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Abstract
As input representation for each sub-word, the original BERT architecture proposes the sum of the sub-word embedding,
position embedding and a segment embedding. Sub-word and position embeddings are well-known and studied, and
encode lexical information and word position, respectively. In contrast, segment embeddings are less known and have so
far received no attention. The key idea of segment embeddings is to encode to which of the two sentences (segments)
a word belongs—the intuition is to inform the model about the separation of sentences for the next sentence prediction
pre-training task. However, little is known on whether the choice of segment impacts downstream prediction performance.
In this work, we try to fill this gap and empirically study the impact of alternating the segment embedding during inference
time for a variety of pre-trained embeddings and target tasks. We hypothesize that for single-sentence prediction tasks
performance is not affected—neither in mono- nor multilingual setups—while it matters when changing the segment IDs
in paired-sentence tasks. To our surprise, this is not the case. Although for classification tasks and monolingual BERT
models no large differences are observed, particularly word-level multilingual prediction tasks are heavily impacted. For
low-resource syntactic tasks, we observe impacts of segment embedding and multilingual BERT choice. We find that
the default setting for the most used multilingual BERT model underperforms heavily, and a simple swap of the segment
embeddings yields an average improvement of 2.5 points absolute LAS score for dependency parsing over 9 different treebanks.

Keywords: multilingual representations, BERT embeddings, segment embeddings, parsing, classification

1. Introduction
Transformer-based contextualized embeddings have
led to an increase in performance on countless Natu-
ral Language Processing (NLP) tasks. However, un-
derstanding why they work, and what is encoded in
their embeddings, is still an active area of research also
coined “BERTology” (Rogers et al., 2020) for the most
popular type of contextualized embeddings based on
BERT (Devlin et al., 2019). We refer to Rogers et al.
(2020) for an overview of recent work studying the in-
ner workings of BERT and focus on a so-far ignored
part of the architecture: segment embeddings.
In BERT, the input text is first tokenized using a basic
punctuation/whitespace tokenizer, and then split into
sub-words which stem from a vocabulary of word-
pieces (Wu et al., 2016). These sub-words are then
encoded as the sum of three distinct embeddings (see
also Figure 1): 1) sub-word embeddings, 2) positional
embeddings, 3) segment embeddings. Compared to the
sub-word and positional embeddings, the intuition be-
hind segment embeddings is less obvious, especially
for unsegmented (i.e. single sentence) input (detailed in
Section 2.1). While the first two embedding types dif-
fer between each vocabulary item or position, segment
embeddings are identical across all sub-words of a seg-
ment and only differ if input strings containing multiple
segments are fed into the model simultaneously (e.g. an
input containing two sentences separated by a [SEP]
token).
Although there has been some work into analyzing sub-

words and positional embeddings (Schick and Schütze,
2020; Wang and Chen, 2020; Dufter et al., 2021; Wang
et al., 2021), the effect of segment embeddings remains
under-researched. In this paper, we aim to inspect the
effect of the segment embeddings at inference time.
Our contributions are:

• We experiment with a variety of strategies for en-
coding segment IDs.

• We analyze which strategies are beneficial for
multiple task-types.

• We show that especially in low-resource setups
the most frequently used multilingual BERT em-
beddings can perform substantially higher for
word-level syntactic tasks (i.e. 2.5 LAS points on
average for dependency parsing) by simply using
the embedding for the second sentence instead of
the default first.1

• All our code and results are publicly available at
https://bitbucket.org/robvanderg/
segmentembeds/

2. Segment Embeddings
2.1. Definition
A core component of the Transformer architecture in-
troduced by Vaswani et al. (2017) is its ability to at-

1The resulting embeddings can be found at
https://huggingface.co/robvanderg/
bert-base-multilingual-cased-segment1

https://bitbucket.org/robvanderg/segmentembeds/
https://bitbucket.org/robvanderg/segmentembeds/
https://huggingface.co/robvanderg/bert-base-multilingual-cased-segment1
https://huggingface.co/robvanderg/bert-base-multilingual-cased-segment1
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Figure 1: Schematic overview of how input is used in BERT embeddings.

