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Abstract
We introduce ChemDisGene, a new dataset for training and evaluating multi-class multi-label document-level biomedical
relation extraction models. Our dataset contains 80k biomedical research abstracts labeled with mentions of chemicals,
diseases, and genes, portions of which human experts labeled with 18 types of biomedical relationships between these entities
(intended for evaluation), and the remainder of which (intended for training) has been distantly labeled via the CTD database
with approximately 78% accuracy. In comparison to similar preexisting datasets, ours is both substantially larger and cleaner;
it also includes annotations linking mentions to their entities. We also provide three baseline deep neural network relation
extraction models trained and evaluated on our new dataset.
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1. Introduction
Biomedical researchers have used systems of exper-
imentally confirmed interactions between chemicals,
diseases, genes/proteins and other entities, for under-
standing disease mechanisms for diagnosis, e.g. Lee et
al. (2019), for drug repurposing (Morselli Gysi et al.,
2021), and even for understanding the health hazards
associated with spaceflight (Nelson et al., 2021). These
knowledge graphs (KGs) are often built by integrating
manually curated databases like CTD1 and DrugBank2,
who use domain experts to extract observed interac-
tions from research publications and other sources.
While the information in these databases is high in pre-
cision, with the growing publication rate their recall
is low (Baumgartner et al., 2007). To improve cover-
age, researchers have resorted to automated mining of
biomedical interactions from research texts, to supple-
ment their KG (Himmelstein et al., 2017), or even to
build the entire KG, e.g. (Crichton et al., 2020).
The bioinformatics community recognized that ma-
chine learning Relation Extraction (RE) models could
help the manual curation task, and the BioCreative
workshops introduced the first shared task and man-
ually labeled ‘gold standard’ dataset for training and
evaluating models for extracting protein-protein inter-
actions from full text articles in 2006 (Krallinger et al.,
2006). Several such labeled corpora have followed,
primarily focusing on extracting relationships from ab-
stracts. However, labeling of relationships requires do-
main experts and is slow and expensive. Consequently,
most labeled corpora are small, and focus on a small
number of entity types and relationships.

* Equal contribution
1CTD: Comparative Toxicogenomics Database
2https://go.drugbank.com

In this paper, we introduce ChemDisGene3, a new
dataset of biomedical research abstracts labeled with
pairwise interactions between Chemicals, Diseases and
Genes/Gene-products. It contains two sub-corpora:

• A large corpus of ∼ 80k abstracts with distant la-
beling of 14 relation types. This corpus is auto-
matically derived from CTD (Davis et al., 2020),
thus allowing for a larger size more suitable for
training deep learning models. However, relation-
ships are distantly labeled because relationships
in CTD are associated only with a paper, and not
with a specific text passage within the paper.

• A smaller corpus of 523 abstracts, manually an-
notated with relationships by domain experts.
This corpus is aimed primarily for testing models
trained on the CTD-derived corpus, and the rela-
tionships here are also distantly labeled.

A previous version of the CTD-derived corpus was in-
troduced in (Verga et al., 2018). ChemDisGene adds
a manually annotated component, and includes several
improvements to the derivation process:

• More recent updates (2021 February) from CTD.
• Entity linking uses PubTator Central (Wei et al.,

2019) with significantly improved models for rec-
ognizing Chemicals (+66.3% improvement in
F1 score), Diseases (+3.8%) and Genes/Proteins
(+8.2%) over the previous PubTator model.

• The previous dataset was randomly split into train-
ing, dev and test, while in ChemDisGene these
splits are based on paper publication date, to better
simulate a real world scenario.

• A cleaner extraction of binary relationships from
complex nested relationships captured by CTD.

The rest of this paper describes how the labeled cor-

3https://github.com/chanzuckerberg/ChemDisGene

http://ctdbase.org
https://go.drugbank.com
https://github.com/chanzuckerberg/ChemDisGene
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pus was developed (§2), corpus statistics (§3), base-
line models trained and evaluated on the ChemDisGene
(§4), and related work (§5).

2. Methodology
A note on terminology: we will use relation to refer
to the predicate schema r(Ts, To), where r is the re-
lation type, and Ts, To are the argument entity types:
Chemical, Disease or Gene. A relationship is a ground
instance r(es, eo) of a relation, with argument entities
es ∈ Ts, eo ∈ To.
The ChemDisGene dataset comprises a large corpus
automatically derived from CTD, and a smaller curated
corpus manually labeled by domain experts.

