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Abstract

Scientific documents typically contain numer-
ous entity mentions, while only a subset are
directly relevant to the key contributions of
the paper. Distinguishing these focus entities
from background ones effectively could im-
prove the recovery of relevant documents and
the extraction of information from documents.
To study the identification of focus entities,
we developed two large datasets of disease-
causing biological pathogens using MEDLINE,
the largest collection of biomedical citations,
and PubMed Central, a collection of full text ar-
ticles. The focus entities were identified using
human-curated indexing on these collections.
Experiments with machine learning methods
to identify focus entities show that transformer
methods achieve high precision and recall and
that document discourse information is relevant.
The work lays the foundation for more targeted
retrieval/summarisation of entity-relevant doc-
uments.

1 Introduction
Scientific documents typically discuss one or more
topics linked to key entities of interest. However,
entities may also be mentioned incidentally to sup-
port argumentation, in discussing related work, or
be used in comparison with focus entities of direct
interest. Distinguishing between these focus and
background entities might improve the selection of
information most relevant to a user.

The automatic identification of entities in text
is typically achieved using named entity recogni-
tion or entity linking methods based on dictionary,
rule-based and/or machine learning methods, and
aims to identify all mentions of entities of the target
type(s). However, not all entities correctly identi-
fied in a text may be entities relevant for further
processing or important to the main conclusions of
a document. For example, it has been suggested
that only ~10% of chemical mentions play a ma-
jor role within a chemical patent (Akhondi et al.,

2019). Strategies for identifying entities that are in
focus in a document enable honing in on critical
document information, and can support filtering
out entities that are ancillary to the main objectives
of the work, e.g. for literature-based discovery ap-
plications (Henry and McInnes, 2017).

In this work, we introduce two large datasets
annotated with focus and background entities that
support experimentation with methods for distin-
guishing these two types of entity mentions1. We
evaluated several machine learning algorithms on
these dataset, setting baseline results for future
work to be done on this task, and laying the foun-
dation for more nuanced treatment of document
entities in document retrieval or in summarisation.

2 Related work
Entity salience, relevant to identifying focus enti-
ties, has been discussed in previous work. Use of
discourse structure has been suggested in previous
work on entity salience (Boguraev and Kennedy,
1999; Walker and Walker, 1998). The work of
Dunietz and Gillick (2014) evaluates a compre-
hensive set of features, showing that the discourse
structure and centrality may support predicting en-
tity salience. One hypothesis is that the focus and
background entities are distributed in specific ar-
gumentative sections of a document (Ruch et al.,
2007; Jimeno Yepes et al., 2021).

The identification of focus entities has multiple
relevant applications. In information retrieval (IR),
the objective is to recover documents that are rele-
vant to the user information needs, which is chal-
lenging for long documents (Webber et al., 2012)
as a larger number of entities are being mentioned.
In information extraction (IE), we find the task of
named entity recognition (NER), in which the ob-
jective is to identify entities of interest, from people
and locations to proteins and genes, depending on
the domain. In NER, all entities of a certain type

1https://zenodo.org/record/5866759
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are identified, even the ones that are not the main
focus (Dunietz and Gillick, 2014).

Our study relates specifically to identification
of biological pathogen entities in scientific litera-
ture. Pathogen NER has been studied in the Bac-
teria Biotope shared task (Bossy et al., 2019). The
GeoBoost tool (Tahsin et al., 2018) addresses the
identification of entities from the gene database
GenBank (Benson et al., 2012) and largely includes
information about viruses and bacteria.

3 Datasets
Development of large corpora is costly since hu-
man annotation is slow and expensive. There are
biomedical datasets that have been manually anno-
tated and could be considered as proxy for man-
ual annotation. For this work, we have developed
two large corpora automatically using existing re-
sources from the National Center for Biotechnol-
ogy Information (NCBI) at the NLM. The corpora
are targeted to microbial pathogens, some of the
most relevant entities for infectious diseases (Bal-
loux and van Dorp, 2017), such as COVID-19.

3.1 MEDLINE citation dataset

MEDLINE2 is the largest biomedical citation
database with over 30 million citations from more
than 5,000 journals. MEDLINE is indexed semi-
manually (Mork et al., 2013) with the MeSH (Med-
ical Subject Headings) controlled vocabulary3, pro-
viding a resource to identify focus entities in
biomedical articles. To identify the pathogens in
MEDLINE, we created a dictionary of pathogens
and collected MEDLINE citations that indexed
these pathogens. MeSH contains 360 of the 2.8k
pathogens of interest in our work, which constitutes
our focus entities. We applied a dictionary-based
approach using ConceptMapper (Tanenblatt et al.,
2010; Funk et al., 2014) with evaluation available
from Jimeno Yepes and Verspoor (2022).

