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Abstract

Using language models created from large data
sources has improved the performance of sev-
eral deep learning-based architectures, obtain-
ing state-of-the-art results in several NLP ex-
trinsic tasks. However, little research is re-
lated to creating intrinsic tests that allow us to
compare the quality of different language mod-
els when obtaining contextualized embeddings.
This gap increases even more when working on
specific domains in languages other than En-
glish. This paper proposes a novel graph-based
intrinsic test that allows us to measure the qual-
ity of different language models in clinical and
biomedical domains in Spanish. Our results
show that our intrinsic test performs better for
clinical and biomedical language models than a
general one. Also, it correlates with better out-
comes for a NER task using a probing model
over contextualized embeddings. We hope our
work will help the clinical NLP research com-
munity to evaluate and compare new language
models in other languages and find the most
suitable models for solving downstream tasks.

1 Introduction

In healthcare, text plays a role of enormous impor-
tance. One of the media that a medical practitioner
can persist is the text in clinical records (Dalianis,
2018). Text is one of the richest forms of infor-
mation inside the electronic health record, so it is
fundamental to develop tools to extract information
from these text sources. To create these tools in
this field, we must pay special attention to ensuring
quality and reproducibility.

Analyzing unstructured texts written by humans
is challenging since it is complex to formally under-
stand and describe the rules governing human lan-
guage, as it is ambiguous and constantly evolving.
Natural Language Processing (NLP) is an interdis-
ciplinary field of artificial intelligence that seeks
to develop algorithms capable of understanding,
interpreting, and manipulating these unstructured

texts (Jurafsky and Martin, 2000).
In the medical context, using NLP helps to ad-

dress tasks such as extracting medical entities, dis-
ease coding, text classification, and relation ex-
traction, among others. However, one of the steps
before solving any of these tasks is to create robust
numerical representations of the text so that the
computer can handle this data.

Word embeddings are dense, semantically mean-
ingful vector representations of a word. These
models have proven to be a fundamental build-
ing block of neural network-based architectures
(Lample et al., 2016). Although these models have
obtained excellent results for several NLP tasks,
their main drawback is that they provide a single-
word representation in a given document. This is
not optimal since a word meaning may depend on
the sentence in which it appears. This type of word
embedding is known as static word embeddings.

Contextual representation models handle this
issue by creating word representations based on
sentence-level context. These representations are
commonly retrieved from pretrained language mod-
els (PLM). Classic examples of these models are
ELMO, BERT, RoBERTa, Flair, ALBERT, among
others. However, contextualized word embeddings
may not represent words as well as static ones, as
results obtained in Reimers and Gurevych (2019)
suggest.

Although contextualized word embeddings have
these drawbacks, we can use these numeric repre-
sentations of words to understand PLM represen-
tations. Specifically, we are interested in study-
ing how domain-specific and general-domain PLM
represent clinical and biomedical concepts. In this
study, we aim to create a simple and efficient test
for measuring concept embeddings’ quality and
comparing clinical and biomedical PLM perfor-
mance using a relevant knowledge base and graph,
the Unified Medical Language System (UMLS).

A knowledge graph is an extensive network of
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entities relevant to a specific domain. The network
describes each entity’s semantic types, properties,
and relationships. Knowledge graphs represent
real-world entities and their relations in a graph,
define possible classes, and allow to relate arbitrary
entities with each other (Ehrlinger and Wöß, 2016).

The UMLS is a knowledge graph that combines
many clinical and biomedical vocabularies and
standards to enable interoperability between com-
puter systems (Bodenreider, 2004). The UMLS
consists of multiple knowledge sources. One is the
metathesaurus, a large, multi-purpose, and multi-
lingual vocabulary database that contains informa-
tion about biomedical and clinical-related concepts,
their various names, and their relationships. An-
other source is the semantic network, a consistent
categorization of all concepts represented in the
metathesaurus, providing a set of valuable relation-
ships between these concepts. In this work, we
used both knowledge sources.

Two testing frameworks have been developed
to measure the quality of language representations.
First, an extrinsic test framework that uses the lan-
guage representations to construct a more complex
architecture to solve a specific downstream task.
Second, an intrinsic test framework that measures
the capacity of the language representation to re-
solve semantic questions regarding the language
domain it represents (Zhai et al., 2016; Wang et al.,
2019; Bakarov, 2018).

