
Proceedings of the 13th International Workshop on Health Text Mining and Information Analysis (LOUHI), pages 14 - 25
December 7, 2022 ©2022 Association for Computational Linguistics

Assessing the Limits of Straightforward Models for Nested Named Entity
Recognition in Spanish Clinical Narratives

Matías Rojas1, Casimiro Pio Carrino2, Aitor Gonzalez-Agirre2
Jocelyn Dunstan1, and Marta Villegas2

1Center for Mathematical Modeling, University of Chile
2Text Mining Unit, Barcelona Supercomputing Center

Abstract

Nested Named Entity Recognition (NER) is an
information extraction task that aims to iden-
tify entities that may be nested within other
entity mentions. Despite the availability of sev-
eral corpora with nested entities in the Spanish
clinical domain, most previous work has over-
looked them due to the lack of models and a
clear annotation scheme for dealing with the
task. To fill this gap, this paper provides an em-
pirical study of straightforward methods for
tackling the nested NER task on two Span-
ish clinical datasets, Clinical Trials, and the
Chilean Waiting List. We assess the advan-
tages and limitations of two sequence label-
ing approaches; one based on Multiple LSTM-
CRF architectures and another on Joint label-
ing models. To better understand the differ-
ences between these models, we compute task-
specific metrics that adequately measure the
ability of models to detect nested entities and
perform a fine-grained comparison across mod-
els. Our experimental results show that employ-
ing domain-specific language models trained
from scratch significantly improves the perfor-
mance obtained with strong domain-specific
and general-domain baselines, achieving state-
of-the-art results in both datasets. Specifically,
we obtained F1 scores of 89.21 and 83.16 in
Clinical Trials and the Chilean Waiting List,
respectively. Interestingly enough, we ob-
serve that the task-specific metrics and analysis
properly reflect the limitations of the models
when recognizing nested entities. Finally, we
perform a case study on an aggregated NER
dataset created from several clinical corpora in
Spanish. We highlight how entity length and
the simultaneous recognition of inner and outer
entities are the most critical variables for the
nested NER task.

1 Introduction

Named Entity Recognition (NER) is a widely stud-
ied task that seeks to identify text spans associated
with predefined categories. Nested Named Entity

Figure 1: Example of nested entities in the Clinical
Trials and Chilean Waiting List datasets.

Recognition is a particular case of NER, where en-
tities can be nested within each other (Finkel and
Manning, 2009), such as the example in Figure 1.
Traditional NER models simplify nested entities
through predetermined rules, such as keeping the
most external entity and ignoring inner ones. This
simplified problem is better known as flat NER
and allows solving the task using traditional se-
quence labeling architectures such as the BiLSTM-
CRF (Lample et al., 2016) approach or fine-tuning
transformer-based models (Vaswani et al., 2017).

Regarding the Spanish language, there are sev-
eral biomedical and clinical datasets containing
nested entities, such as the Spanish radiology cor-
pus (Cotik et al., 2017), NUBes (Lima Lopez et al.,
2020), the Chilean Waiting List (Báez et al., 2020),
Clinical Trials (Campillos-Llanos et al., 2021).
However, most previous works transformed the
task into a flat NER. As mentioned in Wang et al.
(2022), this simplification is due to technological
rather than ideological reasons, mainly explained
by the difficulty of representing nested entities with
the traditional annotation scheme, for example,
with the IOB2 sequence labeling format. We ar-
gue that treating the nested NER task as flat NER
is not optimal since removing part of the entities
could result in a loss of information previously an-
notated by humans, wasting time and resources,
and harming the model’s performance.

This paper explores simple neural network-based
models as a proxy to address the challenging nested
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NER task. Specifically, we revisited the Multiple
LSTM-CRF (MLC) and the Joint Labeling architec-
tures and performed experiments on two Spanish
clinical corpora. The former consists of training
a flat NER model for each entity type following
the IOB2 format, while the latter transforms the
nested NER task into a flat NER using an annota-
tion scheme that allows preserving the nested en-
tities. We analyze the impact of using pre-trained
language models trained on specific domains com-
pared to general-domain ones.

To evaluate the performance of our models, we
provide a detailed analysis of task-specific evalua-
tion metrics that adequately measure the effective-
ness of the models in recognizing nested entities,
considering variables such as entity length, the nest-
ing depth level, and the different types of nested
entities. In addition, to better understand the limi-
tations of these models, we created an aggregated
corpus formed from several Spanish clinical NER
corpora.

