Building a Clinically-Focused Problem List From Medical Notes

Amir Feder* Itay Laish

Aviel Atias Cathy Cheung

Rachana Fellinger Hengrui Liu

Natan Potikha Amir Taubenfeld

Ayelet Benjamini

Abstract

Clinical notes often contain useful information
not documented in structured data, but their
unstructured nature can lead to critical patient-
related information being missed. To increase
the likelihood that this valuable information is
utilized for patient care, algorithms that sum-
marize notes into a problem list have been
proposed. Focused on identifying medically-
relevant entities in the free-form text, these so-
lutions are often detached from a canonical on-
tology and do not allow downstream use of
the detected text-spans. Mitigating these is-
sues, we present here a system for generating
a canonical problem list from medical notes,
consisting of two major stages. At the first
stage, annotation, we use a transformer model
to detect all clinical conditions which are men-
tioned in a single note. These clinical condi-
tions are then grounded to a predefined ontol-
ogy, and are linked to spans in the text. At
the second stage, summarization, we develop
a novel algorithm that aggregates over the set
of clinical conditions detected on all of the
patient’s notes, and produce a concise patient
summary that organizes their most important
conditions.

1 Introduction

The pervasiveness of free-text narrative in Elec-
tronic Health Records (EHR) is both a blessing and
a curse. It allows much more nuanced information
about patients’ conditions being saved and docu-
mented (Uzuner et al., 2010; Savova et al., 2010;
Jensen et al., 2012; Wang et al., 2018; Feder et al.,
2020). However, the unstructured nature of the
data can also impede care givers’ understanding of
patient conditions (Walsh, 2004; Ford et al., 2016).

To allow care providers to better understand their
patients’ condition from medical notes, many ma-
chine learning (ML) models have been proposed
(Uzuner et al., 2011; Jensen et al., 2012; Lee et al.,

Corresponding author (afeder@google. com).

60

Shashank Agarwal Uri Lerner

Peter Clardy Alon Cohen

Lan Huong Nguyen Birju Patel
Liwen Xu Seung Doo Yang

Avinatan Hassidim

Note Note Note

Annotation
(Section 4)

| [|

Condition / Condition
I

Condition

N) —

[e
/

] —
I
N

Condition Condition Condition

Condition

-

Summarization
(Section 5)

!
OUT:/ Condition // Condition // Condition /

—

Figure 1: System overview: Conditions are extracted
form each individual note at the annotation stage, and
a single patient level list is generated from them at the
sumarization stage.

2020). These algorithms often solve a named-entity
recognition (NER) task over the clinical notes, iden-
tifying text spans that correspond to clinical prob-
lems (Uzuner et al., 2011). While performance on
such task has improved in the last decade (Wang
et al., 2018), these models often do not link the
identified entities to an ontology and are there-
fore sensitive to abbreviations, spelling errors and
language ambiguity (Redtegui and Ratté, 2018;
Gopinath et al., 2020; Gao et al., 2021). More-
over, these solutions operate at the note level, and
are not able to aggregate a patient’s overall medical
problem list (Baumel et al., 2018). Both of these
limitations decrease the utility of deploying these
models in the real-world.

Proceedings of the 13th International Workshop on Health Text Mining and Information Analysis (LOUHI), pages 60 - 68
December 7, 2022 ©2022 Association for Computational Linguistics

Another important limitation of many existing
solutions is that they are built on top of recurrent
neural networks designed for solving NER tasks
which often do not fully utilize the nuanced linguis-
tic signal (Wang et al., 2018). These approaches
were shown to produce very good results on de-
identification tasks on clinical notes (Hartman et al.,
2020), but can fail when presented with tasks that
demand better understanding of context (Devlin
et al., 2019). The recent transition of the entire
NLP community to pre-trained transformer-based
models (Wu et al., 2020) thus offers an opportunity
to further improve on existing condition extraction
methods (Zhu et al., 2018).