2.1. Derivation from CTD
Comparative Toxicogenomics Database (CTD) is a
public knowledge base containing manually curated in-
teractions between chemicals, genes, diseases and phe-
notypes (Davis et al., 2020). CTD curators regularly
scan new research publications to identify those inter-
actions that are the primary contributions of each pa-
per (Davis et al., 2011). These are then encoded us-
ing a hierarchical ontology of ∼ 50 Chemical–Gene
interaction classes, and two types each for Chem-
ical–Disease and Gene–Disease interactions (pheno-
types are not covered in our dataset). Each interac-
tion is expressed using relation types from these inter-
action classes, along with the argument entities, and
recorded with a reference to the paper from which it
was extracted (but no reference to any text within the
paper). Entities are also identified using public ontolo-
gies: MeSH for Chemicals, MeSH and OMIM for Dis-
eases, and NCBI Gene for Genes and Gene-products4.
While CTD curators scan full papers to extract these
relationships, we limited the text in ChemDisGene to
only the title and abstract. Starting with the Febru-
ary 2021 dump of CTD, we obtained abstracts for all
referenced articles from PubMed5. Each abstract was
processed through PubTator Central6 (PTC) to identify
and link mentions of chemical, disease and gene/gene-
product entities. We then performed a ‘distant align-
ment’ of the annotated abstracts with the relationships
linked to each paper in CTD: relationships whose en-
tities were not detected in the abstract were discarded.
This yielded a dataset of abstracts with linked entity
mentions, and distantly linked relationships.
This distant linking of relationships to aligned abstracts
is noisy due to the following sources of error: (i) entity
recognition models in PTC, whose F1 scores for each
entity type are in the range 0.84–0.90 (Wei et al., 2019),
(ii) even if the entities of a relationship are correctly
identified in the abstract, the corresponding interaction
may not have been mentioned in the abstract text, and
(iii) an abstract may mention some relationships that

4Links: MeSH, OMIM, NCBI Gene
5https://pubmed.ncbi.nlm.nih.gov
6https://www.ncbi.nlm.nih.gov/research/pubtator/

are not extracted by CTD. To measure these sources
of error, we selected a subset of aligned abstracts for
manual curation (see §2.2, §3.2).
Relations in CTD are organized into a class hierar-
chy, with some relation classes qualified by a ‘degree’.
ChemDisGene includes 10 of these classes7, which
combined with the degrees defines 18 relation types:
• Chemical-Disease:

– marker/mechanism: A chemical that correlates
with a disease.

– therapeutic: A chemical that has a known or po-
tential therapeutic role in a disease.

• Chemical-Gene: Each qualified by a degree.
– activity: An elemental function of a molecule.

Degrees: increases, decreases, or affects when
the direction is not indicated.

– binding: A molecular interaction (affects).
– expression: Expression of a gene product (in-

creases, decreases, affects).
– localization: Part of the cell where a molecule re-

sides (affects).
– metabolic processing: The biochemical alter-

ation of a molecule’s structure, not including
changes in expression, stability, folding, localiza-
tion, splicing, or transport (increases, decreases,
affects).

– transport: The movement of a molecule into or
out of a cell (increases, decreases, affects).

• Gene-Disease:
– marker/mechanism: A gene that may be a

biomarker of a disease or play a role in the eti-
ology of a disease.

– therapeutic: A gene that is or may be a therapeu-
tic target in the treatment of a disease.

In some cases, CTD defines a finer granularity of
Chemical-Gene interactions. Because their occurrence
is rare, they would be harder for a model to recognize,
so we abstracted them to the levels described above.
The relationships in CTD also include complex and
nested biomedical interactions involving multiple enti-
ties. For ChemDisGene we only extracted binary rela-
tionships. In particular, (a) we omitted CTD’s “cotreat-
ment” relation type because it is non-binary, and (b)
we implemented a cleaner extraction of binary relation-
ships from nested interactions (see example in fig. 1).
The previous CTD-derived dataset in (Verga et al.,
2018) used the same relation types for Chemical-
Disease and Gene-Disease interactions, but a different
set of 10 relation types for Chemical-Gene. With three
years of new publications, the distribution of relation
types in CTD has changed, affecting our selection.
The derivation of relationships from CTD in (Verga
et al., 2018) did not take into account nesting levels
in complex interactions: in the example in fig. 1, the
previous dataset would also extract reaction-decreases
between the chemical ‘24-hydroxycholesterol’ and the

7Definitions are from the CTD glossary.