To construct intrinsic tests, we must compose
questions based on a source of truth. This source
can be expert knowledge, where we ask human
experts to write each one of these questions manu-
ally, or we can use a knowledge base to compose
these questions automatically. We used the UMLS
knowledge graph to automatically derive a concept
similarity intrinsic test using the length of the short-
est path in the graph to compute a true similarity
measure between concepts.

This intrinsic test will be used as a metric to
check how good language representations are, but
also as a comparison measure of whether clini-
cal and biomedical PLM are better compared to
general ones in downstream tasks such as Named
Entity Recognition (NER).

2 Related work

PLM such as BERT (Devlin et al., 2019), ELMo
(Peters et al., 2018), and GPT-2 (Radford et al.,
2019) are able to produce contextualized word em-

beddings. It has been shown that contextualized
word embeddings can achieve near state-of-the-art
performance in tasks such as POS tagging or NER
using probing models (Liu et al., 2019). Addi-
tionally, contextualized word embeddings from top
layers of PLM produce more context-specific and
anisotropic representations (Ethayarajh, 2019).

Regarding the clinical and biomedical domain
in English, there are several models to obtain con-
textualized embeddings, such as BioELMo (Jin
et al., 2019), Clinical BERT (Alsentzer et al., 2019),
SciBERT (Beltagy et al., 2019), BioBERT (Lee
et al., 2020), among others. However, there re-
mains a significant lack of language models in
Spanish. The only models available are SciELO
Flair (Akhtyamova et al., 2020), Clinical Flair
(Rojas et al., 2022b), and clinical and biomedical
versions of RoBERTa (Carrino et al., 2022). Al-
though these studies have shown that incorporating
domain-specific contextualized embeddings signifi-
cantly improves the models’ performance in several
extrinsic tasks, comparing their performances with
intrinsic tests is still necessary.

Since PLM creates word-level contextual repre-
sentations, it is necessary to define a method for
combining these vectors to create sentence-level
embeddings. For this purpose, a popular technique
is the mean pooling of contextual word embed-
dings (Reimers and Gurevych, 2019). However,
this method may lead to poor results if the PLM
is not explicitly trained for similarity. Another
study has proposed transforming the distribution
of sentence-level embeddings to generate isotropic
and smooth representations (Li et al., 2020). Cre-
ating these sentence-level representations is fun-
damental for testing the intrinsic tests proposed in
this research.

Common approaches to evaluate biomedical
PLM performance are benchmarks such as BLUE
(Peng et al., 2019) and BLURB (Gu et al., 2021),
which are built for the English language. There
is no relevant benchmark in Spanish, and every
author selects some annotated datasets to evaluate
PLM performance on specific downstream tasks.
Although the amount of annotated datasets in Span-
ish is growing, there is a lack of intrinsic tasks that
can help to understand if a PLM is improving, and
this research tries to fill that gap.
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3 Methods

Our proposed method creates a semantic similar-
ity intrinsic test with medical concept pairs and
their semantic distances. We extracted these con-
cept pairs from the UMLS1 term graph and com-
puted their distances as the length of the short-
est directed path of parent relationships between
the concepts. We measured the correlation of the
knowledge-graph-derived distance to the cosine
similarity of the terms string descriptions on an em-
bedding space projected using different language
representations. Finally, we compare these correla-
tions with the performance on downstream tasks of
each language representation.

3.1 Concept pair selection and its graph
distances

In this vocabulary database, a concept is simply the
meaning of a medical entity. Each concept in the
metathesaurus has a unique and permanent concept
identifier (CUI).

A UMLS concept can have multiple names be-
cause the same meaning can be described with nu-
merous strings, for example, in different languages
or source vocabularies. Each concept named de-
scription is called an atom and is identified by an
atom identifier (AUI). To select a single concept
description, we filtered out the atoms marked as
non-preferred in the metathresaurus. With this fil-
ter and by only selecting atoms in Spanish, we
assigned a single string describing each medical
concept. In the UMLS Semantic Network, con-
cepts are related using multiple relation types. The
only relation type we used to connect the concepts
was the parent relationship (PAR). We tried other
relationship types but continued with PAR relation-
ships because they are the most frequent. Child
relationships (CHD) have the same frequency as
PAR relationships, given they are the inverse re-
lation type of PAR. Thus we can choose any of
them.

After the previous step, we imported concepts
and their PAR relations into a graph database2.
Next, we queried the graph to select several ran-
dom concepts and recursively extracted direct or
related concepts at multiple distances. This means
there is a path of one or more PAR relations of
distance between pairs of concepts, as shown in
Figure 1. Given that sometimes it is possible to

1version 2022AA
2Neo4j (https://neo4j.com/)

find multiple paths between two concepts, we only
used the shortest path between them. This process
allowed us to extract the path length between two
concepts. We select 20,000 concepts for this study
to conduct the intrinsic tests rapidly. However, we
can choose more concepts if necessary.