In this paper, we take on the task of addressing
these problems and limitations, and describe how to
build an end-to-end system that is robust and trust-
worthy. Concretely, given a set of notes describing
a single patient, our goal is to output a clinically-
focused problem list. Our system consists of two
major stages: (1) Annotation (§4): operating at the
level of a single medical note, we detect all clinical
conditions which are mentioned in the text. These
clinical conditions are then grounded to a prede-
fined set of entities, and are linked to text spans.
More formally, the output of the annotation stage
is a set of tuples, where each tuple is a clinical con-
dition identifier, a character span and context meta-
data (e.g., the acuity and presence of the condition).
(2) Summarization (§5): operating at patient-level,
we consume the set of clinical conditions detected
during the annotation stage, and produce a con-
cise patient summary that organizes the conditions.
Our system is backed by a tailored Ontology (§3),
defined on-top of SNOMED-CT (Donnelly et al.,
2006) used by both stages to model the clinical
knowledge required for this task. See Figure 1 for
an illustration of our system.

2 Related Work

Identifying patient-related information in medical
notes is long recognized as a core task in clinical-
NLP. As such, there exist standardized datasets and
competitions (Uzuner, 2009; Savova et al., 2010;
Jensen et al., 2012; Ford et al., 2016; Zhu et al.,
2018). The task of identifying medical concepts
in clinical notes was organized as a competition
in 12b2 2010 (Uzuner et al., 2011). In i2b2 and
in subsequent work, this task was defined as a
named entity recognition (NER) task (Hartman
et al., 2020), where individual words are classified

61

as to whether they contain medical problems. Sub-
sequently, a Named Entity Normalization (NEN)
task, where entities are standardized into known
medical concepts, was later added to the i2b2 (now
n2c2) competitions (Luo et al., 2019). Solutions
to the problem consequently followed the conven-
tional NLP approaches to solving NER tasks. Re-
cent approaches harness the transformer architec-
ture, solving a token-level binary classification task
(Peng et al., 2019; Yadav and Bethard, 2019; Si
et al., 2019; Lee et al., 2020).

To connect identified text spans to an ontology, a
common solution is to look for the most similar en-
tity in a given knowledge graph. Knowledge graphs
use a graph-structured data model to integrate data
(Ehrlinger and W68, 2016). They are often used to
store interlinked descriptions of entities—objects,
events, situations or abstract concepts—while also
encoding the semantics underlying the used ter-
minology. They were shown to be very useful in
the medical domain and are often used to encode
medical knowledge (Lindberg et al., 1993; Don-
nelly et al., 2006; Lipscomb, 2000). Specifically, in
the context of free-form text, as that in the clinical
notes, graph structured data models can be used to
map many alternative descriptions of the same con-
dition into one canonical definition (Organization,
2015).

Finally, the task of aggregating patient-related
information across multiple documents into one
problem list in a single system was not, to the best
of our knowledge, published in prior research. The
focus of our work is building an end-to-end system
that connects the text annotation with the summa-
rization stage.

3 Ontology

Our system is based on a universe of entities (ontol-
0gy). The ontology captures the clinical knowledge
required for our system to provide a concise and
clinically-focused problem list. This knowledge
improves both the detection of clinical conditions
in medical notes (§4), and the subsequent bucketing
of related conditions (§5).

On the detection side, it is necessary for our
algorithm to be aware of the ways in which clini-
cal conditions may appear in medical notes. For
example, “iddm” (“insulin dependent diabetes mel-
litus”) is an alternative phrasing of “Diabetes mel-
litus type 17, and “Miller” may refer to "Miller
Fisher syndrome". On the bucketing side, it is nec-

essary to have knowledge about related conditions
(e.g., “Biventricular congestive heart failure” is re-
lated to “Right heart failure™) and about possible
complications of certain conditions (e.g., “Diabetic
nephropathy” is a complication of “Diabetes melli-
tus”).

Failure to capture this knowledge may increase
the redundancy at the problem list level, and might
cause dilution of signals and features, which in
turn results in poor quality. The ontology is there-
fore a fundamental building block that is being
used across all the system stages, and the way it
is created has critical quality implications. In this
section, we describe the creation of our ontology.
Instead of creating a full ontology end-to-end, we
have opted to base our ontology on pre-existing
datasets. We collected a set of Ground Truth Prob-
lem List, which were curated by clinicians, and
examined the properties of each dataset against this
ground truth. A useful ontology should demon-
strate the following properties:

(i) High coverage of the entries in the ground
truth Problem List’s, and in the right granu-
larity level.

(i) Easy to match an entity from the ontology
to the actual text in the medical note.

(iii) Entities should have meaningful relation-
ships with other entities that are useful for
reducing redundancy in the aggregated Prob-
lem List.