https://www.nlm.nih.gov/mesh/meshhome.html
https://www.omim.org
https://www.ncbi.nlm.nih.gov/gene
https://pubmed.ncbi.nlm.nih.gov
https://www.ncbi.nlm.nih.gov/research/pubtator/
http://ctdbase.org/help/glossary.jsp
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Complex nested interaction in CTD:
QuercetinDisease inhibits the reaction

[ [ 24-hydroxycholesterolChemical co-treated with
27-hydroxycholesterolChemical co-treated with
cholest-5-en-3 beta,7 alpha-diolChemical ]

results in increased expression of ITGB1Gene mRNA ]

Extracted binary relationships:
expression-increases(24-hydroxycholesterol, ITGB1)
expression-increases(27-hydroxycholesterol, ITGB1)
expression-increases(cholest-5-en-3 beta,7 alpha-diol,

ITGB1)

Figure 1: An example showing extraction of binary re-
lationships from a complex nested interaction in CTD.

gene ‘ITGB1’, even though the corresponding indica-
tor “inhibits the reaction” is at a different nesting level.
As a final step, we added some randomly sampled ab-
stracts that did not align with any CTD relationships
as ‘null’ documents with no relationships. This forms
10% of the CTD-derived corpus, which was then split
into train, development (dev) and test sets by publica-
tion year (2018 as dev and years 2019, 2020 as test).

2.2. Curation
As described above, the relationship labels in the CTD-
derived corpus are noisy. To perform more reliable
testing of RE models, we selected some documents for
manual annotation: 303 sampled from the test split, and
an additional 252 documents from CTD that were also
included in the DrugProt corpus (Martin Krallinger and
Valencia, 2021), to enable future comparative analyses.
These were distributed for annotation by five biologists,
each document assigned randomly to three curators.
We developed a web-based annotation tool which dis-
played for each document, the title and abstract, all the
linked chemicals, diseases and genes/gene-products,
and their mentions in the text, and all the relationships
derived from CTD. Annotating a document involved
two tasks: (i) review each relationship derived from
CTD, and either reject or approve it, and (ii) add all
other established relationships expressed in the docu-
ment. Relationships mentioned in the abstract with-
out any conclusions were excluded from annotation. In
keeping with our goal of a realistic dataset, 44 of these
documents had no CTD-derived relationships.
We developed annotation guidelines (published with
the dataset) that describe the steps in the curation pro-
cess and the types of pairwise interactions curated in
this dataset, including brief definitions and real-world
example statements that do or do not support a spe-
cific relation type. These guidelines underwent multi-
ple rounds of revisions through 4 iterations of practice
annotations. During the practice phase, all 5 curators
were given the same set of documents to curate (15–
30 per cycle); annotation disagreements and questions
were clarified during multiple workshops, and feed-

A: Don’t record investigated or motivating relation-
ships that remain unknown and hypothetical.

“Gene A is a therapeutic target for treatment of
Disease X; it may therefore have a potential role
in treatment of Disease Z.”

Record a relationship between Gene A and Dis-
ease X; but not between Gene A and Disease Z.

B: Inferring a relationship across sentences.

“We have previously identified a panel of fusion
genes in aggressive prostate cancers. In this study,
we showed that . . . CCNH-C5orf30 and TRMT11-
GRIK2 gene fusions were found in breast cancer,
colon cancer, . . . ”

Record a ‘Gene-Disease: marker/mechanism’ re-
lationship between C5orf30 and prostate cancers.

Figure 2: Two examples from the curation guidelines.
Colors identify disease and gene mentions.

back and suggestions from the curators were used to
improve the guidelines. See fig. 2 for some examples.
Some interactions were easy to identify, like Chemical-
disease: marker/mechanism, and were labeled with
high consistency. Other relation types required more
interpretation and created more disagreement; e.g., the
upregulation of a gene product by a chemical can be
described by the types “expression” or “activity”, de-
pending on the context. A number of edge cases were
identified during the practice phase and added to the
guidelines, such as how to record opposite effects, e.g.
when both an increase and a decrease in expression of a
gene product is mentioned under different experimental
conditions, or how to label relationships between two
entities that depend on the presence of a third entity.
Only entities correctly detected by PubTator Central
and linked to the right ontology record were consid-
ered in an interaction pair; the annotation guidelines
therefore also included instructions for accepting or
rejecting detected entities that did not unambiguously
match the text mention, such as a detected entity that is
broader than the mention in the abstract.
At the end of the annotation period, we observed that
30 of the documents had been annotated by only two
biologists. We also observed that a number of new rela-
tionships added to each document had only been added
by one annotator. This was not unexpected, as scan-
ning through text to identify all relationships is much
harder than verifying whether a specified relationship
occurs. We refer to these relationships as ‘singletons’,
and marked as ‘approved’ all relationships that a ma-
jority of the annotators had approved. From the doc-
uments annotated by two curators, we also added all
relationships derived from CTD that were approved by
only one of the two annotators to the list of singletons.
We then discarded documents with more than 10 sin-
gletons, while keeping all 252 DrugProt documents,