tend to all inputs simultaneously. The now ubiqui-
tous BERT architecture (Devlin et al., 2019) shares this
property, computing attention maps over all input sub-
words. As this removes any implicit ordering of the
input, both the original Transformer and BERT include
the sub-word embeddings summed with positional em-
beddings. Since position IDs remain the same even
when sub-words at the position vary, the model learns
to associate positional embeddings with the sequential
nature of the input.
While absent in the original Transformer, BERT further
adds segment embeddings to the non-contextualized in-
put representation. In practice, this means that the input
is combined with a sequence of segment IDs (a lookup
of the sequence “0 0 ... 0 1 ... 1 1” ), which are found
in a lookup table of size 2 × embedding dimension-
ality (768 in BERTbase). The three embedding layers
contributing to BERT’s input are visualized in Figure
1. The original function of segment embeddings is not
described in detail (Devlin et al., 2019), however it is
clear that they are intended to help a model distinguish
between two segments within the same input sequence
(e.g. two sentences).
During pre-training, this behaviour is explicitly en-
couraged through the task of next sentence prediction
(NSP): Two sentences are fed as input to BERT and the
model is asked to discriminate between the true next
sentence and a randomly sampled alternative sentence
occurring 50% of the time. For this task, it is important
for the model to be able to distinguish between the two
input sentences, hence segment embeddings are used.
During subsequent task-specific fine-tuning, segment
embeddings could store information relevant to the
task. For example, when a relevant part of an answer
should be extracted in a question answering dataset, the
0’s could indicate that the segment is the question, and
the 1’s could indicate the segment which contains the

answer. Devlin et al. (2019) indeed demonstrate that
disabling NSP in BERT pre-training decreases down-
stream performance on tasks involving sentence pairs
such as question answering and natural language in-
ference. Later work has however challenged the use-
fulness of NSP (Liu et al., 2019; Yang et al., 2019;
Joshi et al., 2020; Aroca-Ouellette and Rudzicz, 2020),
and both NSP and segment embeddings are no longer
commonly used during the training of masked language
models. As BERT still remains one of the most ubiq-
uitous architectures and since segment embeddings are
also included in every available language or domain-
specific BERT variant, we believe the effect of pre-
trained segment embeddings to be highly relevant and
worth investigating.

2.2. Segment Embeddings in Practice

In the widely used implementations of HuggingFace
(Wolf et al., 2020) segment IDs are referred to as
token type ids and are set to a sequence of 0s
matching the length of the input by default. When
two input segments (i.e. sentences) are passed to the
library’s BERT-tokenizer, it generates a sequence of
appropriate and distinct segment IDs (i.e. 0s and 1s).
However, in practice we found that some practitioners
using the library set all segment IDs to 1, presumably
confusing them with an attention mask.
Furthermore, it should be noted that the segment em-
beddings are implemented at the base class level, even
though they are not available for all language mod-
els. This means that even for language models that
do not have pre-trained segment embeddings, by de-
fault they are automatically trained during fine-tuning
(note that there could also be only one segment ID).
This highlights that segment embeddings are even more
widespread than one might assume.
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0 1 2 3 4 5 6

ORIGINAL

1S

0S

AVG

NULL

RAND

SEG

0

1

0

0

0

0

+

0

1

0

0

0

0

+

0

1

0

0

0

0

+

0

1

0

0

0

0

+

1

1

0

0

0

0

+

1

1

0

0

0

0

+

1

1

0

0

0

0

+

TOK

POS

Figure 2: Visualization of the segment alternations.

3. Experiments
3.1. Models
In order to explore the impact of segment information
on downstream performance, we study several segment
embedding-specific alternations to the original setup
(visualized in Figure 2):

ORIGINAL: For tasks consisting of two sentences,
we experiment with a setup similar to the one used dur-
ing training, using 0 for sub-words in the first sentence,
and 1 for sub-words in the second sentence. For single
sentence tasks this means only 0 is used.

1S: Uses 1 as segment ID for all sub-words. This
sub-word + position + segment combination is unseen
during pre-training as the second segment never occurs
at the beginning of the input.

AVG: Uses the mean of both segment embeddings
for all sub-words, also for tasks where the input con-
sists of a single sentence.