With the list of PubMed identifiers (PMIDs) ob-
tained using MeSH indexing, we recovered their ci-
tations from MEDLINE and annotated the text with
the dictionary. Overlapping mentions of the same
entity were removed and removed pathogen men-
tions that could not be identified in MeSH. From
the set of selected pathogens identified in the cita-
tions, the ones that appeared in the MeSH index-
ing of the citation were considered focus entities,

2https://www.nlm.nih.gov/medline/
medline_overview.html

3https://www.ncbi.nlm.nih.gov/mesh

while the pathogens not mentioned in the indexing
were consider background entities. We considered
both major and minor MeSH headings. For each
pathogen identified in a citation, all of its mentions
in text were changed to the string @PATHOGEN$.
Table 1 presents the corpus statistics, divided into
2/3 for training 1/3 for testing.

3.2 PubMed Central full text dataset

In addition to MEDLINE citations, we also
consider full text articles from PubMed Cen-
tral (Roberts, 2001), a collection of full text ar-
ticles made available from the NLM. To collect the
full text articles from PubMed Central, we used the
PMIDs obtained using MeSH indexing and mapped
these identifiers to PubMed Central identifiers (PM-
CIDs). We applied the same methodology to high-
light the mentions of a specific pathogen as with
the MEDLINE citations. Statistics of the full text
collection are available in table 1.

MEDLINE dataset Training Testing
Unique citations 622,447 320,318
With more than one pathogen 136,546 70,670
Focus entities 661,470 340,991
Background entities 160,540 82,470
Document avg entities 1.3206 1.3220
Document avg focus entities 1.1250 1.1268
Full text dataset Training Testing
Unique articles 79,352 39,677
With more than one pathogen 53,003 26,551
Focus entities 82,922 41,602
Background entities 157,072 78,148
Document avg entities 3.0244 3.0181
Document avg focus entities 1.0450 1.0485

Table 1: Frequency of example documents and statistics
on focus and background pathogen entities in MED-
LINE and full text datasets.

Full text articles are already divided into dis-
course sections. We process these sections in two
ways, first by concatenating the text in the article
following the order in the PMC XML file, in which
each section is prefixed by the name of the section
starting with the character “@ ”and ending with “:”,
e.g. “@title:”. Second, we keep each information
in a separate section, which allows only consider-
ing text in a specific section and can be used with
learning algorithms that leverage this organization.
Table 2 shows entities distribution in full text.
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Background Count Focus Count
introduction 53,574 abstract 68,098
discussion 53,486 title 46,971

results 37,768 introduction 44,466
abstract 19,860 results 27,177
methods 18,674 discussion 21,313

background 11,483 methods 11,813
title 5,789 background 11,637

conclusions 3,526 conclusions 6,155
the study 969 the study 785

case layout 745 abbreviations 705
all 157,072 all 82,922

Table 2: Frequency of background and focus entities in
training full text sections

4 Methods

4.1 Baseline methods

We consider two baselines. The first baseline se-
lects a single focus entity per document on the basis
of frequency. We utilised the inverted document
frequency of entity mentions to evaluate if frequent
entities in the collection should be discounted. The
second baseline annotates all entities mentioned as
focus entities.

4.2 Bag-of-words entity categorization

In our work, focus entities are identified at the doc-
ument level. In a sense, we would be categorising
the mentions of the entity within a citation as fo-
cus or background. In our datasets, the entity of
interest has been renamed to @PATHOGEN$.

We trained a linear Support Vector Machine
(SVM) (Vapnik, 2013) with modified Huber
loss (Zhang, 2004) suited for imbalanced data and
AdaBoostM1 (Freund and Schapire, 1997), (both
from the MTIMLExtension package4 optimised for
large datasets and using uni-grams and bi-grams)
and FastText (Joulin et al., 2017)5, using default
parameters as well for classification.

4.3 Transformer based methods

Focus entities might appear in specific contexts
in comparison to background entities. Bag-of-
words methods have a limited coverage of the
context in which these entities might appear. Re-
cent advances in deep learning have delivered self-
attention methods that have led to the Transformer

4https://github.com/READ-BioMed/
MTIMLExtension

5https://fasttext.cc

architecture (Vaswani et al., 2017).
BERT (Devlin et al., 2019) is a transformer

based method that encodes the input tokens into
contextualised embeddings trained on large cor-
pora. Classification is achieved using the output
from BERT, pooled on the [CLS] character, and
a fully connected layer to predict if an entity is a
focus or background one.

BERT supports a maximum size of 512 tokens,
while other methods developed using the BERT
architecture, such as the Longformer (Beltagy et al.,
2020), allow for longer documents. Longformer
achieves this by using a sliding window instead
of attending to all tokens and by using a global
attention mask which we set to the [CLS] token
used in text categorisation settings.

