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Abstract
Fine-tuning general-purpose pre-trained models has become a de-facto standard, also for Vision and Language tasks such
as Visual Question Answering (VQA). In this paper, we take a step back and ask whether a fine-tuned model has superior
linguistic and reasoning capabilities than a prior state-of-the-art architecture trained from scratch on the training data alone.
‘We perform a fine-grained evaluation on out-of-distribution data, including an analysis on robustness due to linguistic variation
(rephrasings). Our empirical results confirm the benefit of pre-training on overall performance and rephrasing in particular.
But our results also uncover surprising limitations, particularly for answering questions involving boolean operations.
To complement the empirical evaluation, this paper also surveys relevant earlier work on 1) available VQA data sets, 2)
models developed for VQA, 3) pre-trained Vision+Language models, and 4) earlier fine-grained evaluation of pre-trained

Vision+Language models.

Keywords: Visual Question Answering, Multimodal Transformers, Vision+Language, Fine-grained Evaluation

1. Introduction

Large general-purpose pre-trained machine learning
models have become ubiquitous. While new mod-
els emerge at a rapid pace, only limited research ex-
ists into the robustness of such models (L1 et al.,
2020b; |Cao et al., 2020). In particular, it remains an
open question whether pre-training is the best way for
Language+Vision tasks. With a growing number of
general-purpose pre-trained Vision+Language (V+L)
models, which all suggest that they are better than the
previous one, it is important to take a step back, and
investigate and analyse models.

In this paper, we perform a fine-grained evaluation of
two models on Visual Question Answering (VQA). We
compare a fine-tuned general-purpose V+L model to
an earlier task-specific model trained from scratch on
the standard VQA v2 data set (Goyal et al., 2017).
We examine their linguistic and reasoning capabilities,
as well as their robustness to language variation on
three out-of-distribution data sets in a zero-shot fash-
ion. Moreover, we also review early Visual Question
Answering models, VQA data sets, recent pre-trained
V+L models and survey related work on their evalua-
tion. Our analysis focuses on BAN (Kim et al., 2018)
and LXMERT (Tan and Bansal, 2019), each state-of-
the-art VQA model at their respective times. Our re-
sults show that their capabilities diverge substantially,
and while fine-tuned LXMERT performs the best on
most setups, it is not always the case. Strikingly,
BAN does perform better on datasets involving boolean
compositions (VQA-Compose and VQA-Supplement).
LXMERT is particularly susceptible to questions in-
volving OR operations or multiple boolean compar-
isons in contrast to BAN, suggesting that even large
pre-trained models perform insufficiently and answer
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Figure 1: Illustration of fine-grained evaluation. We
train BAN and LXMERT on the VQA v2 data set, and
evaluate both on In-Domain data (VQA v2) and Out-
Of-Distribution data (VQA-LOL, VQA-Introspect and
VQA-Rephrasings). The LXMERT model is initialized
using pre-trained weights.

priors have a major impact on model accuracy.

2. Related work

2.1. Visual Question Answering models

Before the advent of pre-training, early neural models
consisted of a Convolutional Neural Network (CNN)
to encode the image and a Recurrent Neural Network
(RNN), to encode the question, and predicting an an-
swer. These models were later equipped with attention
mechanisms to ground the text in the image (Xu et al.,
2015; Yang et al., 2016). For example, Malinowski et
al. (2015) presented Neural-Image-QA as an end-to-
end formulation to the VQA task. They use a CNN to
encode the image, and subsequently use its features to
encode the question using a RNN. The same RNN is
used to predict an answer given the input. They evalu-
ated their model on the DAQUAR data set (Malinowski
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Figure 2: Timeline of major VQA data set releases with approximate number of question answers (QA). High-

lighted (red) are the ones investigated in this work (Agrawal et al., 2016; Johnson et al., 2017; Singh et al., 2019).

performing more than twice as well
compared to previous methods.

|Yang et al. (2016) developed the Stacked Attention
Network (SAN) which uses attention to help with rea-
soning in images. SAN uses generic CNN image fea-
tures generated by a VGG model (Simonyan and Zis-|
|serman, 2015)). |Anderson et al. (2018) redefine their
spatial features in terms of bounding boxes and by us-
ing a Faster-RCNN model as a bottom-up attention
model, by attending to objects present in a given im-
age. Given these redefined spatial features, they use
a top-down attention mechanism to weight the image
features, along with the question features. This bottom-
up top-down (up-down) model was later improved by
{Jiang et al. (2018)), and participated in the 2018 VQA
Challenge. They implemented subtle improvements to
the architecture, such as data augmentation and fine-
tuning image features. The small changes gave an im-
provement of ~ 5% on the VQA v2 data set.