We considered multiple data sources, including:
SNOMED-CT (Donnelly et al., 2006), MeSH (Lip-
scomb, 2000), ICD-10-CM (Organization, 2015),
and UMLS (Lindberg et al., 1993).

3.1 ICD-10

ICD-10 is lacking some conditions (e.g.,
“Odynophagia”) violating property ((i)); a single
main entity is missing for some conditions (e.g.
“Sepsis” and “Pneumonia” are associated with mul-
tiple unrelated entities), these conditions are clut-
tered across the dataset, making it more difficult to
group mentions together (violating property ((iii)));
and due to the verbose description of some entities
(e.g. “K44.9 Diaphragmatic hernia without obstruc-
tion or gangrene”), it is hard to match an ontology
entity to the text (‘“Hiatal hernia” in the previous
example), in violation of property ((ii)).

62

3.2 MeSH

In MeSH we observed some significant recall
losses. For example, "Hypertensive urgency” and
"Generalized anxiety disorder” were missing, vio-
lating property ((i)).

3.3 UMLS

Since UMLS is a combination of multiple systems,
the relationships and granularity it provides vary
across entities. This makes all properties only par-
tially satisfied.

3.4 SNOMED-CT

While SNOMED-CT was missing some entities
(e.g., "Right eye glaucoma”), these could usually
be compensated by other SNOMED concepts with-
out any significant clinical impact, and overall, it
outperformed on all three properties the other op-
tions considered.

We note that due to the uniqueness in structure,
relation types and granularity of each ontology, any
attempt of reconciliation is exposed to similar is-
sues as observed in UMLS. Therefore we chose
to base our solution on a single ontology source
(SNOMED), where each entity in our ontology cor-
responds to exactly one SNOMED concept. This
allows us to maintain the consistency and gran-
ularity of SNOMED concepts and relationships,
and also allows us to incorporate new versions of
SNOMED as they are released, which keeps the
ontology up to date.

Additionally, in order to enhance the ability to
match a SNOMED concept to text from medi-
cal notes, we enrich SNOMED concepts with the
followings (using our NameMapper algorithm de-
scribed in section 4.2):

1. The ICD-10 codes of all ICD-10 diagnoses for
which the SNOMED concept is their closest
concept in SNOMED.

. Phrases which are alternative ways to mention
the entity in medical notes.

For (1), we use two sources for mapping ICD-10
diagnoses to their closest SNOMED concept: (a)
OHDSI-OMOP (Stang et al., 2010; Hripcsak et al.,
2015); and (b) the NameMapper (details in sec-
tion 4.2) algorithm, applied on a diagnosis’ name
in order to match it against the set of SNOMED
terms. For (2), we consider clusters of phrases
that are originated from various sources: MeSH,
UMLS and manually-curated abbreviations. All
phrases in a cluster refer to the same entity. We

use NameMapper again, in order to match each
phrase in a cluster against the full set of SNOMED
terms. We add the entire cluster to the entity that
corresponds to the closest SNOMED concept.

4 Annotation

The annotation stage is performed at the
level of a single clinical note. At the
end of this stage each mention of a condi-
tion in the text is exported in the form of
(ConditionI D, (start, end), ContextInfo) tu-
ple (where start, end refer to a char offset from
the beginning of the note), ConditionID is a
unique entry in the ontology described in §3,
and ContextIn fo includes extracted information
about the condition, such as acuity, presence, etc.

We start this section by describing our detec-
tion (§4.1), and mapping (§4.2) algorithms.

4.1 ML model for surfacing candidates and
context information

We extract condition spans from free text using
an ML NER model. Later, we try to map these
candidate spans into our ontology (§4.2).

Our model is a multi-task encoder-only trans-
former model (BERT; Devlin et al., 2019). Its main
task is a 4-class classification task (using the labels
PROBLEM, BODY PART, QUALIFIER, PRO-
CEDURE), with additional two supplementary-
tasks:

e Existences: For each of the four labels,
whether it is PRESENT or ABSENT,; e.g., in
“ruled out cancer”, “cancer” is labeled as AB-

SENT.

* Relation: For both BODY_PARTS /
QUALIFIERS, are they associated with the
PROBLEM / PROCEDURE on their left, or
on their right. E.g., in "diabetic foot ulcer",
"ulcer" will have a LEFT_HAND_SIDE
label. This information is later used to map
the annotated term to the most accurate
ontology entity.