C0040426
Tooth structure

C0011334
Dental caries

C0266853
Enamel caries

C0266858
Incipient enamel c.

C4708523
Initial state c.

C0266854
Acute enamel c.

C0266846
Dentin caries

Figure 1: PAR-related concepts from C0040426 (Tooth
structure). We highlight multiple paths,

•••• A dash-dot line represents the path between
C0266858 (Incipient enamel caries) and
C4708523 (Initial state caries) with a distance of 1
PAR edge.

• A dash-dash line represents the path between
C0040426 (Tooth structure) and C0266846
(Dentin caries) with a distance of 2 PAR edges.

• A dot-dot line represents the path between
C0040426 (Tooth structure) and C0266858 (In-
cipient enamel caries) with a distance of 3 PAR
edges.

3.2 Generation of UMLS concepts’
embeddings

After selecting the pairs of concepts and their de-
scriptions, we generate concepts’ embeddings us-
ing PLM. As UMLS concepts may contain more
than one token, extracting embeddings that can
represent the whole concept and not just one
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word is essential. To do this, we used mean
pooling of embeddings obtained for concept to-
kens from a PLM. For models hosted in the Hug-
gingface Model Repository3, we used the Python
library sentence-transformers4 (Reimers and
Gurevych, 2019), and for models hosted in the
Flair repository, we used the Python library flair5

(Akbik et al., 2019).
All of our experiments were conducted for Span-

ish language datasets. We generated concept em-
beddings for several PLM of interest with different
base architectures and domains. For the base archi-
tectures, we selected BERT, RoBERTa, and Flair.
As for the domain, we chose, whenever possible,
general, biomedical, and clinical models. As we
did not find a publicly available BERT linguistic
model for the clinical domain trained on Spanish
text, we tuned a general domain model in Span-
ish (Cañete et al., 2020) with clinical text obtained
from the Chilean Waiting List Corpus (Báez et al.,
2020, 2022).

3.3 Implementation of intrinsic test

We build our intrinsic test as follows. First, we
calculate the cosine similarity between concept
embedding pairs. Then, we obtained the Spear-
man correlation between cosine similarity and path
length, which we called ρ. This simple process
allowed us to get our first metric. We expect that
a greater path length between two concepts will
result in a lower cosine similarity, given that they
are farther semantically. Therefore, the Spearman
correlation (ρ) between these two distances over
all concepts pairs will be negative. If we compare
embeddings generated by different PLM, we could
expect that more domain-specific PLM will gen-
erate embeddings with more semantic differences
between concepts within the domain, resulting in
a more negative ρ. Thus, a more negative ρ indi-
cates a PLM that can separate better semantically
concepts within a domain.

As a part of our analysis, we calculated the av-
erage cosine similarity per path length. This step
led us to obtain a complementary metric, the differ-
ence of mean cosine similarity for the shortest path
length and the longest path length, that we called
δ. The rationality behind this metric is similar to
what we found in the previous one. However, in

3https://huggingface.co/models
4https://github.com/UKPLab/

sentence-transformers
5https://github.com/flairNLP/flair

this case, a more positive δ indicates a PLM that
can better separate concepts semantically within a
domain.

3.4 Comparison with extrinsic test

Our intrinsic metrics were compared to extrinsic
metrics using the F1 score in relevant biomedical
and clinical NER datasets. The idea of incorporat-
ing extrinsic tests is to check if having better values
of our intrinsic metrics will translate into better
performance in downstream tasks for the selected
PLM.

To build a reproducible extrinsic comparison
for all PLM base architectures, we create a prob-
ing task for NER. In other words, we extracted
contextualized embeddings from a PLM without
fine-tuning for any downstream task, and those em-
beddings were input into a linear layer trained for
NER.

The clinical and biomedical datasets in Spanish
used for the NER probing task were:

• CANTEMIST6 (Miranda-Escalada et al.,
2020): annotated corpus with tumor morphol-
ogy mentions in 1,301 oncological clinical
case reports.

• PharmaCoNER7 (Gonzalez-Agirre et al.,
2020): annotated corpus with entities such
as chemical compounds and drugs in 1,000
clinical case studies.

• CT-EBM-SP8 (Campillos-Llanos et al., 2021):
annotated corpus with UMLS entities in 1,200
texts about clinical trials studies and clinical
trials announcements.