While some focus on how to develop sophisticated
ways of producing attention mechanisms for questions
and image features, thought of a way
to pool together feature vectors from different modali-
ties. They developed the multi-modal Factorized High-
Order Pooling (MFH) mechanism which takes two fea-
ture vectors, and iteratively pools the features using el-
ementwise multiplication and sum pooling. In the end
they use attention modules to provide better predic-
tions, but use the MFH to combine the image attention
and the question attention features.

Continuing to use Faster R-CNN features as visual in-
put, developed the Bilinear Attention
Networks (BAN). BAN is a generalization of a bilinear
model for two multi-channel inputs. It first generates G
bilinear attention maps. These attention maps are then
used with the two inputs to generate a rich set of fea-
tures which are used for classifying answers. We use
BAN as an early model in our empirical comparison,
and compare it to a more recent V+L model.

2.2. Visual Question Answering data sets

One of the first VQA data sets, as illustrated in Figure
was the DAQUAR data set (Malinowski and Fritz,|

2014). The DAQUAR data set is built on top of the
NYU-Depth V2 data set (Silberman et al., 2012) which
consists of 1,449 images. DAQUAR contains human-
generated and synthetic question-answer pairs.

Two years later, Krishna et al. (2017) developed the
seminal Visual Genome data set. The data set consists
of a large amount of human annotations for each indi-
vidual image, with 108,077 real world images, an av-
erage of 21 annotated objects per image, and a total of
1.7 million question-answer pairs.

The same year, the VQA data set was published, and
a year later the larger VQA v2 data sets
[al., 2016} [Goyal et al., 2017). Purposely built for
VQA, they became common benchmarks, besides Vi-
sual Genome. VQA v2 consists of of 204, 721 images
from the MSCOCO data set (Lin et al., 2015}, |Chen et
al., 2015), ~ 1.1 million questions with 10 answers
each provided by humans. In this study we use the
VQA v2 data set as the initial training data.

As a response to the use of one data set (VQA v2)
for evaluating VQA models, many follow up data sets
have been released to test models on varying prob-
lems not contained in the original VQA v2 data set.
These new challenges include changing the answer dis-
tribution to help models better generalize rather than

rely on a specific distribution of answers (Agrawal et
al., 2018), rephrasing the original questions to evalu-

ate consistency (Shah et al., 2019), and composing new
questions based on the original questions and boolean
operators (Gokhale et al., 2020). Similarly, to help the
models better answer reasoning questions contained in
the VQA v2 data set, the VQA-Introspect data set pro-
poses a number of perception questions for the same
image (Selvaraju et al., 2020). Lastly, to investigate
the robustness of the model to changes in the images
rather than linguistic changes, [Agarwal et al. (2020)
developed the IV-VQA and CV-VQA data sets for In-
Variant (IV) and CoVariant (CV) changes. The above
mentioned data sets are all based on real world images,
but to test the visual reasoning capabilities of the mod-
els in a controlled manner, the CLEVR data set
was developed. It consists of images

of generated objects, to study how well models reason
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about specific objects in images.

Analogously to CLEVR, the GQA data set (Hudson
and Manning, 2019)) sets out to test the reasoning ca-
pabilities and linguistic compositionality in real world
images using a scene graph to compose 22 million
questions. Along with the data the paper also presents a
range of new metrics to help better understand the per-
formance of reasoning models.

A specialized field of VQA is regarding the text in im-
ages (Scene text). This can be text in signs, banners
or otherwise present in images. To help with the re-
search in this area, Singh et al. (2019) developed the
TextVQA data set, which consists of question-answer
pairs all relating to text within images.

2.3. Vision+Language models

General-purpose pre-trained V+L models emerged
around 2019 and are all built on top of the transformer
architecture (Vaswani et al.,, 2017). We highlight 22
V+L models in Table |1} with details such as their pre-
training data, pre-training and evaluation tasks, and the
type of visual features they use. The table is ordered by
approximate release date, meaning that the VideoBERT
(Sun et al., 2019) is the earliest work, and LaTr (Biten
et al., 2021)) being the latest.

At a glance it is clear that most of the Vision Lan-
guage models today use the Faster R-CNN model (Ren
et al., 2015)) as visual features. However, newer models
have started to use different visual embedding meth-
ods, such as linear embedding similar to what |[Doso-
vitskiy et al. (2021} uses for their Vision Transformer
(ViT)(Kim et al., 2021} |Lin et al., 2021al). Others fine-
tune a full CNN to extract custom features from the
images (Huang et al., 2020; [Xu et al., 2021; [Wang et
al., 2021)). Furthermore, it is also worth noting that
the authors behind OSCAR (Li et al., 2020c) have tried
to improve the performance of an object detector for
vision-language models, they call this VinVL (Zhang
et al., 2021)) and show that it does indeed improve the
performance of OSCAR when used instead of the de-
fault Faster-R-CNN.