This is the 2nd generation of NER models used
in our system, our previous model was based on
GloVe, Bi-LSTM and CRF (Hartman et al., 2020).
On top of the CRF layer we placed three softmax
layers to solve each of the three aforementioned
tasks (this model is referred as Bi-LSTM below).

The BERT model described here showed supe-
rior performance (see table below). For BERT, we

63

use a similar approach where we place three soft-
max layers on top of the pre-trained contextual em-
bedding. The added layers are then fine-tuned on
the MIMIC-III dataset (Johnson et al., 2016; using
the same labels of the Bi-LSTM). We experimented
with 3 pre-trained BERTSs:

BERT-base from the original paper (Devlin et al.,
2019).

BERT-small based on (Turc et al., 2019) — x2
more efficient than BERT-base.

PubMED BERT same architecture as BERT-
base, pre-trained from scratch on MED-
LINE/PubMed, using the original uncased
word-piece tokenizer (Lee et al., 2020).

The labels are split 80%/20% for train/eval sets.
The following table shows the results on the eval
set. As can be seen, PubMED BERT surpasses the
other models.

4.2 NameMapper — A graph traversal-based
approach for ontology matching

In many cases, the hand-written text by clinicians
in notes does not match the names of conditions in
the ontology. To bridge this gap, and to increase
the coverage of problems detected and matched
by our algorithm in §4.1, we introduce a graph-
based fuzzy text matcher called NameMapper. The
NameMapper is used during the following stages
of our system:

(i) Ontology creation (§3): For mapping
between entities in different ontologies
(ICD-10— SNOMED).

(ii) Increase detection coverage: Build a vo-
cabulary used at the annotation stage for
matching text spans to entities from the on-
tology.

(iii) Mapping: Map conditions spans generated
in §4.1 to entities in our ontology.

NameMapper is essentially a string matching

algorithm. It operates on text that is suspected to
match a name of an entity in the ontology. It ex-
pands the string using different variations of each
word within, and allows string manipulations using
pre-defined operations. Each operation is associ-
ated with a cost. We use a graph (with these costs
set as edge weights) to find the closest entity in
the ontology to the input string. See an illustration
in Figure 3). The process consists of three main
stages:

Relation

RIGHT

Existence PRESENT

PRESENT ABSENT

CONDITION

Main

BODY_PART CONDITION

! f

f

f ! f f

Transformer encoder (BERT)

Pt arrived bleeding from

their

forehead no signs of concussion

Figure 2: Illustration of our multi-task encoder-only transformer: Each token is labeled for type classifica-

tion(Main), Existence and Relation.

Parsing. We first break the input string into a
(non-intersecting) sequence of name components
of different types: e.g., connectors such as "due to"
or "of" are modeled as a special type.

Generation. For each name component, we gen-
erate a set of alternatives, each alternative is as-
sociated with a cost. These alternatives represent
different ways to refer to the same concept, e.g.,
"malignant tumor" — "cancer”, "lung" — "pul-
monary", "kidney" — "renal", "diabetes mellitus"
— "diabetes"). These costs were manually curated.
One could think of them as the conceptual distance
between the two synonyms (e.g., replacing "ii" with
"2" has a lower cost compared to replacing "infec-
tious disease" with "infection"). The alternating
names include the original string as it appears in
the input name (up to lower-casing and some other
default operations) and alternative wordings that
are based on synonyms, dropping optional phrases,
stemming and more. We manually curated those
rules. For example, "diabetes" is a synonym of
diabetes mellitus, diabet is the canonical form of
"diabetes".

Using the alternatives of each name component,
we generate a list of alternative writings for the
entire phrase. The alternatives include different
combinations of the options created for the name

| PROBLEM [3.8K]

BODY PART [1.4K]

components generated during the previous stage.
This stage also allows phrase level transformations
(with additional cost). For example, the connector
"due to" allows a transformation of dropping itself
and the possibility of swapping both of its sides:
"coma due to diabetes mellitus" may generate al-
ternatives such as "coma diabetes mellitus" and
"diabetes mellitus coma" (each with a cost). The
final (phrase level) cost is set to be the costs sum
of all replacements and operations applied to the
input string.