In summary, the main contributions of our work
are the following:

• We show that straightforward architectures
leveraging domain-specific models can tackle
the nested NER task, achieving state-of-the-
art performances on two clinical datasets in
Spanish.

• We conduct an empirical study that compares
the impact of using domain-specific language
models against general-domain ones, either
by using contextualized embeddings or fine-
tuning the model in the task.

• We performed an in-depth analysis of the ad-
vantages and limitations of the previous ap-
proaches by testing our models on an aggre-
gated clinical corpus in Spanish exhibiting
complex annotations.

2 Related Work

The nested nature of named entities has recently
gained special attention from the NLP research
community. Several models have been proposed
to handle the nesting problem, which can be
mainly divided into three categories: region-based,
hypergraph-based, and sequence labeling-based
models.

Region-based models list potential span candi-
dates and then classify them into predefined cate-
gories. In Sohrab and Miwa (2018), they used an

exhaustive neural model enumerating all possible
spans within a limited length and then predicted
the entity types of those regions using boundary
and average internal token representation. Zheng
et al. (2019) used a sequence labeling layer to
identify candidate spans and then classified the
selected regions into their entity category labels.
Another region-based model was proposed by Yu
et al. (2020), who used contextual representations
models to encode sentences and two separate MLPs
to create start and end token representations. They
then ranked all possible start-end regions in the
sentence using nested constraints to predict the la-
bels. Recently, Shen et al. (2021) used a two-stage
identifier, using a filter and a regressor to identify
high-quality candidate spans and then classifying
them into their entity types.

Hypergraph-based models learn the nested struc-
ture of entities in the sentence through hypergraphs.
The aim is to capture the relations between in-
ner and outer entities to leverage the extraction
of nested entities. In Lu and Roth (2015), they pro-
posed a mention hypergraph representation for both
extracting entity boundaries and predicting entity
labels. Similarly, Katiyar and Cardie (2018) de-
signed a directed hypergraph using LSTM features
to learn the nesting structure. In Luo and Zhao
(2020), they used a flat NER module for recogniz-
ing the most external entities and a graph module
for inner entities.

Sequence labeling-based models formulate the
nested NER task as several flat NER models. Early
work from Alex et al. (2007) introduced three CRF-
based methods to reduce the nested NER as sev-
eral IOB2 tagging problems. Ju et al. (2018) took
advantage of inner entity information to improve
outer entity recognition. They dynamically stacked
LSTM-CRF layers predicting entities in an inside-
to-outside manner. In contrast, Shibuya and Hovy
(2020) recognized entities from outermost to in-
ner ones using a recursive method based on sepa-
rate CRFs. This method was improved in Wang
et al. (2021), demonstrating that inner to outermost
recognition is best for modeling this task. Finally,
Wang et al. (2020) recursively introduced the em-
bedding of tokens and regions into flat NER layers
simulating the shape of a pyramid and extracting
nested entities from the innermost to the outermost
entities. The models used in our experiments fall
into this category.
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3 Nested NER Models

In recent years, contextual representational mod-
els have improved the performance of many neu-
ral network-based models, making it possible to
achieve state-of-the-art in several NLP tasks. Un-
like traditional word embeddings, language models
can represent words according to the sentence-level
context. Regarding the NER task, using contextual
word embeddings or fine-tuning a pre-trained lan-
guage model to a specific domain has boosted the
performance of models in datasets from several
domains.

Previous work in clinical NER showed that us-
ing domain-specific language models improves re-
sults considerably compared to general-domain lan-
guage models. However, no studies show this be-
havior occurs when there is a nested structure in
the entities, especially in low-resource languages
such as Spanish. In this work, we study whether
this trend is confirmed in nested NER datasets us-
ing two sequence labeling-based architectures, the
Joint Labeling, and the Multiple LSTM-CRF mod-
els.

3.1 Joint Labeling Model

The Joint Labeling architecture (Agrawal et al.,
2022) consists of formulating nested NER as a flat
NER task using an appropriate annotation scheme.
Since nested entities allow a token to have more
than one entity type, all the token labels are merged
into a single token label using a delimiter. This
scheme allows solving the problem using tradi-
tional sequence labeling architectures that treats
the problem as a token-level classification.