Furthermore, the most prevailing architecture type is
that of single-stream models. These models process
both modalities using the same transformer neural net-
work, whereas the two-stream approach first process
the inputs individually, and subsequently have a cross-
modal processing step. However, SemVLP (Li et al.,
2021) implements both architecture type and switches
between them depending on the downstream task.
Across the 22 models in Table [T] they use 13 dif-
ferent pre-training tasks. These include tasks that
use either of the modalities, or span the two modal-
ities. The first group is the language only tasks
Masked Language Modelling (MLM), and Sequence
to Sequence (Seq2Seq). The second group is image
only tasks Masked Region Regression/Classification
(MRR/MRC), which are similar to MLM in that they
mask a region/patch, and then have to either classify

the object in that are or have to reconstruct the fea-
ture vector. The last group are the multi-modal tasks,
such as Image-Text Matching (ITM), and Word Region
Alignment (WRA), which are used to help the mod-
els align the two modalities. There are also the ones
that fall outside these categories, such as Masked To-
ken Modelling (MTM) which is similar to MLM and
MRC, however, it is masking input tokens from both
modalities at the same time, rather individually. It is
also worth noting that InterBERT (Lin et al., 2021b)
and M6 (Lin et al., 2021a) have extended the goal of
MLM and MRC, such that they mask multiple tokens
(i.e. spans) that the models have to retrieve rather than
individual tokens.

Another important part of the models is the data they
are trained on. Most of the models use a mix of in-
domain and out-of-domain pre-training data, such as
Conceptual Captions (CC) (Sharma et al., 2018), SBU
Captions (Ordonez et al., 2011), MSCOCO (Chen et
al., 2015)), and Visual Genome (Krishna et al., 2017).
Do note, that domain here refers to the downstream
tasks, such as VQA, and Image-Text Retrieval. How-
ever, a few works also use text only data such as C4
(Roberts et al., 2019)). People do also collect their own
image-text data, such as the LAIT data from Qi et al.
(2020) and the M6-corpus from Lin et al. (2021a).

Extensions of previous architectures Not all are de-
veloping entire new architectures, some are also ex-
tending and improving some of the previously devel-
oped models.

VILLA (Gan et al., 2020) is an adversarial training
paradigm that can be applied to all V+L models. They
add adversarial noise to the embedding space to help
the model be more robust. They use it as a regular-
ization technique in both the pre-training and the fine-
tuning stage of the V+L models.

12-in-1 (Lu et al., 2020) is a large multi-task model
trained on 12 different data sets used in 4 different V+L
tasks such as VQA. They extend the VILBERT archi-
tecture with a number of output heads which handles
the different tasks.

2.4. Evaluation of V+L models

Research on evaluating V+L models is limited, yet ris-
ing along with the development of new models and
more challenging data sets. Next, we summarize re-
cent works on evaluation of V+L models.

Li et al. (2020b) investigate 4 generic types of ro-
bustness: 1) linguistic variabilty, 2) logical reason-
ing, 3) visual content manipulation, 4) answer dis-
tribution shift. They also introduce a new approach
called MANGO that introduces adversarial noise at
the embedding level. For evaluating the UNITER
model, VILLA model and their own MANGO adver-
sarial training scheme, they test on different data sets
representing the 4 types of robustness described be-
fore. They find that using their MANGO framework
produces the most robust model across the 4 types of
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Name

Architecture Image Features

Data

Task

Evaluation

VideoBERT (Sun et al., 2019} Single Full frame YT

VILBERT (Lu et al., 2019} Two Faster R-CNN CC

VisualBERT (Li et al., 2019} Single Faster R-CNN MSCOCO

LXMERT (Tan and Bansal, 2019} | Two Faster R-CNN MSCOCO + VG

ImageBERT (Qi et al., 2020} Single Faster R-CNN LAIT + CC + SBU

VL-BERT (Su et al., 2020) Single Faster R-CNN CC + BookCorpus + Wiki
Unicoder-VL (Li et al., 2020a} Single Faster R-CNN CC + SBU

VLP (Zhou et al., 2020 Single Faster R-CNN CcC

Pixel-BERT (Huang et al., 2020} Single ResNet MSCOCO + VG

UNITER (Chen et al., 2020} Single Faster R-CNN MSCOCO +VG + CC+ SBU
OSCAR (Li et al., 2020c| Single Faster R-CNN giﬁgfg{ t S,%Z iBéJQX ~VG-QA
ERNIE-VIL (Yu et al., 2020} Two Faster R-CNN CC + SBU

DeVLBert (Zhang et al., 2020} Single Faster R-CNN cc

LAMP (Guo et al., 2020} Single Faster R-CNN MSCOCO + VG

SemVLP (Li et al., 2021) Single+Two  Faster R-CNN SE : i,BQ[L*j‘éSQCff(\), G* oA
InterBERT (Lin et al., 2021b} Single Faster R-CNN CC + SBU + COCO
E2E-VLP (Xu et al., 2021} Single ResNet MSCOCO + VG

