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Abstract 

We present a new audio-visual speech corpus (RUSAVIC) recorded in-the-wild in a vehicle environment and designed for noise-robust 

speech recognition. Our goal was to produce a speech corpus which is natural (recorded in real driving conditions), controlled (providing 

different SNR levels by windows open/closed, moving/idling vehicle, etc.), and adequate size (the amount of data is enough to train 

state-of-the-art NN approaches). We focus on the problem of audio-visual speech recognition: with the use of automated lip-reading to 

improve the performance of audio-based speech recognition in the presence of severe acoustic noise caused by road traffic. We also 

describe the equipment and procedures used to create RUSAVIC corpus. Data are collected in a synchronous way through several 

smartphones located at different angles and equipped with FullHD video camera and microphone. The corpus includes the recordings of 

20 drivers with minimum of 10 recording sessions for each. Besides providing a detailed description of the dataset and its collection 

pipeline, we evaluate several popular audio and visual speech recognition methods and present a set of baseline recognition results. At 

the moment RUSAVIC is a unique audio-visual corpus for the Russian language that is recorded in-the-wild condition and we make it 

publicly available. 
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1. Introduction 

In recent years, along with the rapid development of 
artificial intelligence technologies, the trend to 
multimodality has become very important and significantly 
boosted machine perception. Audio and visual information 
represent the two main perceptual modalities that we use in 
our daily life. Thus, in the past decades they have been 
widely researched and developed by both academy and 
industry. Speech technology has been advanced over the 
last 15 years, however, despite a significant success 
achieved in automatic speech recognition there are still a 
lot of challenges when the training and test data have 
mismatched noise conditions such as SNR or speaking 
styles (Shillingford et al., 2018). This becomes especially 
noticeable in need of a reliable speech recognizer inside of 
a vehicle. Unfortunately, at the moment there is no noise-
robust speech recognition system to be used in real-driving 
conditions.  And use of a hand to control navigation 
system/air conditioner/smartphone may distract a driver 
and cause road accidents. Along with this, the acoustic 
noise itself is not the main challenge in this domain (Lin et 
al., 2018). More importantly, background noise affects not 
only the microphone but also it causes the speaker to 
increase vocal effort to overcome noise levels in his ears 
(so-called Lombard effect). Thus, it is not enough to simply 
add artificial noise to the lab-recorded data, because in the 
real-world scenarios the variation of speech production 
caused by noise exposure at the ear can damage the 
performance more than the acoustic noise itself. This 
phenomenon has been carefully analyzed by researchers in 
the work (Lee et al., 2004).  
However, the most of existing audio-visual corpora were 
collected in laboratory conditions which greatly limits their 
practical use (Kagirov et al., 2020; Ivanko et al., 2021;). 
There are no known and publicly available audio-visual 
Russian speech corpora recorded in a vehicle environment. 
So, there is a need to create such database to develop 

reliable audio-visual speech recognition in this language. 
At the same time, most of the existing audio-visual datasets 
are subject to some license restrictions and it is difficult to 
compare the speech recognition accuracy of one 
recognition system to another, as there is no common 
benchmark dataset, especially for the Russian language. 
Our goal in releasing the RUSAVIC corpus is to provide 
such a benchmark. We used developed earlier methodology 
as well as a mobile application and cloud infrastructure to 
make the corpora recording in-the-wild vehicle 
environment more convenient for the driver and automate 
the recording procedures (Kashevnik et al., 2021). The 
multi-speaker audio-visual corpus RUSAVIC can be 
downloaded from: https://mobiledrivesafely.com/corpus-
rusavic. 
The contribution of this paper is summarized as follows:  
Firstly, we present a new audio-visual Russian corpus in a 
vehicle environment. RUSAVIC consists of recordings of 
20 drivers uttered the script of three categories: 62 most 
frequent requests from driver to a smartphone, 33 letters of 
the Russian alphabet and 39 digits (including tens and 
hundreds). At least for 10 recording sessions for each 
driver. 
Secondly, we provide a detailed description of the 
recording pipeline and framework. The data are collected 
in a synchronous way through several smartphones located 
at different angles and mounted on the vehicle dashboard. 
Each smartphone is equipped with FullHD video camera 
(60 fps) and microphone (48 kHz frequency). 
Thirdly, we evaluate several state-of-the-art audio and 
visual speech recognition methods and present a set of 
baseline recognition results. The results demonstrate the 
consistency and the challenges of proposed benchmark.   
The paper is structured as follows: after the Introduction 
Section 2 provides an overview of research related to 
audio-visual speech corpora; Section 3 details the recording 
framework and describe corpus creation methodology; in 
Section 4 we present the RUSAVIC corpus and its main 