We decided to use this architecture due to its
high performance on the nested NER task in other
languages, such as English and German. Therefore,
it is interesting to study the performance of this ap-
proach on Spanish datasets, which have been less
explored. To solve the token-level classification,
we followed the classic approach of fine-tuning
transformer-based language models on the NER
task. In other words, we fine-tuned language mod-
els trained on giant text corpora and added a linear
layer to perform the token-level classification.

3.2 Multiple LSTM-CRF

The second approach uses the Multiple LSTM-CRF
(MLC) architecture (Rojas et al., 2022a), which
trains separate flat NER models for each entity type.
The predicted labels of the input sentences corre-

spond to the union of the outputs of each model,
thus retrieving both nested entities and text spans
tagged with multiple labels.

Each flat NER module consists of three main
layers: the embedding layer, the encoding layer
with a BiLSTM, and the classification layer, where
the most likely sequence of labels is obtained us-
ing the CRF algorithm. Regarding the embedding
layer, we incorporated contextualized word repre-
sentations retrieved from a language model, replac-
ing traditional representations such as word and
character-level embeddings.

As for the previous model, we tested several
domain-specific and general-domain transformer-
based language models. The vector representation
of words was computed by averaging the repre-
sentations retrieved from all hidden states. Since
BERT-based language models use WordPiece tok-
enization, we calculated word embeddings using
the embedding of the first subtoken. In addition,
we tested Clinical Flair (Rojas et al., 2022b), a
character-level language model trained on Span-
ish clinical narratives. Being a character-level
model, it is particularly effective for handling out-
of-vocabulary and misspelled words, which are
very common in clinical texts.

4 Experiments

In this section, we present the datasets, settings,
and evaluation metrics used in our experiments.

4.1 Datasets

We conducted our experiments with two corpora
containing nested entities.

• Chilean Waiting List1 (Báez et al., 2020):
clinical corpus annotated from real diagnoses
of the Chilean healthcare system. It is com-
posed of 87, 024 entity mentions and seven
entity types. From a nested NER point of
view, it is a good resource since 48.23% of
the entities are involved in nesting.

• Clinical Trials2 (Campillos-Llanos et al.,
2021): clinical corpus created from 500 ab-
stracts of journal articles about clinical trials
and 700 announcements of trial protocols. It
consists of 46, 518 entity mentions and four

1https://zenodo.org/record/3926705
2http://www.lllf.uam.es/ESP/nlpmedterm_en
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Chilean Waiting List Clinical Trials
Train Test Dev Train Test Dev

tokens 291, 561 36, 963 34, 987 202, 541 67, 281 67, 661
sentences 15, 290 1, 912 1, 911 7, 604 2, 522 2, 550
avg sent len 19.07 19.33 18.31 26.64 26.68 26.53
entities 69, 847 8, 837 8, 340 27, 967 8, 940 9, 611
avg entity len 2.73 2.71 2.74 1.89 1.86 1.88
nested entities 33, 667 4, 182 4, 126 7, 373 2, 333 2, 580
nested entities (%) 48.20 47.32 49.47 26.36 26.10 26.84

Table 1: Statistics of the datasets used in our experiments.

entity types, which belong to a subset of se-
mantic groups from the Unified Medical Lan-
guage System (UMLS).

Table 1 shows the overall statistics for each cor-
pus. Compared to other well-known nested NER
datasets such as GENIA (Kim et al., 2003) and
GermEval (Benikova et al., 2014), where the nest-
ing percentage is less than 20%, these two datasets
are a valuable resource for the nested NER task.
Especially the Chilean Waiting List corpus, which
contains more than twice as much nesting com-
pared to the datasets mentioned above.

4.2 Settings
To analyze the impact of domain-specific language
models in Spanish, we used the biomedical ver-
sion of RoBERTa (bsc-bio-es3) and the clinical
version of RoBERTa (bsc-bio-ehr-es4) (Carrino
et al., 2022). We compared these models with a
general-domain Spanish model (BETO) (Cañete
et al., 2020), a multilingual model (mBERT) (De-
vlin et al., 2019), and two domain-specific models
based on continuous pre-training: mBERT-Galén
(based on mBERT) and BETO-Galén (based on
BETO) (López-García et al., 2021). As previously
mentioned, the MLC model uses these models as
contextualized embeddings, while for Joint Label-
ing, we used them to perform a fine-tuning and
solve the token-level classification task.