VIiLT (Kim et al., 2021} Single Linear MSCOCO + VG + CC + SBU
M6 (Lin et al., 2021a} Single Linear M6-Corpus

SimVLM (Wang et al., 2021} Single ResNet ALIGN + C4

CMA-CLIP (Liu et al., 2021} Two ViT WIT+ MRWPA + Food101 + Fashion-Gen
LaTr (Biten et al., 2021] Two ViT C4 +IDL

MTM +ITM

MTM +ITM

MLM + ITM

MRR + MRC + MLM +ITM + VQA
MLM + MRC + MRR + ITM

MLM + MRC

MLM + MRC + ITM

MLM + Seq2Seq

MLM + ITM

MLM + MRC + MRR + ITM + WRA

MLM + ITM

SGP
MTM!
MLM + ITM + MRC + MRR

MLM +ITM + MRC + VQA

MLM* + MRC* + ITM
MLM + ITM + Img. Cap. + Obj. Det.
MLM +ITM

MLMT + Seq2Seq(*) + Img. Cap.

PrefixLM
Img. Text Clas.
MLM

Action Clas. + Video Cap.

VQA + VCR + Ref. Expr. + (ZS) IR
VQA + VCR + NLVR2 + IR/TR
VQA + GQA + NLVR2

IR/TR

VCR + VQA + Ref. Expr.

VCR +IR/TR

VQA +Img. Cap.

VQA + NLVR2 + IR/TR

VQA + VCR + NLVR2 +

SNLI-VE + (ZS) IR/TR + Ref. Expr.
VQA + GQA + NLVR2 +

IR/TR + Img. Cap. + Obj. Cap.
VCR + VQA + Ref. Expr. + IR/TR
VQA + (ZS) IR

VQA + GQA + NLVR2 + ZS IR

VQA +IR/TR + NLVR2 + GQA

VCR + (ZS) IR

VQA +NLVR2 + Img Cap. + IR/TR
VQA + NLVR?2 + (ZS) IR/TR

VQA +ITM + Img. Cap. +

Text Clas. + RC + Cloze

VQA + NLVR2 + SNLI-VE + Img. Cap.
MRWPA + Food101 + Fashion-Gen
TextVQA + ST-VQA + OCR-VQA

XXX X AKX X XX NN XAXAXAXIX|D

Table 1: Masked Language Modelling (MLM), Masked Token Modelling (MTM), Masked Segment Modeling
(MSM), Masked Region Regression (MRR), Masked Region Classification (MRC), Word-Region Alignment
(WRA), Scene Graph Prediction (SGP). Reading Comprehension (RC). Note (*) means that the model has to
predict multiple words in sequence, and multiple object at the same time. Note (*) for M6, they do both regular
text only seq2seq, but also seq2seq where the initial sequence consists of both visual and masked textual tokens.
Note (1) DeVLBert develops 2 invervention based methods, that can replace MTM, and 2 that are independent of

MTM. Note (€)) shows whether the authors have made code and pre-trained models available in their papers.

robustness that they investigate.

Cao et al. (2020) designed a number of probing tasks
for large-scale pre-trained V+L models called VALUE.
They investigate the following 5 questions 1) How
intertwined the multi-modal embeddings are, 2) The
modality importance (How important are the textual
modality versus the visual), 3) if any attention heads are
cross-modal. For this they design a new probing task
called Visual Coreference Resolution, 4) investigating
if the models captures visual relations between image
regions. For this they use a task called visual relation
detection/classification, which evaluates the combined
power of multiple attention heads in the models, 5) how
much linguistic knowledge is encoded on the models.
They find that pre-trained models tend to favor text
over images, and that there exists a number of atten-
tion heads for cross-modal relations.

Parcalabescu et al. (2020) tests the capabilities of
three V+L models using 2 different tasks. They test
the LXMERT, ViLBERT and ViLBERT 12-in-1 mod-
els (Tan and Bansal, 2019; [Lu et al., 2019; [Lu et al.,
2020). The tasks are 1) Image-Sentence Alignment
Probe, 2) Counting Entities Probe. The first task is
thought to be easy for the models, since they all three
have been pre-trained using this task. They find that
LXMERT and to some extend VILBERT 12-in-1 suf-
fers from catastrophic forgetting when pre-trained and
fine-tuned. Moreover, they find that neither of the three
models are good at counting, and mostly relies on the
statistics of the data sets on which they are trained.
Liet al. (2020d) experiments with using LXMERT, Vi-
sualBERT, UNITER and PixelBERT for medical im-
ages and reports. They investigate whether these mod-

els can outperform previous best TieNet (CNN+RNN)
and language embedding only models (BERT & Clin-
icalBERT (Alsentzer et al., 2019)). They see a clear
increase in performance when applying the pre-trained
models to the Openl data set (Demner-Fushman et
al., 2016). However, they find that when loading
LXMERT, VisualBERT and UNITER with the Clini-
calBERT parameters they do not see an increase in per-
formance, even though those parameters should be bet-
ter suited for the task. On top of this they experiment
with freezing the visual backbone for PixeIBERT. They
find that freezing the backbone severely decreases per-
formance, and they find it essential that the parameters
should be updated during fine-tuning.