Selection. We output the ontology entity that
matches the best candidate (lowest cost). For ex-
ample, the terms "diabetic coma", "coma due to di-
abetes mellitus" and "diabetes mellitus coma" will
all be mapped to the same ontology entity "Coma

due to diabetes mellitus"”, each with a cost.

5 Summarization

The Annotation Phase (§4) outputs the mentions of
clinical conditions in the medical notes. The goal of
the Summarization Phase is to take all the mentions
across all the notes and generate a comprehensive
and coherent problem list, optimized for the needs
of clinicians who care for the patient. In addition to
the mentions themselves, the Summarization Phase
can use additional information in the patient’s chart

QUALIFIER [0.7K] PROCEDURE [0.4K]

| P R Fl | P R Fl | P R Fl | P R FI
Bi-LSTM 84.74 86.80 8576 | 75.52 80.02 77.70 | 60.65 55.17 5778 | 71.83 64.15 67.77
PubMED BERT | 87.64 89.69 88.65 | 72.61 86.79 79.07 | 6527 6218 63.69 | 6594 76.58 70.86
BERT base 8647 87.19 86.83 | 7422 8251 7815 | 61.24 5777 5945 | 6499 67.80 66.36
BERT small 84.10 86.65 8535 | 69.82 81.22 75.09 | 5951 5583 57.61 | 62.13 5736 59.65

Table 1: ML model classification results

64

as well as general medical knowledge. We now
describe the sequence of steps that make up the
Summarization Phase.

5.1 Grouping

The first step is to collect all the clinical condition
mentions related to the same condition. In this
step, we drop conditions that the patient never had
(e.g., mentions of known side effects of treatments,
speculations written in the note etc.) using the
existence signal generated by our annotator (§4.1).

5.2 Bucketing

In the next step, we group clinical conditions that
are related to each other. For example, if we found
mentions of Systolic Heart Failure, Diastolic Heart
Failure, Acute Heart Failure, and Acute Diastolic
Heart Failure in a patient’s medical notes, we
would bucket those mentions under a Heart Fail-
ure bucket, even if "Heart Failure" itself was not

IN:

+ “Diabetic coma” H

Name part #1:
"diabetic coma”

/

Lowercasing

o

Use of synonym for
“diabetes mellitus”

Drop of the
connector and
reorder

Tle 15

-

Canonization of
“diabetes”

diabet coma

coma due to
diabetes

explicitly mentioned in the patient’s record.

In the example above, Heart Failure is an an-
chor entity, used to bucket together more specific
conditions as defined by the is-a relation of the
SNOMED ontology (see Section 3). A bucket is
defined as a collection of patient conditions com-
posed of one or more anchor entities and their cor-
responding descendants (in the ontology).

Ideally, conditions inside a bucket should in-
volve similar pathophysiologies, medications and
therapies. Anchor entities should thus follow the
Goldilocks Principle and be neither too broad nor
too narrow. Overly broad anchor entities (e.g.,
Heart disease) represent conditions with very dif-
ferent pathophysiologies and therapies and there-
fore do not provide a good clinical view. Overly
narrow anchor entities (e.g., Systolic Heart Fail-
ure, Diastolic Heart Failure, Acute Heart Failure,
and Acute Diastolic Heart Failure) would make
the Problem List overly long and redundant, reduc-

OUT:

Name part #1:
"coma”

Coma due to diabetes
mellitus
(disorder #420662003)

Name part #2:
"due to” (connector)

Name part #3:
"diabetes mellitus”

_r— 0

Lowercasing

coma due to
diabetes mellitus

120

Canonization of
25 I “diabetes mellitus”

coma due to diabet
mellitus

Use of canonical form of
“diabetes”

25
O—L Canonization of

“diabetes”

Figure 3: Illustration of the NameMapper: At stage Parsing the input "Diabetic coma" is parsed to its single
name component (blue parallelogram). Additionally, the ontology entity "Coma due to diabetes mellitus" is parsed

to Coma, diabetes mellitus and the connector due to (green

parallelograms). Then the generation stage Generation

will use the variations of each name component to create all possible permutations both for the input and the

ontology entity(ies), given in blue and green ovals accordi

ngly. Finally stage Selection will find the shortest path

between the input and the ontology, that is Coma due to diabetes mellitus with the cost of 85 (in bold).