Our MEDLINE corpus has an average of 308
tokens per document, with just a 6% of the citations
with length above 512 tokens. We have used the
SciBERT (Beltagy et al., 2019) pre-trained model6,
truncating documents at 512 tokens. When using
Longformer, we considered a maximum document
length of 1,250 tokens due to memory limitations.
Transformer methods were trained using 80% of
the training set for training purposes and 20% as
validation set. We used Adam (Kingma and Ba,
2015) with an initial learning rate of 2e-5 for 30
epochs. The model with best performance on the
validation set after each epoch was selected.

4.4 Scientific discourse focus entity selection

Scientific articles follow a discourse structure, with
information organised into different rhetorical sec-
tions. The mention of an entity in a certain section
can indicate the relevance of that entity in the docu-
ment. Only a small number of MEDLINE citations
have an explicit discourse structure (Ripple et al.,
2011). Hence, we apply a discourse tagger (Li
et al., 2021) to annotate sentences of a citation rele-
vant to a discourse section, except to the title which
is explicitly marked in the metadata. Table 3 shows
the frequency of each of the categories.

5 Results
Table 4 shows the results of using the different
methods. We observe that the baseline based on
classifying all entities identified by our dictionary
method as focus entities has maximum recall and al-
ready has a high precision. The most-frequent men-
tioned entity baseline has better precision, with de-

6We have used Huggingface’s (Wolf et al., 2020) imple-
mentations of tranformer methods.
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Category Background Focus
fact 33,044 139,290
goal 9,295 56,100
hypothesis 7,544 21,433
implication 14,077 42,828
method 44,132 203,225
none 1,026 4,452
problem 2,858 11,429
result 61,317 181,691
title 44,884 435,100
all 160,540 661,470

Table 3: Frequency of each discourse category in the
training MEDLINE dataset

creased recall. Considering the learning algorithms,
SciBERT and Longformer perform better than the
bag-of-words algorithms, which is expected since
these algorithms do not consider the context of
the pathogen mention, even with bigrams. The two
deep learning algorithms have similar performance.

Average Prec. Recall F1
All-focus entities 0.8052 1.0000 0.8921
tf baseline 0.9047 0.8508 0.8770
tf-idf baseline 0.8838 0.8311 0.8566
SVM 0.8975 0.9450 0.9206
AdaBoostM1 0.8654 0.9682 0.9139
fastText 0.8608 0.9572 0.9064
SciBERT 0.9359 0.9631 0.9493
Longformer 0.9285 0.9679 0.9478

Table 4: Focus entity prediction results on MEDLINE.
The All-focus baseline trivially has perfect Recall.

Table 5 shows the result of the learning algo-
rithms on the full text dataset. Compared to the
MEDLINE corpus, we identify that the baseline
methods suffer a substantial drop in performance.
This is expected since there are more background
entities in the full texts, and the most frequent en-
tity is not always in focus. Bag-of-words methods
have a lower performance as well, AdaBoostM1
with tag related words outperforms the other meth-
ods, indicating the effectiveness of linking words
to article sections. In this set, documents are longer
and longformer improves over the SciBERT model,
which has a limit of 512 tokens.

6 Discussion
The datasets we have constructed for the identifi-
cation of focus entities are large, supporting eval-

Average Prec. Recall F1
All-focus entities 0.3474 1.0000 0.5157
tf baseline 0.7475 0.7078 0.7271
tf-idf baseline 0.7587 0.7184 0.7380
SVM-tag 0.8110 0.6440 0.7179
SVM-all 0.6525 0.7761 0.7090
AdaBoostM1-tag 0.8447 0.8824 0.8631
AdaBoostM1-all 0.7845 0.7580 0.7710
fastText 0.8557 0.7374 0.7922
SciBERT 0.9115 0.9314 0.9213
Longformer 0.9410 0.9269 0.9339

Table 5: Focus entity prediction in PubMed Central.
The All-focus baseline trivially has perfect Recall.

uation of a variety of methods and comparison of
performance in both short and large documents.

Full text is more challenging compared to cita-
tions, consistent with findings on other tasks (Co-
hen et al., 2010), and mostly due to the higher
proportion of focus entities in citations. Machine
learning approaches based on bags-of-words tend
to improve over simple baseline methods but un-
derperform transformer methods.

The distribution of entities in article sections
(table 2) and prediction results in full text (table 5)
show that the discourse sections in which entities
appear are relevant for the identification of focus
entities in scientific articles.

7 Conclusions and future work
We have developed two large datasets of scien-
tific documents for the study of the identification
of focus entities. We find that short documents,
represented by MEDLINE citations, are easier to
process than longer (full-text) documents. Trans-
former methods showed higher performance.

Future work will address using the proposed
methods in scenarios in which focus entities be-
come relevant, and comparing our approach with
other existing methods (Lu and Choi, 2021; Duni-
etz and Gillick, 2014).
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