Hendricks et al. (2021) investigate the importance of
pre-training data, attention and loss functions for V+L
models for image retrieval. For pre-training they find
that language-only or image-only pre-training does not
improve performance. They also find that the multi-
modal attention mechanism is important for the perfor-
mance of these models, showing that smaller models
with multi-modal attention perform better than larger
models without this mechanism. On the contrary,
for pre-training tasks they find that the masked-region
modelling task does not provide information to the
models, as pre-training without this task achieves com-
parable results.

3. Fine-grained VQA Evaluation

For the experiments in this paper we have chosen to
work with the BAN and LXMERT models. We chose
these two models, because they are developed in close
succession (2018 and 2019 respectively). Besides the
similarity in time they were developed, we also chose
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them based on their code base and its ease of use. We
found that many of the previous VQA models were
built with a rather strict data set framework, which
made zero-shot evaluation hard.

To evaluate the performance gain of a pre-trained
model, we first train and evaluate LXMERT (Tan and
Bansal, 2019) and BAN (Kim et al., 2018)) on the VQA
v2 (Goyal et al., 2017) data set. The LXMERT model
has been pre-trained as described in (Tan and Bansal,
2019). BAN has not received any pre-training prior to
being trained on VQA v2. For both models we use the
default parameters and training parameters.

We want to test the models to see if pre-training helps
the model being more robust towards changing the
data set. To test this, we zero-shot evaluate on out-
of-distribution data from the VQA-LOL (both com-
pose and supplement), VQA-Introspect, and VQA-
Rephrasings (Gokhale et al., 2020; |Selvaraju et al.,
2020; |Shah et al., 2019) data sets. We define zero-shot
evaluation as testing on a data set different from the one
used for training without fine tuning. All the results can
be seen in Tables [5 [6} [7] [§] and [9] and Figure 3]

Set Operation Question
Q1 Are trees visible?
C Q2 Are the streetlamps on?
Q1 Are not trees visible?
-2 Are the streetlamps not on?
Q Is this a creamy soup?
-Q Is not this a creamy soup?
g QNB Is this a creamy soup and is there a bowl?
Is this a creamy soup and
QNC is that a tasty bowl of ramen

served for someone to enjoy?

Table 2: Example questions from VQA-LOL. C:
VQA-Compose; S: VQA-Supplement.

3.1. Boolean Compositions

To experiment with boolean compositions we test each
of the models on the VQA-Compose and the VQA-
Supplement data sets. Examples of the data can be
seen in Table 2] We evaluate the performance both
with overall accuracy on the entire data set, and by
investigating the performance across specific boolean
operations (AND (A), OR (V), NOT (—)). We further-
more evaluate whether the models are better at com-
posed questions using only a single boolean operation
or multiple.

3.2. Visual Reasoning

To evaluate each of the model’s ability to answer rea-
soning questions versus perception questions, we test
the models on the VQA-Introspect data set. The au-
thors of the data set define reasoning questions as ques-
tions that require a synthesis of perception and prior
knowledge / reasoning capabilities, and they define per-
ception questions as the ones which can be answered

by detecting the presence or physical properties of ob-
jects. Examples of questions from the data set can be
seen in Table 3l To use the data set with the two mod-
els in a zero-shot setup, we had to filter out answers not
contained in the classification head of LXMERT and
BAN. This caused us to remove 2, 100 questions out of
94, 507, for which no answer was contained in the set
of possible answers. We do note that the data defines
main questions (reasoning questions) and sub questions
(perception questions) in a hierarchy, however, in this
experiment we treat them as equal and keep a mapping
between them for evaluation purposes. To gauge how
well the models are handling perception versus reason-
ing questions, we investigate four quadrants as defined
in (Selvaraju et al., 2020). The four quadrants are:

* Both Main and Sub question correct (Main + Sub)
* Main Q correct, Sub question wrong (Only Main)
* Main Q wrong, Sub question correct (Only Sub)

* Both Main and Sub question wrong (Neither)

Each of these four quadrants can help us gauge whether
the model tends to prefer perception questions, reason-
ing questions, both or neither. An optimal model has
an accuracy of the first quadrant (Main + Sub) of 100%
while all others are 0%.