65

ing its usefulness. Identifying good anchor entities
requires clinical expertise.

As part of the Bucketing step, we also determine
the name of the bucket. This is typically the name
of the anchor entity or entities around which the
bucket is defined. However, if the bucket only con-
tains more specific entities than the anchor entities,
we give the bucket a more specific name.

For example, if the only conditions in the bucket
anchored on Heart Failure were Diastolic Heart
Failure, and Acute Diastolic Heart Failure, instead
of naming the bucket "Heart Failure", we would
name it "Diastolic Heart Failure”, which is a more
accurate description of all the entities that ended
up in the bucket for this particular patient.

5.2.1 Secondary buckets

Some conditions are associated with other condi-
tions typically but not always. For example, Hy-
perglycemia is often associated with Diabetes Mel-
litus but it is possible to have nondiabetic Hyper-
glycemia. In this case we consider Diabetes Melli-
tus as a secondary bucket of Hyperglycemia, mean-
ing that if the Diabetes Mellitus bucket includes
other conditions then it should also include Hyper-
glycemia, but if it is empty (does not exist) then
Hyperglycemia should be its own bucket.

5.3 Bucket Presence

At the end of the bucketing step, we generate col-
lections of clinical conditions that were mentioned
in the patient’s medical notes. However, the patient
does not necessarily have all conditions that were
mentioned. The typical reasons are mistakes in the
Annotation Phase or actual uncertainty, e.g., a pa-
tient may have a mention indicating that Covid-19
is likely only to be ruled out in a later mention.
Obviously, it is desirable to omit these conditions
from the list, as the patient does not have them.

In the Condition Bucket Presence step, we deter-
mine if the patient is having, or has ever had each
of the condition buckets. First, we make use of
the Existence signal extracted during the Annota-
tion phase (see Section 4.1), and drop the mentions
classified as "ABSENT" by the algorithm based on
the surrounding context. Since (as expected) the
Annotator’s existence classification is not always
perfect, we apply an additional second level to im-
prove the presence detection. To handle mistakes
from the Annotation Phase we take into account the
frequency with which the condition was mentioned
in medical notes, the section where the condition

66

was mentioned, and the credentials of the medical
note’s author. We are looking into using additional
signals such as mentions in the notes of related con-
ditions, documentations of conditions in the EHR
structured Problem Lists, information about labs,
vitals and medications, and many others.

5.4 Classification

Over time, a patient is expected to have many clin-
ical conditions. However, not all conditions are
active when the patient is reviewed, and if they all
were to be displayed, the list would quickly become
overwhelmingly long and not particularly useful.
Imagine reading a chart of a patient that caught a
common cold a few years ago who is also diabetic;
more details about diabetes and related conditions
should be surfaced, and the information about the
common cold’s occurrence in the far past would
be no longer relevant today, and therefore should
be skipped to avoid unnecessary clutter. Since our
Annotation phase also detects symptoms and pro-
cedures seen in the patient’s medical notes, the
length of the generated Problem List can become
extremely long. It is thus important for us to strive
for conciseness, and avoid information overload
that could distract physicians from the important
active conditions.

To make the Problem List easier to comprehend,
we classify the clinical conditions into four cate-
gories: Active Conditions, Historical Conditions,
Procedures, and Symptoms.

SNOMED classifies every entity into a type
which includes disorders, findings, and procedures.
We consider the SNOMED types of all the entities
in a bucket to determine the type of the bucket:
a bucket with disorders is a Conditions bucket, a
bucket with findings is a Symptoms bucket and so
on. We have additional logic for mixed buckets,
e.g., a mixture of disorders and findings is consid-
ered a Conditions bucket.

In the next step we classify the Conditions buck-
ets into Active and Historical category. We do this
by first classifying individual conditions included
in a bucket separately and then again classifying
the entire bucket based on the whole collection: a
bucket with at least one Active condition is Active,
otherwise it is Historical. A chronic lifelong con-
dition such as Type I Diabetes Mellitus is always
considered Active. The remaining conditions are
considered Active and then moved to Historical if a
mention confirming their presence wasn’t seen for

a long time, or if a mention was found explicitly
indicating that the condition was resolved. The
duration after which a non-lifetime condition is au-
tomatically classified as Historical (because it was
not mentioned again as present) varies, and is part
of our curated knowledge gathered with assistance
of expert clinicians.