https://mobiledrivesafely.com/corpus-rusavic
https://mobiledrivesafely.com/corpus-rusavic
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characteristics; in Section 5 experimental results are shown 
and analyzed; conclusions from this study and proposed 
future research are presented in Section 6, followed by 
acknowledgements in Section 7. 

2. Related Works 

 
Nowadays the are many audio-visual (AV) speech datasets 
collected for different purposes and with different means. 
In order to develop noise-robust automatic speech 
recognition systems, high-quality training and testing 
corpora are crucial. The researchers in the works 
(Fernandez-Lopez et al., 2018) and (Ivanko, 2020) provide 
comprehensive analysis on existing audio-visual speech 
databases. In this paper we refrain from repeating existing 
research and refer readers to the aforementioned papers. It 
should be noted, that almost every of around 60 publicly 
available datasets are recorded in controlled laboratory 
conditions. However, as was proven by the researchers in 
(Lee et al., 2004) background noise affects not only the 
microphone but also it causes the speaker to increase vocal 
effort to overcome noise levels in his ears. So, it is almost 
impossible to model real-life data in laboratory conditions 
(Oghbaie et al, 2021). Combining video and audio 
information can improve speech recognition accuracy for 
low signal-to-noise ratio conditions (Ivanko et al., 2021b). 
It has been demonstrated, that for humans the presence of 
the visual information is roughly equal to a 12dB gain in 
acoustic signal-to-noise ratio (Lee et al., 2004). 
Another modern trend that appeared recently is the web-
based corpora: datasets collected from open sources such 
as youtube or TV shows (Ryumina et al., 2021). The most 
well known of them are discussed in the works: LRW 
dataset (Yang et al., 2019), LRS2-BBC, LRS3-TED 
datasets (Afouras et al., 2018; Afouras et al., 2019; Yu et 
al., 2020), VGG-SOUND dataset (Chen et al., 2020), 
Modality corpus (Czyzewski et al., 2017), Multilingual 
AVSD (Mandalapu et al., 2021). A survey (Zhu et al., 
2021) regarding this topic provides essential knowledge of 
current state-of-the-art situation. However, despite the fact 
that all aforementioned corpora are collected in the wild we 
cannot just repeat their success to create speech corpus for 
the car environments – because no such data is available on 
the web. 
It is obvious that when driving a car, the active head turns 
from side to side are often involved. This simple fact 
greatly complicates the task of automated lip-reading, 
because the driver is showed to the camera with different 
angles. On the other hand, heavy acoustic noise on the road 

significantly degrades the results of audio-based speech 
recognition (Fedotov et al., 2018). Thus, the real-life 
training and testing data is a prerequisite to build a noise-
robust and reliable audio-visual speech recognition system. 
In our recent work (Kashevnik et al., 2021) we carefully 
analyzed all the possible challenges that we need to tackle 
and discussed the main differences between existing audio-
visual corpora and the one we collected. 
Along with this, we took advantage of the experience of 
researchers, who previously collected speech corpora in- 
vehicle environment. According to our knowledge, there 
were only three attempts to record audio-visual speech 
corpora in a car, namely AVICAR (Lee et al., 2004), 
AV@CAR (Ortega et al., 2014), and Czech AVSC (Milos 
et al., 2003) for English, Spanish and Czech languages. 
Thus, there are no Russian audio-visual datasets recorded 
in-vehicle environment available up to now. The most well-
known Russian audio-visual corpus is HAVRUS 
(Verkhodanova et al., 2016), however it is also recorded in 
laboratory conditions. Therefore, we hope the multi-
speaker audio-visual corpus RUSAVIC could fill a part of 
the gap for Russian. 