Question Answer
MQ Does this cause cavities? Yes
What food is on the plate? Dessert

SQ  Is the boy eating whipped cream?  Yes
Is his mouth wide open? Yes

Table 3: Example questions from VQA-Introspect.
MQ: Main Question; SQ: Sub Question

3.3. Linguistic Consistency

We evaluate how consistent each of the models are
when dealing with rephrasings of the same question.
Thus, we are evaluating each of the models on the
VQA-Rephrasings data set. Examples of questions
from the data set can be seen in Table @l This data
set provides ~ 3 rephrasings per original question in
a subset of the VQA v2 data set, in total providing
~ 158.500 questions. Similar to the VQA-Introspect
data set we had to filter out answers not used in the
original VQA v2 data set. This resulted in us having
to remove 3,492 questions out of 162,020 total, be-
cause they had no answer available in the fixed list of
answers. To evaluate the performance of the models,
we use the consensus score presented in (Shah et al.,
2019).
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The consensus score is the ratio between the number
of subsets where all answers are correct and the total
number of subsets of size k. Where, C}, is the number
of subsets of size k£ within a group of rephrasings (1
main question and 3 rephrasings).

Question Answer

OQ How many lamps are in this picture? 2

Can you tell me how many lamps are in this picture? 2
RQ  This picture has how many lamps in it? 2
How many lamps do you see in this picture? 2

Table 4: Example questions from VQA-Rephrasing
0Q: Original Question; RQ: Rephrased Question

4. Discussion

Here we will go into depth with analysing and inter-
preting the results produced by the experiments de-
tailed in Section [3] We will follow the pattern from
Section [3]and go into depth with each of the data sets
we have evaluated in this study.

‘ Out-of-distribution ‘ In-domain
Model}/Data— | C S R I | VQA v2
LXMERT 49.51 46.61 68.64 76.90 | 71.96
BAN 51.63 5239 6143 70.05 | 66.27

Table 5: Overall accuracy on each data set. C: Com-
pose, S: Supplement, R: Rephrasings, I: Introspect.

4.1. Opverall accuracy

First we look into the results concerning the overall ac-
curacy of the two models (LXMERT and BAN) on each
of the evaluation data sets and the original VQA v2
given in in Table[5] What is clear is that LXMERT does
overall have an advantage over BAN and pre-training
helps when evaluated on the VQA v2 data set itself.
Strikingly, BAN however does perform better on the
Compose and Supplement data sets. This suggests that
LXMERT does not cope very well with multiple ques-
tions at once. Table [@] confirms that this is the case.
While LXMERT works very well on single boolean
operations, it is consistently outperformed by BAN on
questions with multiple boolean operations.

4.2. Boolean Compositions

To better understand the diverging performance of the
models over several boolean compositions, we inves-
tigate the per-tag performance for both models across

Model Compose Supplement
Single Multi ‘ Single Multi

LXMERT 57.33 41.68 | 5532 43.35

BAN 56.95 4630 | 5441 51.63

Table 6: Accuracy for single vs multiple boolean op-
erations. Included are results for both VQA-Compose
and VQA-Supplement.

compositions with single versus multiple operators.
The results can be seen in Figure 3] while detailed re-
sults can be found in the appendix, Tables[T0|and [T1]

Compose As is evident from Figure [3a both models
struggle with compositions that use multiple operators.
However, it seems to be much worse for LXMERT that
drops ~ 16 points in performance from single (57.33)
to multi (41.68) on VQA-Compose. Comparing this
to BAN, that only drops ~ 10 points on the same test
set. This same pattern is also evident when investigat-
ing the specific per-tag performance. Here the differ-
ence in performance from the original questions, Q1
and (2, to the most complex composition, ~Q1V-(Q2,
is larger still with a difference of ~ 69 for LXMERT,
compared to that of BAN at ~ 59.

While the performance of both models does drop as
the complexity of the compositions increases, some
of the operations are harder than others. The opera-
tion that seems to be the hardest is the V (OR) opera-
tion, and the easiest seem to be the A (AND). What is
striking is that BAN is better than LXMERT on ques-
tions involving V (OR), as seen in Figure 3a] As is
evident from the answer distributions in the Compose
data set, it is severely skewed towards ‘no’ (see Ta-
ble [I2] in the appendix). Answers involving a single
negation or V (OR) are instead skewed towards ‘yes°.
We observe that both LXMERT and BAN have a pref-
erence to output a distribution which prefers to out-
put ‘no’ over ‘yes’, and this is even more more pro-
nounced for LXMERT. Consequently, we observe low
results on OR questions. It is difficult to give a clear
reason why the models are favoring the “no”-answer,
as we found that the answer distribution in the train-
ing data is balanced (yes: 49.50% no: 50.50%). How-
ever, it does show that both models are brittle and par-
ticularly LXMERT is affected by shifts in answer dis-
tributions. Another interesting point from the VQA-
Compose analysis and the evaluation is the composi-
tion of negated questions. It is worth noting that the
questions in the Compose and Supplement can appear
unnatural, a phenomena visible in the questions shown
in Table @l This is down to the data creation method
which chooses to put a ‘not’ or ‘no’ either before a
preposition, verb, or noun phrase at random. This data
creation fact for negations could also play a factor for
both models when trying to predict the correct answer.
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(b) Accuracy per composition for LXMERT and BAN in the Supplement data set