To train the Joint Labeling model, we used the
Adam optimizer and searched for an optimal learn-
ing rate out of 1e-5, 5e-5, 5e-6, and 1e-6, with
linear decay and no warm-up steps. We trained the
model up to a maximum of 20 epochs using a batch
size of 8 sequences with a maximum length of 512
tokens and a gradient accumulation of 2 steps, re-
sulting in a total batch size of 16. The training took

3https://huggingface.co/PlanTL-GOB-ES/
bsc-bio-es

4https://huggingface.co/PlanTL-GOB-ES/
bsc-bio-ehr-es

Figure 2: Example of different types of entities.

approximately 45 minutes for each dataset, using 2
AMD MI50 GPUs with 32 GB of VRAM each.

Regarding the MLC architecture, to train the
model of each entity type, we used the SGD op-
timizer to a maximum of 100 epochs, with mini-
batches of size 16 and a learning rate of 0.1. We set
the number of RNN layers to 1 and the hidden size
to 256. To control overfitting, we employed a learn-
ing rate scheduler and an early stopping strategy
based on the performance of the validation parti-
tion. We also applied dropout regularization after
the embedding layer and BiLSTM. The training
for each entity type took at most 7 hours under the
same hardware settings as Joint Labeling. Since
the model of each entity type is independent of the
others, this allows us to perform parallel training,
reducing the computational cost of this approach.

4.3 Metrics
To evaluate the performance of our models, we
computed the micro-average precision, recall, and
F1 score over all entities, which is the standard
metric used by the research community for evaluat-
ing NER systems. In this context, precision is the
percentage of entities found by our system that be-
longed to the test set, while recall is the percentage
of entities from the test set found by our system.
This metric follows a strict evaluation approach
since an entity is considered correct when both en-
tity types and boundaries are predicted correctly.
However, one of the main drawbacks of the above
metrics is that they do not differentiate nested en-
tities from flat entities. Since flat entities are the
most frequent in nested NER datasets, this could
overestimate the model’s performance on the task.
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Chilean Waiting List Clinical Trials
P R F1 P R F1

Joint Labeling w/ mBERT cased 74.330.84 78.081.02 76.160.93 83.340.64 85.970.55 84.640.55
Joint Labeling w/ mBERT-Galén 75.160.56 79.240.33 77.150.43 82.530.48 84.830.37 83.670.41
Joint Labeling w/ BETO 75.930.89 79.100.52 77.480.67 84.960.43 87.190.17 86.060.21
Joint Labeling w/ BETO-Galén 74.520.46 78.790.39 76.590.10 82.470.38 85.490.13 83.950.15
Joint Labeling w/ Biomedical RoBERTa 76.550.23 80.320.33 78.390.24 87.920.14 90.200.24 89.040.10
Joint Labeling w/ Clinical RoBERTa 77.310.40 81.270.46 79.240.39 88.030.34 90.430.12 89.210.14

MLC w/ mBERT cased 79.410.16 71.310.34 75.140.15 84.670.11 83.900.17 84.280.05
MLC w/ mBERT-Galén 78.940.18 75.560.09 77.210.13 84.990.26 81.670.30 83.290.24
MLC w/ BETO 79.330.58 72.260.25 75.630.40 86.040.81 81.020.73 83.460.76
MLC w/ BETO-Galén 79.140.30 74.670.17 76.840.23 85.910.18 82.210.26 84.020.22
MLC w/ Bio RoBERTa 80.300.19 75.400.35 77.770.27 87.970.06 84.840.43 86.370.20
MLC w/ Clinical RoBERTa 80.710.51 76.131.09 78.350.82 88.800.23 85.900.07 87.320.13
MLC w/ Clinical Flair 84.310.37 82.040.68 83.160.28 88.380.13 85.210.13 86.760.06

Table 2: Overall results on two nested NER datasets. The reported results correspond to the average of three
evaluation rounds using different seeds. Subscript numbers indicate the standard deviations.

To address the above issue, we compute task-
specific metrics proposed in Rojas et al. (2022a)
that allow analyzing the predictions in detail ac-
cording to the nested NER task. Specifically, we
compute a score for entities not involved in nestings
(mflat), entities involved in nestings (mnested),
inner entities in nestings (minner), outer enti-
ties in nestings (mouter), and complete nestings
(mnesting). In this context, a nesting is composed
of inner and outer entities, and mnested encom-
passes the minner and mouter metrics.