3. Acquiring RUSAVIC corpus 

We create the multi-speaker audio-visual speech corpus 
using the recording methodology recently proposed in our 
work (Kashevnik et al., 2021). 
Three smartphones were mounted in the vehicle cabin. 
Basic data recording settings are shown in Figure 1, left. 
The angle of the smartphone in relation to the driver has not 
exceeded 30 degrees. In fact, on most records it was about 
20 degrees. The main smartphone is responsible for 
synchronization and for establishing a connection with a 
secondary smartphones. It is also responsible for audio-
based interaction with a driver, utilizing the smartphones’ 
microphone. The application synthesizes phrases the driver 
should repeat. The system records the time when the 
phrases were generated and saves all information to the 
SQLite database for further analysis and processing. The 
detailed description of the developed application for audio-
visual corpora recording can be found in the paper 
(Kashevnik et al., 2021). The secondary smartphones are 
located at an 20-30 degrees angle in a way that its camera 
successfully captures driver’s face (see Figure 1, right). 
These smartphones mainly focused on recording video and 
audio information captured by the smartphones front-
facing camera. It should be noted, that such locations are 
popular among drivers to set their mobile devices with the 
navigation system for vehicles.  

Figure 1. Data recording settings (left) and recording environment snapshots (right). Left: (a) driver; (b) main smartphone;   

(c) left-smartphone; (d) right-smartphone; (e) steering wheel; (f) windshield; 
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4. RUSAVIC corpus description 

The audio-visual corpus RUSAVIC can be divided into two 
main parts. The first one is collected in actual driving 
conditions and the second one is collected in a vehicle 
parked near a busy intersection (Figure 2). Both parts of the 
database are composed of the recordings of 20 speakers. 
The main parametric characteristics of the recorded corpus 
are depicted in Figure 3. Each speaker uttered the script of 
three different dictionaries: 62 most frequent driver’s 
requests to smartphones, 33 letters of the Russian alphabet 
and 39 digits (including tens and hundreds).  
The first dictionary was chosen based on a market analysis 
of commercial driver assistance systems, such as 
AlexaAuto, YandexDrive, GoogleDrive, etc. Thus, the list 
of most frequently asked requests formed our main 

recognition dictionary. Two supplement dictionaries 
(letters and digits) were recorded to tackle out of 
vocabulary problems. It should be noted, that in Russian 
language we have special words for tens and hundreds, so 
we were obliged to record them as well.  
At least 10 recording sessions have repeated each speaker 
(with maximum around 40 recording sessions). One 
recording session is a one repetition of three dictionaries. 
Since we record the corpus in-the-wild conditions the 
average SNR varies from 30 to 5 dB. The video resolution 
was FullHD 1920×1080 with 60 frames per second 
recording rate, mp4 format. The audio data was recorded 
with 48 kHz frequency. The current size of RUSAVIC 
corpus is about 250 Gb, mostly video data. 
During postprocessing, segmentation and labeling are 
performed. Recording sessions metadata files are also 

Figure 2. Snapshots of the drivers during recording session; top row - actual driving conditions; bottom row – vehicle parked 

near busy intersection. 

Figure 3. Main characteristics of the RUSAVIC audio-visual speech corpus 
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included. It contains such information as device 
description, driving hours, recording conditions, driver 
rotation angle, etc. 