5.5 Ranking

Finally, we rank the conditions in each category
so that the most clinically important conditions
are displayed first. Our ranking function accounts
for the severity and recency clinical conditions to
determine the order. More severe and more re-
cent conditions are ranked higher to highlight the
conditions that might require more attention from
physicians.

5.6 Summarization evaluation

Each step in the Summarization Phase is evaluated
separately so that we are able to test those steps
in isolation. At the same time, we also test the
overall pipeline by evaluating the resulting Problem
List holistically. In addition to evaluating metrics
such as precision and recall, we also measure the
usefulness of the Problem List, which captures the
effects of steps such as Bucketing, Classification,
and Ranking.

6 Conclusion

In this work, we present an end-to-end system for
summarizing a patient’s problem list directly from
their entire collection of medical notes. This sys-
tem aggregates over identified conditions in each
note, producing a concise list mapped to a canon-
ical ontology and without duplicated conditions.
Building on recent improvements in natural lan-
guage understanding models, especially encoder-
only transformers, we show how NLP models can
be used as part of an holistic system. We hope that
our work will spur more research on how to utilize
NLP for better, more robust and trustworthy, health
informatics systems.

References

Tal Baumel, Jumana Nassour-Kassis, Raphael Co-
hen, Michael Elhadad, and Noémie Elhadad. 2018.
Multi-label classification of patient notes: case study
on icd code assignment. In Workshops at the thirty-
second AAAI conference on artificial intelligence.

67

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186.

Kevin Donnelly et al. 2006. Snomed-ct: The advanced
terminology and coding system for ehealth. Studies
in health technology and informatics, 121:279.

Lisa Ehrlinger and Wolfram W68. 2016. Towards a def-
inition of knowledge graphs. SEMANTICS (Posters,
Demos, SuCCESS), 48(1-4):2.

Amir Feder, Danny Vainstein, Roni Rosenfeld, Tzvika
Hartman, Avinatan Hassidim, and Yossi Matias.
2020. Active deep learning to detect demographic
traits in free-form clinical notes. Journal of Biomed-
ical Informatics, 107:103436.

Elizabeth Ford, John A Carroll, Helen E Smith, Donia
Scott, and Jackie A Cassell. 2016. Extracting infor-
mation from the text of electronic medical records to
improve case detection: a systematic review. Jour-
nal of the American Medical Informatics Associa-

tion, 23(5):1007-1015.

Yanjun Gao, Dmitriy Dligach, Leslie Christensen,
Samuel Tesch, Ryan Laffin, Dongfang Xu, Timothy
Miller, Ozlem Uzuner, Matthew M Churpek, and
Majid Afshar. 2021. A scoping review of publicly
available language tasks in clinical natural language
processing. arXiv preprint arXiv:2112.05780.

Divya Gopinath, Monica Agrawal, Luke Murray,
Steven Horng, David Karger, and David Sontag.
2020. Fast, structured clinical documentation via
contextual autocomplete. In Machine Learning for
Healthcare Conference, pages 842-870. PMLR.

Tzvika Hartman, Michael D Howell, Jeff Dean,
Shlomo Hoory, Ronit Slyper, Itay Laish, Oren
Gilon, Danny Vainstein, Greg Corrado, Katherine
Chou, et al. 2020. Customization scenarios for de-
identification of clinical notes. BMC medical infor-
matics and decision making, 20(1):1-9.

George Hripcsak, Jon D Duke, Nigam H Shah, Chris-
tian G Reich, Vojtech Huser, Martijn J Schuemie,
Marc A Suchard, Rae Woong Park, Ian Chi Kei
Wong, Peter R Rijnbeek, et al. 2015. Observational
health data sciences and informatics (ohdsi): oppor-
tunities for observational researchers. Studies in
health technology and informatics, 216:574.

Peter B Jensen, Lars J Jensen, and Sgren Brunak. 2012.
Mining electronic health records: towards better re-
search applications and clinical care. Nature Re-
views Genetics, 13(6):395-405.

Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-
wei H Lehman, Mengling Feng, Mohammad Ghas-
semi, Benjamin Moody, Peter Szolovits, Leo An-
thony Celi, and Roger G Mark. 2016. Mimic-iii,

a freely accessible critical care database. Scientific
data, 3(1):1-9.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim,
Donghyeon Kim, Sunkyu Kim, Chan Ho So, and
Jaewoo Kang. 2020. Biobert: a pre-trained biomed-
ical language representation model for biomedical
text mining. Bioinformatics, 36(4):1234—1240.