These task-specific metrics were calculated us-
ing micro-average precision, recall, and F1 score.
Using Figure 2 as an example to better understand
the different types of entities, the inner entity is
ósea, while the outer entity is densidad ósea. Both
inner and outer entities compose a nesting of depth
2, and there are no flat entities to measure. All ex-
periments and models are freely available to ensure
reproducibility5.

5 Overall Results

Table 2 shows the overall results of our experiments.
We observe that across all the experiments, the
Joint Labeling model obtains a lower precision than
the recall, while in the case of the MLC model, the
opposite occurs. As expected, in both models and
datasets, the incorporation of domain-specific con-
textual representation models contributes to signifi-
cant improvements in the performance compared to
general-domain models. However, in some cases, it
occurred that the BETO-Galén and mBERT-Galén
models did not provide improvements over the
general-domain base models. One plausible reason

5https://github.com/TeMU-BSC/
clinical-nested-ner

may be found in the domain-specific vocabulary
since the Galén model was trained with the continu-
ous training technique, unlike the RoBERTa-based
models, which were trained from scratch.

Although the MLC and Joint Labeling architec-
tures appear to be simple approaches for solving
nested NER, we observe that their results are pretty
high. Specifically, the best setting for the Chilean
Waiting List corpus is the MLC model with em-
beddings retrieved from the Clinical Flair model.
Using the same data splits, we obtained state-of-
the-art results with an improvement of almost three
micro F1 points over the best system to date, as
reported in Báez et al. (2022), where they achieved
a micro F1 score of 80.27. This excellent perfor-
mance could be explained since Clinical Flair is a
character-level language model, particularly bene-
ficial in datasets with many misspelled and out-of-
vocabulary words, such as diagnoses from public
hospitals.

On the other hand, the best setting in Clinical Tri-
als is the Joint Labeling approach with the clinical
version of RoBERTa. To date, the only result re-
ported on Campillos-Llanos et al. (2021) achieved
a micro F1 score of 86.74 without considering the
nested entities. In contrast, we obtained a micro
F1 score of 89.21, achieving state-of-the-art in the
corpus and demonstrating the importance of con-
sidering nested entities.

6 Discussion and Analysis

6.1 Nested NER Performance
For a more detailed analysis of the above results,
we employ the metrics introduced in Section 4.3
that decompose the model’s performances for dif-
ferent types of nested entities. Table 3 shows the
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Chilean Waiting List Clinical Trials
mflat minner mouter mnested mnesting mflat minner mouter mnested mnesting

Joint Labeling w/ mBERT cased 76.640.89 82.900.40 65.951.89 75.620.97 54.811.60 84.590.38 87.840.89 81.321.72 84.791.24 72.171.70
Joint Labeling w/ mBERT-Galén 77.061.00 83.440.56 69.110.31 77.270.23 57.250.17 83.670.43 87.130.51 79.730.57 83.640.47 70.551.06
Joint Labeling w/ BETO 78.221.15 83.050.29 68.230.10 76.640.13 56.350.21 86.110.13 89.090.61 82.320.36 85.930.48 74.070.43
Joint Labeling w/ BETO-Galén 76.180.41 83.220.74 68.810.32 77.070.42 57.130.71 83.850.12 88.060.29 79.950.32 84.250.24 71.570.18
Joint Labeling w/ Bio RoBERTa 78.400.19 85.050.12 69.420.74 78.370.36 58.800.34 89.090.23 91.540.40 85.950.21 88.910.29 78.620.62
Joint Labeling w/ Clinical RoBERTa 79.500.56 84.760.33 71.220.73 78.940.27 59.890.40 89.160.15 91.850.16 86.580.28 89.360.19 78.940.68
MLC w/ mBERT cased 75.570.30 82.450.17 64.320.28 74.660.03 52.300.14 84.630.10 85.890.17 80.410.28 83.300.10 67.930.18
MLC w/ mBERT-Galén 78.130.41 82.630.58 67.750.18 76.200.41 53.820.58 83.600.16 84.490.12 80.150.88 82.430.47 67.710.70
MLC w/ BETO 76.430.29 81.120.52 66.320.65 74.730.58 52.050.59 83.900.82 84.380.92 79.610.96 82.150.72 66.882.36
MLC w/ BETO-Galén 77.460.35 82.470.58 67.810.29 76.150.21 53.800.50 84.510.22 84.190.25 80.890.25 82.620.25 68.420.39
MLC w/ Bio RoBERTa 78.470.45 83.700.28 68.150.05 77.000.15 55.520.28 86.590.20 87.680.16 83.600.33 85.760.24 73.060.61
MLC w/ Clinical RoBERTa 79.340.73 83.730.70 68.711.37 77.260.94 55.721.67 87.470.12 89.460.20 84.040.18 86.900.18 74.720.19
MLC w/ Clinical Flair 84.110.27 88.620.19 73.410.85 82.090.34 62.820.86 86.690.03 90.690.29 82.760.16 86.980.23 74.770.48