• NUBes9 (Lopez et al., 2020): annotated cor-
pus with negation and uncertainty entities
in anonymised health records (29,682 sen-
tences).

4 Results

We queried 20,000 pairs of random atoms to select
UMLS concepts from the graph database. Figure 2
shows the histogram of those pairs by path length.
We can see that pair frequency increases as path
length increase until seven parent relationships of

6https://zenodo.org/record/3978041
7https://zenodo.org/record/4270158
8http://www.lllf.uam.es/ESP/nlpmedterm_en
9https://github.com/Vicomtech/

NUBes-negation-uncertainty-biomedical-corpus
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distance. After that point, the frequency of pairs
decreases until it reaches 14 relations of distance.
We removed all path lengths containing less than
300 pairs of concepts to calculate the metrics ρ and
δ.
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Figure 2: Histogram of UMLS concept pairs by path
length

Then, we plot a boxplot of cosine similarity by
path length for every PLM. Figure 3 shows such
a boxplot for a general-domain BERT trained in
Spanish text (Cañete et al., 2020)10. This plot al-
lows us to understand how cosine similarity dis-
tributes along path length.

It is clear from the plot that average cosine simi-
larity decreases as path length increases. However,
the decline is near null or even negative from path
length four onwards. Moreover, the average cosine
similarity is not going near zero. We hypothesize
this pattern is because all concepts are related to
clinical and biomedical domains and also due to
the anisotropic behavior of sentence embeddings
obtained from PLM. As discussed in Ethayarajh
(2019), contextualized embeddings obtained from
PLM tend to distribute not evenly in the embed-
ding space but in a small portion of it. Therefore,
they still have a relatively high similarity when
comparing dissimilar concepts.

To compare several PLM, we plot only average
cosine similarity by path length for every language
model, as shown in Figure 4. As we can see, av-
erage cosine similarity by path length varies for
different base architectures and domains of PLM.
However, they all repeat the same decline pattern
as path length increases.

Similarly to Figure 3, Figure 4 does not show any
average cosine similarity going near zero. How-
ever, the similarity level where each PLM stabilizes

10Other models’ plots are included in the appendix
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Figure 3: Boxplot of cosine similarity by path length
for a general-domain BERT trained on Spanish text.

is different. Not surprisingly, language models
trained on a similar corpus or being a fine-tuned
version from another have comparable similarity
levels. RoBERTa-es-clinical was trained with the
same corpora as RoBERTa-es-biomedical plus a
clinical corpus (Carrino et al., 2022), and BERT-
es-clinical is a fine-tuned model from BERT-es-
general over a clinical corpus.
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RoBERTa-es-clinical
RoBERTa-es-biomedical
RoBERTa-es-general

Flair-es-clinical
Flair-es-biomedical
Flair-es-general

BERT-es-clinical
BERT-es-general

Figure 4: Average cosine similarity by path length for
multiple language models

To measure the degree of the decline, we calcu-
lated the metrics ρ and δ for all the selected PLM,
as shown in Table 1. We notice that ρ and δ are
greater in absolute value for biomedical and clini-
cal models than general ones within the same base
architecture. This means that given a PLM base
architecture, the degree of decline of the average co-
sine similarity is greater for domain-specific mod-
els than for general domain models. This finding
suggests that domain-specific PLM and their con-
cept embeddings better represent UMLS concepts;
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Reference Architecture Domain ρ δ

Ours BERT Clinical -0.38 0.25
(Cañete et al., 2020) BERT General -0.30 0.18
(Akhtyamova et al., 2020) Flair Biomedical -0.24 0.27
(Rojas et al., 2022b) Flair Clinical -0.23 0.27
(Akbik et al., 2018) Flair General -0.20 0.11
(Carrino et al., 2021) RoBERTa Clinical -0.31 0.09
(Carrino et al., 2021) RoBERTa Biomedical -0.28 0.13
(Gutiérrez-Fandiño et al., 2022) RoBERTa General -0.23 0.03

Table 1: Correlations and differences for each language representation. The table is sorted ascending by ρ and then
by base architecture. Every ρ is statistically significant.