5. Evaluation experiments 

In this section, we present the baseline evaluation results of 
popular lip-reading and audio-based recognition methods 
to illustrate the advantages and shortcomings of the created 
speech Corpus.  
To answer the question of how well we can do automatic 
lip-reading in real driving conditions we train end-to-end 
neural network architecture, depicted in Figure 4. 
The train and test sets were splitted 80 to 20 %. The input 
of the model is sequences of mouth images each 32 frames 
long with a resolution of 112×112 pixels, which pass 
through 3D convolutional layer (3D Conv) and modified 
residual blocks (Residual Blocks models ResNet-18) with 
attention modules (Squeeze-and-Attention, S.A.). Then the 
subsampling layer (Global Average Polling) transforms 
them into one-dimensional vectors that are fed to 
bidirectional networks with long short-term memory 
(BiLSTM) for subsequent recognition of phrases. Incoming 
video sequences are divided into segments of the same 
length into 32 frames with 50% overlap (16 frames). To 
reduce computational costs, the input images are 
transformed in grayscale and normalized to 112×112 
pixels. To prevent overfitting MixUp augmentation 
technique is applied. The coefficient of combining two 
images and binary vectors ranged from 20 to 80%. For the 
remaining frames Label smoothing is applied. 
A comparison of various lip-reading architectures on 
RUSAVIC corpus is presented in Table 1. As we can see 
from the results when applying several techniques, such as 
Cosine WR, MixUp, LS, and SA, the recognition accuracy 
of 62 voice commands of drivers increased from 46.45% to 
64.09% (or by 17.64%). It can be seen that a significant 
contribution to the increase in accuracy is achieved by the 
SA module, and data augmentation techniques (MixUp and 
LS) give approximately the same increase in accuracy. 
However, despite the achieved result of accuracy (64.09%) 
there is still a lot of place for improvement. The next step 
is to boost the accuracy of the automated lip-reading by 
adding an audio modality. 
Acoustic speech recognition generally performed better 
than the lip-reading. This fact is also proved by our results 
(see Table 1) Audio speech recognition results were 
obtained by the end-to-end 2D CNN spectrogram-based 
acoustic speech recognition system. We preprocess the raw 
acoustic data and obtain phrase-level spectrograms, 
followed by normalization and fed into pre-trained 2D 
CNN. 

Table 1: Speech recognition results on RUSAVIC corpus 

6. Conclusion 

In this paper, we have created a multi-speaker audio-visual 
corpus RUSAVIC: Russian Audio-Visual Speech in Cars 
designed for noise-robust speech recognition.  
The corpus includes the recordings of 20 drivers with the 
minimum 10 recording sessions for each (134 phrases in 3 
dictionaries for each session). Besides providing a detailed 
description of the corpus and its collection pipeline, we 
evaluate several popular audio and visual speech 
recognition methods and present a set of baseline 
recognition results. At the moment RUSAVIC is a unique 
audio-visual corpus for the Russian language that is 
recorded in-the-wild condition and we make it publicly 
available. This database is available by request from < 
https://mobiledrivesafely.com/corpus-rusavic >. 
With this new speech corpus, we wish to present the 
community with some challenges of the audio-visual 
speech recognition in-vehicle environment – acoustic 
noise, active head turns, pose, distance to recording 
devices, lightning conditions. These factors are 
encountered in many real-world applications and are very 
challenging for current state-of-the-art models. Our future 
work is related to new methods development for robust 
audio-visual speech recognition in a vehicle cabin based on 
RUSAVIC corpus. 

№ Neural network architecture 
Recognition 

accuracy 

1 3DResNet-18 + BiLSTM 46.45%  

2 3DResNet-18 + BiLSTM + Cosine WR 48.28%  

3 3DResNet-18 + MixUp + BiLSTM 49.14%  

4 LS + 3DResNet-18 + BiLSTM 49.57%  

5 SA + 3DResNet-18 + BiLSTM 55.59% 

6 
LS + MixUp + SA + 3DResNet-18 + 

BiLSTM + Cosine WR 
64.09%  

7 
Audio: Spectrogam + pre-trained 2D 

CNN / VGG19 
87.26% 

Figure 4. Visual speech recognition neural network model 

architecture 
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