Table 3: Task-specific metrics for nested NER.

results according to task-specific metrics. Inter-
estingly, we note that the nesting metric score,
which consists of simultaneously recognizing inner
and outer entities, is between 10 and 20 F1 points
lower than the standard F1 metric across models
and datasets. In fact, in all cases, the models fail
more in recognizing outermost entities than inner
ones, suggesting that straightforward methods for
nested NER cannot correctly model existing rela-
tions between the components of a nested entity.
Presumably, since outermost entities are longer in
the number of tokens, it is easier for the model to
make mistakes when using a strict evaluation met-
ric. Therefore, despite the high score obtained with
the standard F1 metric (see Table 2), this finding
points out the importance of using suitable metrics
to test the limitations of nested NER approaches.
Finally, we can notice that the best models, accord-
ing to the standard metric, also get the best results
according to the nested metrics, proving that the
standard metric is consistent but insufficient accord-
ing to the above findings.

Another point to analyze is the multilabel en-
tities. These entities correspond to text spans as-
sociated with more than one entity type, as in the
case of the medical term HTN, which is both an
Abbreviation and Disease. In the Chilean Wait-
ing List corpus, 1, 030 entities participate in this
type of nesting. Considering only the F1 score of
both models on these types of entities, the MLC
approach with Clinical Flair obtained 85.1, while
Joint Labeling with Clinical RoBERTa obtained
84.21. Therefore, the difference in the standard
metric cannot be explained by the performance of
these types of nestings. In the following sections,
we perform a detailed analysis of the model pre-
dictions, looking for information that explains the
difference in performance between the Joint Label-
ing and MLC approaches beyond the domain in

Level removed MLC [CF] Joint Labeling [CR] ∆F1

None 83.160.28 79.240.39 3.92
≥ 3 (88) 82.860.29 78.960.35 3.90

≥ 2 (1,875) 79.080.55 75.910.49 3.17

Table 4: Overall results of our two best models in the
Chilean Waiting List when removing deeper entities.
∆F1 corresponds to the subtraction in the performance
between two models. Here, CF stands for Clinical Flair,
while CR is Clinical RoBERTa. The values in parenthe-
ses correspond to the support.

which they were trained.

6.2 Nesting Depth
An interesting point to analyze between both ap-
proaches is the variation in the standard metric
when deeper nesting level entities are removed. In
Table 4, we show the results in the Chilean Wait-
ing List when entities of depths 2, 3, and 4 entities
are removed. Here, depth 1 are the outermost en-
tities, while entities in level 4 are the innermost.
First, we notice that by removing nested entities of
depths 3 and 4, the ∆F1 score between both mod-
els remains similar. However, when we removed
entities of depth 2, the difference was reduced by
1 F1 point. This might suggest that removing in-
ner entities within a nesting implies a higher decay
in MLC performance compared to the Joint La-
beling approach. To support this hypothesis, we
will analyze the performance of both architectures
according to entity length.

6.3 Entities of Different Length
In Figure 3, we separate the results obtained in
Table 2 depending on the entity’s length. The left
side of the figure shows that when the entity length
increases, the MLC curve gets closer to the Joint
Labeling curve, suggesting that the performance
on shorter entities is better for MLC. This finding
is confirmed when observing the Clinical Trials
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Figure 3: Results of our models according to the entity length.

Length ∆F1 Chilean Waiting List ∆F1 Clinical Trials
1 4.76 (4, 198) −1.82 (5, 312)
2 4.75 (1, 522) −2.59 (1, 780)
3 3.74 (976) −3.93 (917)
4 2.90 (667) −4.51 (442)
5 2.08 (470) −5.62 (207)
6 0.86 (289) −2.97 (116)
7 −0.01 (223) −3.49 (61)

≥ 8 1.8 (492) −3.28 (105)

Table 5: ∆F1 Score between MLC with Clinical Flair
and Joint Labeling with Clinical RoBERTa depending
on the length of entities. The values in parentheses
correspond to the support.

figure, where the curves move further apart as the
length increases.