1076

Train Dev Test

Nbr. abstracts 76,942 1,521 1,939
. . . with no relationships 7,244 397 436
Nbr. relationships 167,005 3,290 5,116
. . . unique relationships 93,801 3,127 4,801
Total Entity mentions 1,532,117 36,114 49,839

Chemicals 686,102 13,986 19,895
Diseases 478,397 8,962 11,750
Genes 367,618 13,166 18,194

Unique Entities in relns. 14,991 1,894 2,345
Chemicals 7,187 759 999
Diseases 2,413 283 287
Genes 5,391 852 1,059

Table 1: General statistics for the CTD-derived corpus.

yielding a total of 523 annotated documents.
On analyzing the singletons, we noticed that some of
these differed only in degree from an approved rela-
tionship in the same document: 45 were abstractions
(degree affects) and 7 refinements (degree increases or
decreases) of an approved relationship. These single-
tons were then automatically rejected.
In this annotation task, when one annotator does not
identify a particular relationship that was found by an-
other, it could be for one of two reasons: (i) both an-
notators noticed the same text passage but disagreed on
whether it expressed the relationship, or (ii) the first
annotator did not notice the passage that the second
annotator used to identify the relationship. To resolve
this ambiguity, all the singleton relationships were re-
viewed by an annotator not originally assigned to that
document, followed by a second review by the curation
manager to ensure consistency. Relationships approved
in this phase were added to the curated data.

3. ChemDisGene Corpus Statistics
3.1. The CTD-derived Corpus
The median of number of tokens (split by space) in ab-
stracts is 214. And about 99.8% of abstracts have less
than 512 tokens. Other statistics for the CTD-derived
corpus are shown in table 1, and the distribution of the
number of relationships per document in fig. 3. About
80% of the documents have 3 or fewer relationships,
followed by a long thin tail. The dev and test splits
have a higher proportion of documents with no rela-
tionships. There are an average of 2.2 relationships per
document, with over 9,000 entity pair occurrences with
multiple relation type labels in the same document.
Counts for each relation type are shown in ta-
ble 2. Unique numbers count unique argument-entity
pairs. Four Chemical-Gene relation types (activity-
affects, metabolic processing-affects, transport-affects,
and transport-increases) were omitted from the CTD-
derived corpus because of their low incidence. How-
ever they are included in the curated corpus for com-
pleteness, making the annotation task a little easier.
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Figure 3: Relationships per doc., CTD-derived corpus.
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Figure 4: Distribution of the nbr. of approved relation-
ships per document in the Curated corpus.

3.2. The Curated Corpus

The curated corpus contains 523 documents: 271 from
CTD-derived’s test split, and an additional 252 docu-
ments taken from DrugProt, that are not in the CTD-
derived corpus. Twenty seven of these documents had
no relationships derived from CTD. Manual annotation
rejected 22% of all CTD-derived relationships, leaving
64 documents with no approved CTD-derived relation-
ships. This indicates a fairly high 78% confidence in
the automatically derived relationships.
There are a total of 1,279 approved CTD-derived re-
lationships (avg. 2.4/doc), 2,632 approved new rela-
tionships (5.0/doc). The distribution of the 18 types of
relations in this corpus is shown in table 3.
The 3,911 approved relationships (3,806 unique) in
the curated corpus involve 1,875 unique entities: 670
unique Chemicals, 318 Diseases and 887 Genes. Fig-
ure 4 shows the distribution of number of approved re-
lationships in each document. As expected, the CTD-
derived approved relationships are more skewed to the
left than the new added relationships.
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Total Unique