Figure 3: Per composition accuracy for LXMERT and BAN. The exact accuracy scores can be found in the

Appendix in tables[T0|and[TT]

Supplement The patterns just discussed for the
Compose data set are similar on the Supplement data
set (Figure [3b). This is despite the new compositions
add an extra layer of difficulty to the task. In the Sup-
plement data set, the creators generate the composi-
tions based on one question from the original data, and
subsequently generate a question from a random ob-
ject, that might or might not be in the image. This adds
the extra task for the model to figure out if the object
actually is in the image prior to answering the ques-
tion. Both models are still good at the A operator and
bad at the V operator. Interestingly, for the questions
where they use an antonym for the random object, both
models are still able to answer the questions with high
accuracy, as long as it is the A operator joining the two
questions. As discussed for the Compose set the an-
swer distribution has a big impact on the performance
of the models.

4.3. Visual Reasoning

Next we investigate the performance of the models on
the VQA-Introspect data set (Tables [7]and g).

Model Reasoning  Perception
LXMERT 86.14 75.79
BAN 81.50 68.42

Table 7: Accuracy on the VQA-Introspect data set.

The overall accuracy is given in Table[7] while Table§]
shows the performance across the four quadrants. Both
models have higher accuracy on the reasoning ques-

tions compared to the perception questions. This is
opposite to what would be expected of these models,
where the hypothesis is that the models would have an
easier time answering perception questions rather than
reasoning questions. However, this one score does not
guarantee that the models are reasoning about the an-
swer in a consistent manner, as they might actually not
be processing the question.

To see how consistent the models are across a reasoning
and a perception question, we use the four quadrants
shown in Table[8] As is quite evident, LXMERT does
outperform BAN across all four quadrants. However,
it does still answer many reasoning (main) questions
correct without answering the perception (sub) ques-
tion correctly, which is a sign of inconsistency. Using
the two first quadrants (Main + Sub and Only Main)
we find a consistency score (Selvaraju et al., 2020) for
LXMERT of 77.85% versus 70.81% for BAN. These
scores can be compared to the 71.73% consistency
score presented in (Selvaraju et al., 2020), where they
test the Pythia model on the data, in
a similar way as we do (zero-shot). Both our models
perform better than their Pythia model on the ‘Main
+ Sub’ quadrant, with LXMERT doing significantly
better. Reviewing their results we can see that both
LXMERT and BAN do a much better job at lowering
the score of the last two quadrants. Yet, LXMERT has
comparable results in the ‘Only Main’ to that of Pythia,
while BAN does have worse results. It is really good at
the main questions but not so good at the sub questions.
When comparing the consistency of BAN and Pythia,
it can be seen that Pythia is more consistent at 71.73%.
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Model Main + Sub  Only Main  Only Sub  Neither
LXMERT 67.60 19.20 8.20 5.00
BAN 58.34 24.05 10.08 7.53
Pythia 50.05 19.73 17.40 12.83

Table 8: Quadrants of the VQA-Introspect data set.
Higher score on Main + Sub and lower score on other
quadrants is better performance. Pythia scores reported
from (Selvaraju et al., 2020).

4.4. Linguistic Consistency

Lastly we evaluate the models’ ability to stay consistent
across linguistic variation such as rephrasing. Using
the consensus score from Equation (I)) we can see how
well the models stack up to answer the same question
rephrased ~ 3 times.

In Table[9] we can first see the accuracy for the original
in-distribution VQA v2 questions (ORI) compared to
their rephrasings (REP). It is evident that LXMERT is
more robust when it comes to changes in the language
of the question, but performance drops overall for both
(~ 8to ~ 10).

On the out-of-distribution data, LXMERT is more con-
sistent across a larger k. This robustness is evident
in the smaller difference between k¥ = 1 and &k = 4,
which for LXMERT is smaller compared to the differ-
ence for BAN (~ 15 vs. ~ 18). The advantage of
LXMERT over BAN could arise from the two-stream
approach of LXMERT. Here, LXMERT first processes
and attends to each of the modalities (Vision and Lan-
guage) separately before attending across the modali-
ties. This could help it be more robust to the smaller
changes in the language part, helping it understand that
it is the same question even though it is phrased differ-
ently. At the same time, the language part of the model
is improved by the MM pre-training task compared to
BAN. Studying these two parts and their contribution
is an interesting venue for future work.

Model K Accuracy

1 2 3 4 | ORI  REP
LXMERT 7511 68.20 63.91 60.69 | 80.83 73.18
BAN 6737 58.54 5334 4977 | 7475 6491

Table 9: Consensus score on VQA-Rephrasings. The
reaults are presented along with the accuracy on the
original questions (ORI), and the rephrasings (REP).