NULL: Sets all values in the segment embeddings to
0 for all inputs. This can be seen as an ablation where
segment embeddings are disabled.

RAND*: Each segment embedding is re-initialized
randomly using three seeds. Although the Wolf et al.
(2020) implementation samples a standard normal dis-
tribution, we re-implement the original truncated nor-
mal distribution to ensure complete parity.

0S: Uses 0 as segment ID for all sub-words. This
setting is unseen during pre-training on sentence-pair
tasks. In single-sentence tasks this setting is equivalent
to ORIGINAL and therefore not reported separately.

For each segment embedding alternation, we ex-
plore the differences between monolingual BERT
and multilingual BERT (mBERT) as well as their
cased (BERTcase, mBERTcase) and uncased variants
(BERTunc, mBERTunc). For the monolingual models
we use the BERTbase variant (compared to BERTlarge)
as its architecture also forms the basis for the multilin-
gual model. Although for English both the cased and
uncased versions are widely used, it should be noted
that use of the multilingual mBERTunc is actually dis-
couraged by its maintainers.
Specifically relevant to segment embeddings, we fur-
ther identified that the NSP task during mBERT pre-
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Figure 3: Average accuracies for single-sentence clas-
sification on the dev data in a low-resource setup.

training may involve two sentences from different lan-
guages (we deduced this information from the code, see
Appendix A for details). We hypothesize that this could
affect the learning process of the segment embeddings
as the NSP task becomes substantially easier. Differ-
ences between the monolingual and multilingual mod-
els therefore warrant extra attention.

3.2. Setup
We run our experiments using MaChAmp v0.2 (van der
Goot et al., 2021) with default hyperparameters. The
experiments are divided into three different types of
tasks: sentence-level and sentence-pair tasks (Section
4.1) as well as word-level tasks (Section 4.2), wherein
the specific tasks are the following:
For our sentence-level tasks, we use SST-2 (Socher et
al., 2013) and CoLa (Warstadt et al., 2019) from the
GLUE benchmark (Wang et al., 2018), which are senti-
ment and linguistic acceptability detection datasets re-
spectively.
As sentence-pair tasks, we use all GLUE tasks which
consist of two sentences per input (Williams et al.,
2018; Dolan and Brockett, 2005; Rajpurkar et al.,
2018; Dagan et al., 2006; Bar Haim et al., 2006; Gi-
ampiccolo et al., 2007; Bentivogli et al., 2009; Bow-
man et al., 2015; Levesque et al., 2011).2 All classifi-
cation tasks are evaluated with accuracy.
For our word-level tasks, we use the Universal De-
pendencies data (Nivre et al., 2020), more specifically,
we use the set of treebanks sampled by Smith et al.
(2018), which was “chosen to reflect a diversity of
writing systems, character set sizes, and morphologi-
cal complexity”. For the English embeddings, we only
use the EWT treebank (Silveira et al., 2014). We in-
clude UPOS tagging, morphological tagging, lemma-
tization and dependency parsing, all with the default

2https://data.quora.com/
First-Quora-Dataset-Release-Question-Pairs

https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
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Figure 4: Average accuracies for classification on sen-
tence pairs on the dev data in a low-resource setup.

task-types/hyperparameters of MaChAmp in a multi-
task setup where each task has its own decoder. We as-
sume gold tokenization for all experiments, and remove
multi-word tokens with UD-conversion-tools.3 In Sec-
tion 4.2, we focus on dependency parsing and report
labeled attachment scores (LAS) following Zeman et
al. (2018), while for the remaining tasks, we report ac-
curacy in Appendix D.
We follow van der Goot (2021), and use a tune-set
for early stopping to avoid overfitting on the develop-
ment or test data. In our early experiments we saw
that performance differences are largest in early epochs
(see also Figure 7), which is why we hypothesize that
segment embeddings have the largest effect in low-
resource setups. To save compute, we therefore per-
form our main experiments on a low-resource setup
(10% of training data for UD, and 1,000 training in-
stances for the classification tasks), before applying the
most interesting setups on the full data (Section 4.3).
Reported results are averages over five runs with differ-
ent random seeds. We report only results on the devel-
opment data, as this is an analysis paper and we would
like to avoid overusing the test data. It should be noted
that varying minimum/maximum limits are used on the
y-axes of our figures, but that the size of the ranges are
consistent within figures.