# Relation type Train Dev Test Train Dev Test

1 Chemical-Disease : marker/mechanism 66,155 559 754 27,706 486 602
2 Chemical-Disease : therapeutic 34,775 250 410 16,093 245 398
3 Chemical-Gene : activity - decreases 5,555 101 232 4,128 97 232
4 Chemical-Gene : activity - increases 6,152 127 174 4,133 120 157
5 Chemical-Gene : binding - affects 3,123 67 77 2,024 65 73
6 Chemical-Gene : expression - affects 1,247 51 160 1,206 51 158
7 Chemical-Gene : expression - decreases 10,204 480 923 8,487 467 905
8 Chemical-Gene : expression - increases 19,810 919 1,570 14,685 878 1,491
9 Chemical-Gene : localization - affects 1,448 50 73 1,216 50 70
10 Chemical-Gene : metabolic processing - decreases 1,653 101 116 1,313 100 111
11 Chemical-Gene : metabolic processing - increases 4,640 175 293 3,507 172 283
12 Chemical-Gene : transport - increases 1,962 92 108 1,405 88 96
13 Gene-Disease : marker/mechanism 9,388 301 219 7,384 292 218
14 Gene-Disease : therapeutic 893 17 7 514 16 7

Table 2: Nbr. of relationships (instances) for each relation type in the CTD-derived corpus.

Distribution (%)

# Relation type Approved, New Approved, CTD

1 Chemical-Disease : marker/mechanism 16.6 16.4
2 Chemical-Disease : therapeutic 10.4 12.0
3 Chemical-Gene : activity - affects 1.2
4 Chemical-Gene : activity - decreases 8.3 7.3
5 Chemical-Gene : activity - increases 8.7 7.8
6 Chemical-Gene : binding - affects 4.3 6.7
7 Chemical-Gene : expression - affects 2.8 0.6
8 Chemical-Gene : expression - decreases 10.4 13.1
9 Chemical-Gene : expression - increases 11.8 18.4
10 Chemical-Gene : localization - affects 0.8 1.5
11 Chemical-Gene : metabolic processing - affects 0.8
12 Chemical-Gene : metabolic processing - decreases 1.7 1.5
13 Chemical-Gene : metabolic processing - increases 3.0 4.0
14 Chemical-Gene : transport - affects 0.3
15 Chemical-Gene : transport - decreases 0.6
16 Chemical-Gene : transport - increases 1.1 0.9
17 Gene-Disease : marker/mechanism 14.1 9.3
18 Gene-Disease : therapeutic 2.9 0.5

Table 3: Frequency distribution of relation types in curated corpus (each column sums to 100%). Empty frequen-
cies indicate some relations are rare in CTD.

3.3. Inter-Annotator Agreement

Commonly used measures of inter-annotator agree-
ment are defined for tasks where the units being clas-
sified or measured are precisely specified. As noted
in (Kilicoglu et al., 2011), identifying all relationships
expressed in a text does not match this paradigm. This
task could be decomposed into the following steps: (i)
find relationship indicators in the text, (ii) identify the
entity mentions each indicator refers to, and (iii) map
the expressed relationship to the appropriate ontolog-
ical term. Here the space of possible annotations is
clearly defined only for step (iii). In step (ii) the space
would be clearly specified only if we presented the an-
notators with every pair of linked mentions. The set of

possible relationship indicators in a document, in step
(i), is also not presented to the annotators. When a re-
lationship is identified by only one of two curators re-
viewing the same text, it could be because either the
first one did not ‘notice’ the same sentence, or actually
saw it and rejected it. This inherent ambiguity causes a
problem even for measures that allow varying number
of annotations per unit.

Similar to (Kilicoglu et al., 2011), we evaluated each
curator’s annotations against a reference, using preci-
sion, recall and F1 scores, as more feasible and intu-
itively understandable metrics for our use case. We
used the ‘majority approved’ relationships (§2.2) as the
reference dataset. The annotator agreement metrics (ta-
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Relationships A B C D E

All 0.85 0.84 0.83 0.88 0.88
CTD-derived only 0.99 0.96 0.97 0.99 0.96
New only 0.76 0.77 0.69 0.82 0.83

Table 4: Agreement F1 scores for the 5 annotators (A-
E) against the ‘approved’ reference subset.

ble 4) are fairly high, indicating a high confidence in
the approved subset. As expected, agreement levels on
prompted relationships (those from CTD) in the anno-
tator UI is higher than for relationships that the annota-
tor has to find and add (new relationships).

4. The Relationship Extraction Task
4.1. Task definition
The document-level relation extraction (RE) task in
ChemDisGene is to identify all relationships r(es, eo)
expressed in a document, comprised of the title and ab-
stract texts, that are the primary contributions of that
article. We consider 14 binary relation types (from
the CTD-derived corpus) among chemical, disease and
gene/gene-product entities. All mentions of these en-
tities in the text are identified and linked to the cor-
responding ontologies. This is a distant supervision
(relationships are associated with documents, but not
specific entity mentions) multi-label (a document, and
a pair of entities, may have more than one relationship)
classification task. For evaluation, we use Micro/Macro
F1 scores where per-relation thresholds are tuned on
the dev set, and average precision where thresholds are
not required.