Donald AB Lindberg, Betsy L Humphreys, and
Alexa T McCray. 1993. The unified medical lan-
guage system. Yearbook of medical informatics,
2(01):41-51.

Carolyn E Lipscomb. 2000. Medical subject headings
(mesh). Bulletin of the Medical Library Association,
88(3):265.

Yen-Fu Luo, Weiyi Sun, and Anna Rumshisky. 2019.
Mcn: a comprehensive corpus for medical concept
normalization. Journal of biomedical informatics,

92:103132.

World Health Organization. 2015. International classi-
fication of diseases, tenth revision, (icd-10).

Yifan Peng, Shankai Yan, and Zhiyong Lu. 2019.
Transfer learning in biomedical natural language
processing: an evaluation of bert and elmo

on ten benchmarking datasets. arXiv preprint
arXiv:1906.05474.

Ruth Redtegui and Sylvie Ratté. 2018. Comparison of
metamap and ctakes for entity extraction in clinical
notes. BMC medical informatics and decision mak-
ing, 18(3):13-19.

Guergana K Savova, James J Masanz, Philip V Ogren,
Jiaping Zheng, Sunghwan Sohn, Karin C Kipper-
Schuler, and Christopher G Chute. 2010. Mayo clin-
ical text analysis and knowledge extraction system
(ctakes): architecture, component evaluation and ap-
plications. Journal of the American Medical Infor-
matics Association, 17(5):507-513.

Yuqi Si, Jingqi Wang, Hua Xu, and Kirk Roberts. 2019.
Enhancing clinical concept extraction with contex-
tual embeddings. Journal of the American Medical
Informatics Association, 26(11):1297-1304.

Paul E Stang, Patrick B Ryan, Judith A Racoosin,
J Marc Overhage, Abraham G Hartzema, Christian
Reich, Emily Welebob, Thomas Scarnecchia, and
Janet Woodcock. 2010. Advancing the science for
active surveillance: rationale and design for the ob-
servational medical outcomes partnership. Annals
of internal medicine, 153(9):600-606.

Tulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Well-read students learn better:
On the importance of pre-training compact models.
arXiv preprint arXiv:1908.08962.

Ozlem Uzuner. 2009. Recognizing obesity and comor-
bidities in sparse data. Journal of the American Med-
ical Informatics Association, 16(4):561-570.

68

Ozlem Uzuner, Imre Solti, and Eithon Cadag. 2010.
Extracting medication information from clinical text.
Journal of the American Medical Informatics Asso-
ciation, 17(5):514-518.

Ozlem Uzuner, Brett R South, Shuying Shen, and
Scott L DuVall. 2011. 2010 i2b2/va challenge on
concepts, assertions, and relations in clinical text.
Journal of the American Medical Informatics Asso-

ciation, 18(5):552-556.

Stephen H Walsh. 2004. The clinician’s perspective
on electronic health records and how they can affect
patient care. Bmj, 328(7449):1184—1187.

Yanshan Wang, Liwei Wang, Majid Rastegar-Mojarad,
Sungrim Moon, Feichen Shen, Naveed Afzal, Sijia
Liu, Yuqun Zeng, Saeed Mehrabi, Sunghwan Sohn,
et al. 2018. Clinical information extraction appli-
cations: a literature review. Journal of biomedical
informatics, 77:34-49.

Stephen Wu, Kirk Roberts, Surabhi Datta, Jingcheng
Du, Zongcheng Ji, Yuqi Si, Sarvesh Soni, Qiong
Wang, Qiang Wei, Yang Xiang, et al. 2020. Deep
learning in clinical natural language processing: a
methodical review. Journal of the American Medi-
cal Informatics Association, 27(3):457-470.

Vikas Yadav and Steven Bethard. 2019. A survey on re-
cent advances in named entity recognition from deep
learning models. arXiv preprint arXiv:1910.11470.

Henghui Zhu, Ioannis Ch Paschalidis, and Amir
Tahmasebi. 2018. Clinical concept extraction
with contextual word embedding. arXiv preprint
arXiv:1810.10566.