In Table 5, we see this behavior more explic-
itly using the ∆F1, which corresponds to the sub-
traction of the F1 scores of both models. In the
case of MLC, we can see that the most signifi-
cant difference in the Chilean Waiting List occurs
in shorter entities, which could be influencing the
standard NER metric. In contrast, in Clinical Trials,
although the MLC approach does not outperform
Joint Labeling according to the standard metric, the
∆F1 score decreases as the entities become smaller.

In the following section, we perform a case study
on a synthetic dataset created from several clini-
cal corpora in Spanish. The aim is to study if this
behavior is repeated in a dataset containing a sim-
ilar percentage of nested entities compared to the
Chilean Waiting List. Note that this dataset was
not used in the experiments section since it is not
publicly available for privacy reasons; thus, future
works could not reproduce the experiments.

7 Case Study

In order corroborate the conclusions presented
above, we have created a synthetic nested NER cor-

Train Test Dev
tokens 240, 381 29, 600 31, 364
sentences 9, 482 1, 120 1, 230
avg sent len 25.35 26.43 25.50
entities 18, 912 2, 283 2, 597
avg entity len 2.15 2.21 2.14
nested entities 8, 167 1, 019 1, 147
- entities at level 1 6, 577 827 938
- entities at level 2 1, 572 191 209
- entities at level 3 18 1 0

Table 6: Statistics of the SPACCC Aggregated dataset.

pus by aggregating the datasets from the Pharma-
CoNER (Gonzalez-Agirre et al., 2019), CODIESP
(Miranda-Escalada et al., 2020), and the recent Dis-
TEMIST (Miranda-Escalada et al., 2022) shared
tasks. These datasets are based on the SPACCC
corpus6, a collection of 1, 000 clinical cases from
SciELO. Since all the datasets are annotated on
the same plain text, merging the annotation of the
different tasks is possible. The aggregated dataset
is composed of seven entity types, where three
are from the PharmaCoNER corpus, two from
CODIESP, and one from DisTEMIST.

To generate the aggregated dataset, some impor-
tant factors have been considered. First, CODIESP
is not a NER task but a clinical coding task. How-
ever, the authors annotated not only the ICD-10
codes but also the textual evidence that supports
the assigned codes. For this experiment, we used
the textual evidence from CODIESP as if they
were named entities. Secondly, we have found
that some textual evidences are either discontinu-
ous or partially contained within other evidences,
better known as crossing entities. Both cases are
beyond the scope of this research, so we decided
to discard them. Thirdly, DisTEMIST is an ongo-
ing task, and we do not have access to the test set

6https://zenodo.org/record/2560316
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Figure 4: Results of both models on the SPACCC ag-
gregated dataset depending on the entity length.

Metric MLC Joint Labeling Support
standard F1 78.530.16 78.250.09 2, 283

mflat 77.990.48 77.480.12 1, 264
minner 79.270.10 76.440.41 520
mouter 79.070.60 82.210.31 499
mnested 79.180.24 79.230.36 1, 019
mnesting 63.760.60 64.320.08 499
mlevel1 72.680.03 77.080.32 827
mlevel2 51.572.83 48.710.67 191

Table 7: Standard and nested metrics on the SPACCC
aggregated dataset.

annotations. For this reason, we only have annota-
tions for 750 clinical cases of the SPACCC corpus.
Finally, once the three datasets were aggregated,
we found that there were discontinuous annotations
between CODIESP and DisTEMIST in 17 of the
documents. We removed these documents from
the corpus, leaving us with 733 documents. The
dataset was divided into 80% for training, 10% for
validation, and 10% for testing. The statistics of the
corpus are shown in Table 6, and in Appendix A,
we show examples of nested entities in this corpus.

According to the standard NER metric, the re-
sults for the MLC and Joint Labeling approaches
are 78.53 and 78.25, respectively. Although the
performance was comparable between both mod-
els, analyzing Figure 4, we note that the behavior
in the two previous datasets is repeated. The MLC
curve is higher than the Joint Labeling curve for
the smallest entities, but as the number of tokens
increases, the Joint Labeling model obtains slightly
better results than MLC.