4.2. Models
In our experiments, we trained and evaluated three
baseline methods on ChemDisGene.
BRAN Bi-affine relation attention networks (Verga et
al., 2018) is one of the first papers to tackle docu-
ment level (distant supervision) relation extraction in
the biomedical domain. It uses multiple self-attention
+ convolutional neural network (NN) layers to encode
the text input, then leverages per-relation biaffine trans-
formation to calculate mention level scores of the query
r(es, eo), and a logsumexp layer to capture the most
significant signal among mention pairs. In our experi-
ment, we omitted BRAN’s NER joint loss in order to
analyze its core RE module.
PubmedBert (Gu et al., 2021) is a BERT-based pre-
trained language model (Devlin et al., 2019) trained
from scratch on PubMed abstracts. For relation ex-
traction, we first get each entity’s embeddings by max-
pooling over PubmedBert’s encoding of all the entity’s
mentions. Then concatenated embeddings of candidate
argument entity pairs are processed through a feed-
forward NN to predict scores for each relation type.
PubmedBert + BRAN. This model combines the
stronger text encoder of PubmedBert with the relation

detection layers of BRAN. The model structure is: In-
put → PubMedBertEncoder → Biaffine → logsumexp
→ logits.

4.3. Empirical Results
Table 5 shows overall performance of the three base-
line models on ChemDisGene8. Performance metrics
are shown for the test split of the CTD-derived cor-
pus, and separate metrics on the curated corpus for ap-
proved relationships derived from CTD, and for all ap-
proved relationships, which also includes new relation-
ships added by the curators.
From the table, our best model PubmedBert + BRAN
has 43.8 Micro F1 and 50.6 average precision on the
‘all relationships’ curated test set, indicating the diffi-
culty of this task. The pretrained language model adds
significant improvement over BRAN. And the biaffine
transformation and logsumexp layer are also comple-
mentary to the pretrained language model.
Compared with the CTD-derived test set, the perfor-
mance decreases significantly on the curated test set,
indicating the necessity of evaluation on expert-labeled
data. We also observe that Macro results are lower than
Micro, indicating that performance varies across differ-
ent relation types. In table 6 we see that relation types
with low frequencies in the training data tend to per-
form poorly. The particularly bad performance of our
model on Chemical-Gene: expression-affects is also
caused by distraction from two similar but common
Chemical-Gene relation types: expression-increases
and expression-decreases.
Performance of baseline models on ‘BRAN’ dataset.
We also trained and tested the baseline models on the
CTD-derived dataset from (Verga et al., 2018), re-
ferred to as the ‘BRAN’ dataset (table 7). As de-
scribed above (§2.1), there are several differences in
this dataset that account for the different performance
results from those on ChemDisGene (table 5). Perhaps
the most important one is that in the BRAN dataset, ab-
stracts from test and dev splits are randomly selected,
whereas in ChemDisGene 271 abstracts are assigned
based on publication date. The ChemDisGene test set
also includes more documents with no relationships.
While this makes ChemDisGene more challenging, it
also reflects a more realistic scenario for applying such
RE models. The relative order of performance of the
three baselines is the same on both datasets.
Comparing the performance on CTD-derived and
All relationships in curated corpora. From Table 5
we can see that while model precision increases when
tested on all approved relationships from the curated
corpus, compared to the performance on just CTD-
derived approved relationships, the recall of all models
drops significantly. A main reason is that the training

8We trained all three baselines on ChemDisGene train-
ing set with hidden dimension 128, and we tuned the hyper-
parameters such as learning rate [1e-5, 1e-4] and weight de-
cay = [0, 1e-4] over the distant supervision dev set.
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data only includes CTD-derived relationships, which
are selected by CTD to be the ‘primary’ contributions
of the paper. While this is mostly determined within the
context of other publications, there might be a signal in
the wording (an area for further investigation).
Curators were asked to reject CTD-derived relation-
ships when the entities involved were incorrectly
linked. This probably accounts for the small difference
in models’ performance between the CTD-derived and
curated corpora.