4. Results
4.1. Classification Results
For the single-sentence classification tasks (Figure 3),
the differences between the models are mostly within
one standard deviation. We see slightly higher
scores across segment alternations of English BERTunc.
The largest difference is observed for one of the
RAND* models in the multilingual setup, where one

3https://github.com/bplank/
ud-conversion-tools
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Figure 5: Average LAS scores for each setting (Sec-
tion 3) on the dev data in a low-resource setup. The
mono-lingual embeddings are results only for EWT, the
multilingual embeddings are averages over 9 treebanks.
Black lines indicate standard deviation.

of the seeds (24) leads to the lowest performance for
mBERTunc and the best performance for mBERTcase
relative to the ORIGINAL setup. This shows that fluctu-
ations in the random initialization of segment embed-
dings can have large impacts on downstream results.
For the sentence-pair tasks (Figure 4), the standard de-
viations are larger, making the overall effect of segment
embeddings less clear/harder to measure. Most perfor-
mance differences are within one standard deviation,
leading us to conclude that it seems to not be very im-
portant how the segment embeddings are initialized in
this setup.

4.2. Dependency Parsing Results
The most striking results are shown in Figure 5 for
the multilingual dependency parsing tasks, where the
largest differences are observed for the highly pop-
ular mBERTcase. This is the most frequently down-
loaded multilingual language model on the Hugging-
Face Models platform, and strikingly, the default setup
results in one of the worst performances. Compared to
the ORIGINAL setup, a simple flip of segment IDs from
0 to 1 for all input sub-words (1S) increases perfor-
mance by up to 2.5 LAS — a non-standard combination
unseen during the extensive pre-training process. Sim-
ilarly, averaged (AVG) or empty (NULL) segment em-
beddings as well as the re-initialized RAND-513 also
substantially outperform the ORIGINAL setup.
Another perhaps surprising find is that mBERTunc out-
performs mBERTcase, although the uncased model is
“not recommended” and has inferior normalization ac-
cording to the official GitHub release page.4 A closer
inspection shows that this is mostly due to the Ancient

4https://github.com/google-research/
bert/blob/master/multilingual.md

https://github.com/bplank/ud-conversion-tools
https://github.com/bplank/ud-conversion-tools
https://github.com/google-research/bert/blob/master/multilingual.md
https://github.com/google-research/bert/blob/master/multilingual.md
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Figure 6: Average LAS scores for each setting (Sec-
tion 3) on the dev data when training on full training
splits. The mono-lingual embeddings are results only
for EWT, the multilingual embedding results are aver-
ages over 9 treebanks.

Greek PROIEL treebank (see Appendix C). Unfortu-
nately, the exact details of the pre-training differences
between cased and uncased mBERT are not reported,
so the main reason for these performance differences
remain unknown.
In terms of segment information learned during
pre-training, the fact that the provided embeddings
(ORIGINAL, 1S and AVG) perform better than the
RAND* or NULL strategies for all models except for
mBERTcase indicates that useful information is stored
in the segment embeddings.
In Appendix D we provide additional results for other
UD tasks: UPOS tagging, XPOS tagging, morphologi-
cal tagging and normalization. Although the ranges of
the scores differ, the trends closely resemble the ones
we see for dependency parsing. We conclude that for
these syntactic tasks in low-resource multilingual se-
tups, segment embeddings in the most commonly used
mBERTcase have a noticeable effect on downstream
performance — e.g., increasing scores improve sub-
stantially by simply flipping segment ID 0 to 1.

4.3. High-resource Versus Low-resource
Considering the large effect of segment embeddings on
mBERTcase in low-resource settings and given its wide-
spread use, we re-ran the experiments using the full
training data. Results on dependency parsing (Figure 6)
show that the performance differences disappear, as all
models perform within one standard deviation of each
other. This confirms our prior hypothesis that the ef-
fect of the few segment embedding parameters are most
pronounced in low-resource settings.
When inspecting the per-epoch performance during
fine-tuning (Figure 7), we see that the differences are
still apparent in the first epochs and vanish later. This
indicates that when fine-tuning for long enough, the
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Figure 7: Average LAS scores for mBERTcase on all
treebanks for the first 10 epochs (of 20) during training
on the tune data when training on the full treebanks.

parameters stored in the segment embeddings are op-
timized and their initialization is less relevant. This
further supports the finding that the effect of using pre-
initialized segment embeddings is only important for
low-resource setups.