Architecture Domain CANTEMIST PharmaCoNER CT-EBM-SP NUBes
BERT Clinical 0.739 (0.018) 0.577 (0.013) 0.742 (0.012) 0.791 (0.009)
BERT General 0.757 (0.004) 0.582 (0.007) 0.714 (0.006) 0.797 (0.013)
Flair Biomedical 0.784 (0.006) 0.615 (0.013) 0.725 (0.008) 0.792 (0.003)
Flair Clinical 0.771 (0.009) 0.580 (0.021) 0.694 (0.000) 0.802 (0.003)
Flair General 0.714 (0.013) 0.558 (0.002) 0.633 (0.002) 0.780 (0.005)
RoBERTa Clinical 0.794 (0.009) 0.633 (0.010) 0.792 (0.012) 0.820 (0.004)
RoBERTa Biomedical 0.784 (0.006) 0.626 (0.009) 0.794 (0.014) 0.821 (0.005)
RoBERTa General 0.767 (0.014) 0.584 (0.006) 0.734 (0.005) 0.804 (0.003)

Table 2: F1 scores and standard deviations for NER probing task over four datasets in Spanish. The table is sorted
according the same criteria as Table 1

hence the similarity pattern displayed. However, it
is important to note that we do not find this behav-
ior when comparing different base architectures.

We can see F1 scores for every NER probing
task by PLM in Table 2. As expected, we can see a
tendency to obtain better F1 scores for clinical or
biomedical PLM than general ones. However, in
the case of BERT architecture, results are mixed.
We believe this behavior could be due to the cre-
ation of the clinical BERT model. Instead of being
trained from scratch with clinical and biomedical
data, it is a fine-tuned version of a general BERT.
On the other hand, clinical and biomedical Flair
and RoBERTa models were trained from scratch
with domain-specific data.

Interestingly, when ρ metric is greater for a clini-
cal model compared to a biomedical one, F1 scores
for NER probing tasks are also greater, as we can
see in the case of RoBERTa architecture for CAN-
TEMIST and PharmaCoNER datasets. In the case
of CT-EBM-SP and NUBes, there are no such dif-
ferences, but F1 scores for clinical and biomedical
are almost the same. On the contrary, when ρ met-
ric is greater for a biomedical model compared to a
clinical one, then F1 scores present a similar behav-
ior, as we can see in the case of Flair architecture

for CANTEMIST, PharmaCoNER, and CT-EBM-
SP datasets. And as same as the previous situation,
F1 scores for another dataset (NUBes) are almost
the same. We do not observe this pattern for δ
metric.

This finding suggests that ρ metric could be ap-
plied as a useful intrinsic test for comparing PLM
within the same base architecture. However, it is
important to note when comparing ρ metric for dif-
ferent base architectures, we do not find a clear
relation with F1 scores. Consequently, we present
the ρ metric as an intrinsic test to measure improve-
ments for PLM within the same base architecture.

5 Conclusion and future work

Using domain-specific PLMs for downstream tasks
has allowed reaching the state-of-the-art in sev-
eral benchmarks. However, since these models are
trained in large corpora, fine-tuning them or train-
ing from scratch is time-consuming. Therefore,
before using these models to solve downstream
tasks, it is crucial to create intrinsic tests that vali-
date whether a domain-specific PLM yields better
results than its base version.

In this study, we build an intrinsic test for clini-
cal and biomedical PLM using contextualized em-
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beddings and the UMLS knowledge graph. We
suggest that our intrinsic test can help compare
domain-specific PLM performance within its base
architecture, which could be used to evaluate im-
provements when building PLM. Our experimental
results show that this intrinsic test can capture im-
provements in clinical and biomedical PLM over
general ones. Also, it correlates with better results
in a NER probing task over four datasets in Span-
ish.

In future work, we can implement this study for
other languages. Additionally, we can compare
our intrinsic test with other probing tasks such as
POS-tagging or coreference or even other clinical
downstream tasks such as patient mortality or un-
planned readmission. On the other hand, since our
experimental datasets contain nested entities, but
for simplicity, they were ignored, we would like to
explore the use of contextualized embeddings in
models that can address them, such as those pro-
posed in Rojas et al. (2022a). Finally, we can com-
pare several experimental settings, such as multiple
numbers of concept pairs.

Limitations

We can group the limitations of our study in
the ones related to the graph knowledge, the se-
lected PLM, comparison with other embedding
techniques, and language. First, regarding graph
knowledge, we could have chosen several random
subsets of concept pairs of different lengths and
types of relations to check if our findings are still
present. Second, we selected three base architec-
tures, and all of them were of encoder type. Third,
we could have compared our results with static em-
beddings. And finally, we could have selected more
languages for comparison.
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Figure 5: Boxplots of cosine similarity by path length for selected PLM trained in Spanish text
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