5. Related Work
5.1. Distant Supervision Biomedical Corpora
As described above (see §1,2.1), ChemDisGene offers
a reworking of the derived corpus introduced in (Verga
et al., 2018), focusing on a cleaner derivation from an
updated CTD with better entity linking. The number of
abstracts also increased by ∼ 20k.
A well known manually labeled biomedical corpus is
BC5-CDR (Li et al., 2016), which identifies a single re-
lation type between Chemicals and Diseases, distantly
labeled in 1,500 abstracts. BC6-PM (Islamaj Doğan et
al., 2019) is another manually annotated distant super-
vision corpus, for Protein-Protein interactions. It has a
total of 1,232 abstracts, but only one relation type.
The GDA dataset (Wu et al., 2019) takes a similar ap-
proach to CTD-derived, to derive a Gene-Disease as-
sociations dataset from the DisGeNET9 database, us-
ing PubTator to link entity mentions. Abstracts are dis-
tantly labeled with a single relation type.

5.2. Direct Supervision Biomedical Corpora
DrugProt (Miranda et al., 2021), (Martin Krallinger
and Valencia, 2021), is the most recent manually an-
notated corpus of biomedical research abstracts cov-
ering multiple (13) relation types between Chemicals
and Genes/Gene-products. ChemDisGene uses a dif-
ferent set of 14 relation types between Chemicals and
Genes, derived from CTD. These relations generally
describe the observed effect of an interaction. For ex-
ample, a Localization relation is recorded when the in-
teraction between a Chemical and Gene product affects
the part of the cell where the molecule resides. In con-
trast, the DrugProt relation classes are defined by the
specific type of interaction between a Chemical and
Gene/Gene-product: they distinguish between ‘Direct’
and ‘Indirect’ regulation (where possible), and the sub-
classes focus on the direction of the interaction (‘Up-
regulator’, ‘Downregulator’). The subclasses for direct
regulation are highly granular, differentiating between
‘Activator’, ‘Agonist’, ‘Antagonist’, etc.
As an example, the relationship expressed in the text

“bisphenol PChemical showed estrogen
receptorGene antagonistic activities”

would be annotated as Chemical-Gene: activity-
decreases in ChemDisGene, whereas DrugProt would
record it as Chemical-Gene: antagonist.

9https://www.disgenet.org

DrugProt contains a larger number of abstracts (3500
in training, 750 in dev), with ∼5 relationships per ab-
stract. All mentions of Chemicals and Gene-related en-
tities are identified, but not linked. Relationships are di-
rectly supervised by identifying the actual pair of men-
tions expressing each relationship.
Our ChemDisGene manually curated corpus is smaller,
but also includes relationships between Chemicals and
Diseases, and Diseases and Genes. All entity mentions
are identified and linked by the models in Pubtator Cen-
tral, and relationships are distantly labeled, associated
with a document but not specific entity mentions. The
curated corpus contains ∼6 approved relationships per
abstract, distinguishing between primary contributions
(derived from CTD) and other (‘new’) relationships.
Most other manually annotated corpora used in
biomedical RE tasks are also directly supervised, and
cover fewer relation types, typically between fewer
types of entities. As another example, Drug-drug in-
teraction (DDI) (Herrero-Zazo et al., 2013) specifies
4 relation types among drugs, on sentences extracted
from 1025 documents.

5.3. Other RE Corpora
In the general domain, there exist several RE bench-
marks for sentence level, document level and few-
shot scenarios. SemEval 2010 task 8 (Hendrickx et
al., 2010) includes ten semantic relation types between
nouns over ∼ 11k sentences. The TAC relation extrac-
tion dataset (TACRED) (Zhang et al., 2017), as used
in the TAC KBP challenges, contains 106k sentences
from newswire and web text covering 41 relation types.
TACREV (Alt et al., 2020) and Re-TACRED (Stoica et
al., 2021) provides cleane versions of TACRED. DO-
CRED (Yao et al., 2019) is a document level relation
extraction dataset on the WikiPedia domain, with 5053
manually annotated documents and 100 relation types.
FewRel (Han et al., 2018)is a relation extraction bench-
mark for few-shot scenario, based on WikiPedia. A
newer version (Gao et al., 2019) includes Biomedical
relations as a domain adaptation task.