Considering the mnested and mnesting metrics
shown in Table 7, we see that Joint Labeling
achieves 79.23 and 64.32 F1 scores, while MLC
obtains 79.18 and 63.76. Therefore, the former ar-
chitecture handles better the nested entities in this

corpus. One possible reason why MLC performs
better on the standard evaluation metric is that this
model achieves the best results according to the
minner metric by a wide margin, obtaining 79.27
versus 76.44. In contrast, using the mouter metric,
MLC achieves 3.14 points less than Joint Labeling.
These findings reaffirm our hypothesis that MLC
is better at recognizing smaller entities. For exam-
ple, if we analyze the metrics in each nesting depth
level (mlevel1 and mlevel2), we can see how the
MLC model obtains better results in recognizing
entities in level 2, which are the innermost entities
within a nesting. Finally, and as seen in the other
corpora, the results according to the mnesting met-
ric are low, and the standard metric cannot reflect
this limitation.

8 Conclusions and Future Work

Since most previous works on nested NER have
focused on solving the task in English, this pa-
per contributes to the exploration of diverse mod-
els for solving the task on two Spanish clinical
datasets, resulting in the state-of-the-art in both cor-
pora. Specifically, we explore the advantages and
limitations of the Multiple LSTM-CRF approach,
which consists of training one model for each en-
tity type, and the Joint Labeling approach, which
through an appropriate annotation scheme, allows
solving the task by fine-tuning transformer-based
models.

To assess the limitations, we studied task-
specific metrics for the nested NER task, which
consider variables such as the entity position in
the nesting, the impact of nesting depth, and entity
length. Although our approaches achieve high re-
sults according to the standard metric, we found
limitations concerning the recognition of nested
entities. The main drawbacks of these architec-
tures are the low performance when recognizing
complete nestings and the outermost entities of a
nesting. In addition, the MLC approach combined
with a character-level language model performs
less when recognizing entities with many tokens.

We believe this work can contribute to the NLP
community to re-think how the nested NER task
is being evaluated, considering task-specific met-
rics beyond the traditional micro F1 score. Fur-
thermore, our case study on the SPACCC aggre-
gated dataset points out many of the challenges
of the nested NER task, especially when complex
annotations are allowed due to the aggregation pro-
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cess. Therefore, future work will analyze the per-
formance of other existing architectures beyond
the sequence labeling-based approach and compare
their performance against our models. We also
plan to propose new methods to treat the cases of
discontinuous entities and crossing entities, which
are entities that overlap others but are not fully
contained, to address the nested NER task fully.

Limitations

Although both approaches achieved excellent re-
sults across all the datasets in this research, they
have clear limitations. The main drawback is that
both models cannot handle the case of nested enti-
ties of the same type. This is explained since the file
format used for training these architectures cannot
incorporate this type of nesting. The second major
limitation of both models is that they cannot cap-
ture the existing relations between inner and outer
entities, leading to poor performance in recogniz-
ing complete nestings. These limitations could be
addressed by using architectures that separate the
problem of detecting entity boundaries from classi-
fying the entity type or hypergraph-based models.

Another significant limitation of the MLC archi-
tecture is the high computational cost. Although
the models of each entity type can be trained in
parallel, when scaling to a dataset with many en-
tity types, the training and inference time could
increase considerably compared with other mod-
els. On the other hand, we have shown that using
character-level language models in this architecture
obtains low performance when recognizing longer
entities.

Finally, despite the Joint labeling approach em-
ploying one model for all the entities, its label space
increase exponentially with the number of entities
involved, resulting in a bigger classification layer
and thus requiring more computational resources
than standard NER classification layers.
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A Examples from the SPACCC
Aggregated Dataset

As discussed in Section 7, the SPACCC aggre-
gated dataset represents a challenging case study
since it may pose severe limitations to straight-
forward approaches addressing nested NER tasks,
mainly due to entity annotations such as discontin-
uous entities, nested entities, and different entity
types. To better visualize such complex entity an-
notations, we selected some sentences from the
SPACCC aggregated dataset before we removed
them to perform our experiments. Specifically,
Figure 5 shows three different entities, namely,
disease entity (DIS_ENFERMEDAD), ICD diag-
nosis (CIE_DIAGNOSTICO), and protein names
(PHA_PROTEINAS), from the PharmaCoNER,
CODIESP, and DisTEMIST datasets are presented
in different colors to highlight the amount of over-
lap and crossing between them.

Figure 5: Example of annotations from the SPACCC ag-
gregated dataset with different types of entities belong-
ing to the PharmaCoNER, CODIESP, and DisTEMIST
datasets.
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