.00 8.26±0.36 41.17±0.95 16.87±4.55 2.70±1.00

Unsupervised Systems (This Work)

Seq2Seq MINED 38.03±0.63 61.76±2.19 9.41±0.07 38.06±0.47 63.70±2.43 9.43±0.07 30.36±0.71 12.98±0.32 8.85±0.13

MUSS (MBART) MINED 41.11±0.70 77.22±2.12 7.18±0.21 39.40±0.54 77.05±3.02 8.65±0.40 34.76±0.96 19.06±1.15 5.44±0.25

MUSS (BART) MINED 42.65±0.23 66.23±4.31 8.23±0.62 40.85±0.15 63.76±4.26 8.79±0.30 38.09±0.59 14.91±1.39 5.12±0.47

Table 11: Detailed English Results. We display SARI, BLEU, and FKGL on ASSET, TurkCorpus and Newsela
English evaluation datasets (test sets).

Data ASSET TurkCorpus Newsela
Baselines and Gold Reference SARI ↑ BLEU ↑ FKGL ↓ SARI ↑ BLEU ↑ FKGL ↓ SARI ↑ BLEU ↑ FKGL ↓

Identity Baseline — 22.53 94.44 9.49 26.96 99.27 9.49 12.00 20.69 8.77
Truncate Baseline — 29.95 86.67 7.39 32.90 89.10 7.40 24.64 18.97 6.90
Reference — 45.22±0.94 72.67±2.83 6.13±0.56 40.66±0.11 77.21±0.45 8.31±0.04 — — —

Supervised Systems (This Work)

Seq2Seq WikiLarge 33.87±1.90 90.21±1.14 8.31±0.34 35.87±1.09 91.06±2.24 8.31±0.34 20.89±4.08 20.97±0.53 8.27±0.46

MUSS WikiLarge 45.58±0.28 78.85±4.44 5.61±0.31 43.26±0.42 78.39±3.08 6.73±0.38 39.66±1.80 14.82±7.17 4.64±1.85

MUSS WikiLarge + MINED 45.50±0.69 73.16±4.41 5.83±0.51 43.17±0.19 77.52±3.01 7.19±1.02 40.50±0.56 16.30±0.97 3.57±0.60

MUSS Newsela 43.91±0.10 70.06±10.05 6.47±0.29 41.94±0.21 74.03±7.51 6.99±0.53 42.36±1.32 19.18±6.03 3.20±1.01

MUSS Newsela + MINED 42.48±0.41 77.86±3.13 6.41±0.13 40.77±0.52 83.04±1.16 7.68±0.30 41.68±1.60 17.23±5.28 2.97±0.91

Unsupervised Systems (This Work)

Seq2Seq MINED 38.88±0.22 61.80±0.94 8.63±0.13 37.51±0.10 62.04±0.91 8.64±0.13 30.35±0.23 13.04±0.45 8.87±0.12

MUSS (MBART) MINED 41.68±0.72 77.11±2.02 6.56±0.21 39.60±0.44 75.64±2.85 8.04±0.40 34.59±0.59 18.19±1.26 5.76±0.22

MUSS (BART) MINED 43.01±0.23 67.65±4.32 7.75±0.53 40.61±0.18 63.56±4.30 8.28±0.18 38.07±0.22 14.43±0.97 5.40±0.41

Table 12: English Results on Validation Sets. We display SARI, BLEU, and FKGL on ASSET, TurkCorpus and
Newsela English datasets (validation sets).
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