5.4. Relation Extraction Models
Traditional RE models have focused on classifying the
entity interaction in a sentence. For example, Zeng et
al. (2014) encoded sentences and entity pairs with con-
volutional neural networks and position embeddings.
Soares et al. (2019) finetuned Bert with self-supervised
signals from entity linking, and applied the model to
downstream RE tasks. There is also previous work
targeting longer text passages such as cross sentence
RE (Quirk and Poon, 2017), or document level distant
supervision RE (Verga et al., 2018; Sahu et al., 2019;
Christopoulou et al., 2019).
Sahu et al. (2019) and Christopoulou et al. (2019) en-
code graphs generated from each document for RE. In
contrast, BRAN (Verga et al., 2018) uses transform-
ers to encode the text sequence and then evaluates each
mention pair of candidate argument entities. All these

https://www.disgenet.org
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Micro Macro
Model P R F1 Avg. P P R F1

CTD-derived corpus: ‘dev’ split / ‘test’ split

BRAN 32.1 / 31.7 46.3 / 44.2 37.9 / 36.9 28.4 / 27.9 25.9 / 23.6 32.3 / 30.1 28.2 / 26.0
PubmedBert 50.3 / 49.6 59.3 / 56.1 54.5 / 52.6 50.3 / 50.1 43.6 / 39.0 50.3 / 48.4 44.9 / 41.7
PubmedBert + BRAN 53.9 / 53.9 61.0 / 57.3 57.3 / 55.6 54.0 / 54.3 45.0 / 42.7 54.1 / 50.4 48.7 / 44.4

Curated corpus: CTD-derived relationships only / All relationships

BRAN 24.4 / 41.8 45.8 / 26.6 31.8 / 32.5 28.1 / 33.5 20.3 / 37.2 35.7 / 22.5 24.5 / 25.8
PubmedBert 43.0 / 64.3 61.7 / 31.3 50.7 / 42.1 50.7 / 46.9 34.7 / 53.7 53.4 / 32.0 39.6 / 37.0
PubmedBert + BRAN 46.5 / 70.9 61.1 / 31.6 52.8 / 43.8 53.0 / 50.6 45.8 / 69.8 59.0 / 32.5 47.0 / 40.5

Table 5: Performance of baseline models on ChemDisGene CTD-derived ‘dev’, ‘test’ and curated corpora.

Relation Type F1

Chemical-Disease : marker/mechanism 54.1
Chemical-Disease : therapeutic 45.5
Chemical-Gene : expression - increases 58.2
Chemical-Gene : expression - decreases 61.6
Gene-Disease : marker/mechanism 47.1
Chemical-Gene : activity - increases 52.4
Chemical-Gene : activity - decreases 56.3
Chemical-Gene : metabolic processing - increases 36.4
Chemical-Gene : binding - affects 58.1
Chemical-Gene : transport - increases 36.1
Chemical-Gene : metabolic processing - decreases 34.4
Chemical-Gene : localization - affects 48.9
Chemical-Gene : expression - affects 0.4
Gene-Disease : therapeutic 28.6

Table 6: ‘PubmedBert + BRAN’ model metrics for
each relation type in the curated corpus, sorted on de-
creasing relation frequency in the training data.

Model Micro F1 Macro F1

BRAN 43.5 30.1
PubmedBert 58.9 44.6
PubmedBert + BRAN 60.0 46.0

Table 7: Evaluation on data from (Verga et al., 2018).

document level RE models showed comparable perfor-
mance on BC5CDR. We chose BRAN as a baseline be-
cause it does not require a graph generation step.

In addition to RE, there is triple extraction work
(Bansal et al., 2020) that recognizes entities and rela-
tionships simultaneously.

There has also been recent work on extracting n-ary
biomedical relationships across sentences, e.g. (Ernst
et al., 2018) learns dependency parse tree patterns from
seed facts, and (Peng et al., 2017) applies graph LSTMs
to dependency parses, trained on a noisy distant labeled
dataset. In this paper we focus on binary relations.

6. Conclusion
We introduced ChemDisGene, a new dataset of re-
search abstracts labeled with biomedical entity men-
tions and distance-labeled with biomedical relation-
ships, for training and evaluating multi-type multi-label
biomedical RE models. The dataset includes a large au-
tomatically derived corpus with noisy relationship la-
bels (∼ 22% noise based on manual curation), and a
cleaner manually curated dataset of 523 abstracts. We
also provided three baseline ML models for RE, trained
and evaluated on the ChemDisGene dataset. We believe
this is the first dataset for biomedical relation extraction
tasks that addresses multiple entity (more than 2) and
relation types, and includes both a large automatically
derived corpus (useful for model training), as well as a
smaller corpus labeled by human experts.
Manually annotating raw text with biomedical relation-
ships is a hard and time consuming task, even for do-
main experts. We facilitated the curation with high
quality models for entity recognition.
Future refinements to this dataset could include verify-
ing the linked entities in the curated corpus, and adding
Protein-Protein interactions, useful for understanding
disease mechanisms and drug repurposing.
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