5. Discussion
We investigated the question on how much segment
embeddings in widely-used, pre-trained BERT models
affect downstream performance of NLP tasks. Despite
using combinations of sub-word, position and segment
embeddings which are non-standard and unseen during
pre-training, we found the performance differences for
classification tasks and monolingual BERT models to
be relatively modest. This invariance to segment em-
bedding alterations is consistent for sentence-pair tasks
which were previously shown to benefit from segment-
specific information (Devlin et al., 2019).
In contrast, we found the most frequently used multi-
lingual model, mBERTcase, to show a striking perfor-
mance difference in low-resource setups for word-level
tasks. In this setup, the ORIGINAL setup is outper-
formed by a simple swap of segment IDs yielding an
average 2.5 absolute LAS performance increase across
a variety of multilingual treebanks. Strangely enough
this difference only occurs for the cased model, and
unfortunately the exact differences between this model
and the deprecated uncased model remain unclear.
One other takeaway is that even though there has been
much work on how/why BERT-like models perform
well, there are still parts that are heavily under-explored
and not well understood. As we have seen for low-
resource parsing, seemingly small architectural choices
can result in substantial performance differences.
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A. Is mBERT Pre-trained on
Cross-lingual Sentence Pairs?

We did not succeed in finding/obtaining information
from the original authors on whether mBERT’s next
sentence prediction was done on multiple languages
within one sentence pair. However, inspection of the
code led us to believe that the sentences are in many
cases from two different languages. Below we explain
our argumentation.
The BERT code5 allows for a list of input files. These
could be either 1) a separate file for each language 2)
one file with a concatenation of all languages. In 2)
a random sentence is picked from the concatenation,
which in many cases will be from another language.
For 1), all separate files are concatenated and shuffled6

before the actual random sentences are generated in the
code.7

B. Implementation Details
The pre-trained language models used in our experi-
ments are provided in HuggingFace Models (Wolf et
al., 2020) under the identifiers:

• bert-base-cased

• bert-base-uncased

• bert-base-multilingual-cased

• bert-base-multilingual-uncased

We further use MaChAmp v0.2 (van der Goot et al.,
2021) with all default settings.

C. Scores per Treebank
In Figure 8- 16 we report the scores obtained on the sin-
gle treebanks, again averaged over 5 seeds. Although
not used in the paper, we include results of the English
BERTbase on the other non-English target languages in
these graphs.

D. Scores for Other UD Tasks
We also report accuracy scores for the other tasks
MaChAmp performs: UPOS (Figure 17), XPOS (Fig-
ure 18), morphological tagging (Figure 19) and lemma-
tization (Figure 20).

5https://github.com/google-research/
bert/blob/master/create_pretraining_
data.py

6https://github.com/google-research/
bert/blob/master/create_pretraining_
data.py#L183

7https://github.com/google-research/
bert/blob/master/create_pretraining_
data.py#L280
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Figure 9: UD Arabic-PADT
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Figure 10: UD Chinese-GSD
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Figure 11: UD English-EWT
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Figure 12: UD Finnish-TDT
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Figure 13: UD Hebrew-HTB
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Figure 14: UD Korean-GSD
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Figure 15: UD Russian-GSD
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Figure 16: UD Swedish-Talbanken



1427

en
-un

cas
ed

en
-ca

sed
93.0

93.5

94.0

94.5

95.0

95.5

96.0

96.5

97.0

original
1s

avg
null

rand-24
rand-513

rand-8446

ml-u
nca

sed

ml-ca
sed

91.0

91.5

92.0

92.5

93.0

93.5

94.0

Figure 17: UPOS
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Figure 18: XPOS
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Figure 19: Morphological features
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Figure 20: Lemmatization
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