5. Conclusion

Besides surveying current research on VQA, pre-
trained Vision+Language models and evaluation of
such models, in this paper we investigate the advantage
of using pre-trained V+L models such as LXMERT
over previous state-of-the-art models like BAN. We
found that overall LXMERT does appear more robust
to certain linguistic variances confirming the benefit to

pre-training. We find that both LXMERT and BAN
are fairly good at answering reasoning and perception
questions, with high consistency in related questions
(reasoning and perception questions).

However, there is still room for improvement, espe-
cially when answering more complex questions involv-
ing logic operators. We found that the models struggle
with questions involving OR compositions, especially
LXMERT. It underperforms in comparison to BAN and
overpredicts ‘no’. Some of these problems might be
down to data set imperfections, such as skewed an-
swer distributions like we saw with VQA-Compose and
VQA-Supplement, and computer-generated questions
being unnatural as shown in Table [2| However, strik-
ingly models like LXMERT do not yet generalize well
over such imperfections, they have difficulty with per-
ception questions and should use the question and im-
age to answer rather than relying on shortcuts like the
prior answer distribution.

Our experiments in this paper has focused on the lin-
guistic advantage of using pre-trained V+L models, and
are limited to the specific selected architectures. How-
ever, another interesting aspect to investigate would be
the visual advantage of using these pre-trained V+L
models. This could be done using similar tests as per-
formed in this paper, but evaluating on a data set such
as IV-VQA or CV-VQA (Agarwal et al., 2020) that al-
ters the images rather than the questions. Similarly, it
would be interesting to extend this analysis to further
architectures.
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A. Results per composition analysis

Composition LXMERT BAN

Q 87.02 80.69

-Q 28.59 26.07

QAB 80.72 67.53

— QVB 25.26 43.76
Composition LXMERT BAN ONC 74.94 7176
Q1 89.39 83.26 QvVC 35.39 36.62
Q2 89.06 83.80 QN-B 61.93 60.57
-Q1 24.19 23.18 QV-B 36.96 51.32
=02 23.71 22.49 QAN-C 49.36 67.32
Q1A Q2 81.65 77.99 QV-C 48.88 64.01
Q1V Q2 35.96 50.99 ~QAB 2721 35.24
Q1A-Q2 7344 69.89 -QV B 26.30 46.73
Q1V-Q2 2840 38.98 ~QAC 29.15 35.44
~QLAQ2 6419 68.16 -QVvC 38.04 35.17
~Q1VQ2 2395 29.75 -QA-B 68.02 69.49
SQ1A-Q2 4024 46.45 -QV -B 13.79 23.81
~Q1V =02 19.89 24.57 —Q A—C 55.67 76.33
—QV -C 25.06 32.72

Table 10: Per composition accuracy for the VQA- Q A anto(B) 75.69 70.91
Compose data set. Q V anto(B) 36.96 51.32
—Q A anto(B) 76.35 76.58

-Q Vanto(B) 24.21 28.99

Table 11: Per composition accuracies for VQA-
Supplement
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B. Answer distributions

Composition Yes No
Q 49.57 5043
-Q 50.43 49.57
QAB 49.57 50.43
. QV B 100.0  00.00
Composition  Yes No QNC 4957 5043
Q1 36.88 63.12 QVvC 100.0  00.00
Q2 37.07 6293 QAN-B 00.00 100.0
-Q1 63.12 36.88 QV-B 49.57 5043
-2 62.93 37.07 QN-C 00.00 100.0
QL ANQ2 1554 84.46 QV-C 49.57 5043
Q1v Q2 58.41 41.59 -Q A B 50.43 49.57
Q1A -Q2 21.34  78.66 -QVB 100.0  00.00
Q1vV -Q2 78.47 21.53 “QAC 50.43 49.57
—QLAQ2 2153 7847 -QVC 100.0  00.00
—QIV Q2 7866 2134 -QA-B 00.00 100.0
-Q1A-Q2 4159 5841 -QV-B 50.43 49.57
-Q1vV-Q2 8446 1554 -Q A -C 00.00 100.0
-QV-C 50.43 49.57
Table 12: Answer distribution per tag in VQA- Q A anto(B) 00.00 100.0
Compose Q Vanto(B)  49.57 50.43

—Q Aanto(B) 00.00 100.0
-Q Vanto(B) 5043 49.57

Table 13: Answer distribution per tag in VQA-
Supplement

1508



	Introduction
	Related work
	Visual Question Answering models
	Visual Question Answering data sets
	Vision+Language models
	Evaluation of V+L models

	Fine-grained VQA Evaluation
	Boolean Compositions
	Visual Reasoning
	Linguistic Consistency

	Discussion
	Overall accuracy
	Boolean Compositions
	Visual Reasoning
	Linguistic Consistency

	Conclusion
	Bibliographical References
	Results per composition analysis
	Answer distributions

