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Abstract

Clinical data often exists in different forms
across the lifetime of a patient’s interaction
with the healthcare system - structured, unstruc-
tured or semi-structured data in the form of
laboratory readings, clinical notes, diagnostic
codes, imaging and audio data of various kinds,
and other observational data. Formulating a
representation model that aggregates informa-
tion from these heterogeneous sources may al-
low us to jointly model on data with more pre-
dictive signal than noise and help inform our
model with useful constraints learned from bet-
ter data. Multimodal fusion approaches help
produce representations combined from hetero-
geneous modalities, which can be used for clin-
ical prediction tasks. Representations produced
through different fusion techniques require dif-
ferent training strategies. We investigate the
advantage of adding narrative clinical text to
structured modalities to classification tasks in
the clinical domain. We show that while there
is a competitive advantage in combined repre-
sentations of clinical data, the approach can be
helped by training guidance customized to each
modality. We show empirical results across
binary/multiclass settings, single/multitask set-
tings and unified/multimodal learning rate set-
tings for early and late information fusion of
clinical data.

1 Introduction

A variety of clinical use cases emerge where it
is not sufficient to use a single data modality as
input to a learning or decision making system (We-
ber et al., 2014). A single data modality is often
known to be insufficient for a clinical purpose. For
instance, diagnoses that require imaging data as
well as lab values or outcomes that depend on val-
ues routinely recorded in the narrative text but not
elsewhere. An additional modality can be used
to characterize additional features. For instance,
information in narrative text that conflicts with or
adds specificity to diagnosis or procedure codes or

imaging data that can indicate severity of a condi-
tion not recorded in structured form or qualitatively
mentioned in narrative text. Sometimes, a modality
with highly predictive or informative features is par-
ticularly expensive or invasive and an alternative
source is present that may have features unintelligi-
ble or hard to parse for humans. Also, most clinical
machine learning systems focus on one clinical
prediction task at a time (D’Costa et al., 2020; Ji
et al., 2020). However, in real-world systems more
than one such task are often performed simultane-
ously and are interrelated (Yang and Wu, 2021).
There is a need to investigate task-specific unified
representations of multimodal clinical data in both
single-task and multi-task settings to improve de-
cisions in the clinical workflow by demonstrating
an increase in predictive power, robustness, and
confidence over any single mode of data (Tiulpin
et al., 2019). Besides creating and combining effi-
cient representations of data from more than one
modality, we also need to study the factors that af-
fect the design and evaluation of these multimodal
representations.

2 Multimodal Representations

There are various ways modalities of clinical data
can be combined. Multimodal deep learning mod-
els integrate information at various possible steps.
This can occur in the following ways –

• By finding a common representation for in-
put data for a specific task before modeling.
e.g., extracting clinical mentions from narra-
tive text and concatenating it with independent
diagnostic signals to form a model input.

• By jointly learning intermediate feature repre-
sentations for one or more additional modali-
ties, besides the basic input e.g., learning text
embeddings from narrative text and using that
as an additional input besides the structured
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data to the same neural network. This is de-
signed for the training algorithm to jointly
improve the intermediate embeddings along
with the task-specific loss.

• By modeling each modality separately and
combining predictions from different models
under a task-specific scheme. e.g., aggregat-
ing diagnostic predictions from a text model-
ing and an image modeling system through an
averaging scheme or a meta classifier.

As detailed in (Baltrušaitis et al., 2018), multimodal
models can be categorized by the fusion techniques
based on which they learn the join representations
of underlying data. The most common approaches
are called early fusion (Chen and Jin, 2015) where
individual modality features are combined right af-
ter feature extraction and late fusion (Atrey et al.,
2010) which combines outputs from unimodal pre-
dictors jointly. Early fusion is expected to cap-
ture some of the feature-level interactions of each
modality and often is easier to model and train. On
the other hand, late fusion allows for more flexi-
bility and is expected to model individual modali-
ties better and also handles scenarios where one or
more modalities are missing. However, it cannot be
expected to capture low level interaction between
the modalities. While training late fusion models,
the simplest choice is to use the same learning rate
across all modalities. But it is both intuitive as well
as demonstrable through layer analysis (Yao and
Mihalcea, 2022) that learning rates for different
modalities can differ a lot and must be handled sep-
arately to optimize learning from heterogeneous
sources.

3 Methodology

3.1 Data source

We use a publicly available clinical data set - Medi-
cal Information Mart for Intensive Care (MIMIC)
Johnson et al. (2016) - containing data across vari-
ous modalities for patients admitted and readmit-
ted to the intensive care unit (ICU). MIMIC-III is
a large, freely-available database comprising de-
identified health-related data associated with over
forty thousand patients who stayed in critical care
units of the Beth Israel Deaconess Medical Center
between 2001 and 2012. The database includes
information such as demographics, vital sign mea-
surements made at the bedside ( 1 data point per

hour), laboratory test results, procedures, medica-
tions, caregiver notes, imaging reports, and mortal-
ity, including post-hospital discharge. It contains
highly granular data, including vital signs, labora-
tory results, and medications.

3.2 Data modalities
The following structured and semi-structured
modalities typically found in inpatient settings in
clinical data were extracted and compiled at a pa-
tient level -

• Clinical Notes - Free-form narrative text is
entered by clinicians and nurses during the
stay of a patient and these usually summarize
reasons for admission, details of treatment,
nutrition, and the patient’s symptoms and di-
agnoses. These clinical notes are temporally
ordered.

• Tabular Data – Metadata such as sex, age,
height, weight at admission, the type of the
ICU, and other tabular inputs were recorded
for each patient. Values such as weight, may
vary during the patient’s stay and are poten-
tially part of the time series data set as well.

• Time Series data – Various temporal phys-
iological variables, such as diastolic blood
pressure, systolic blood pressure, oxygen sat-
uration, were recorded for each patient. These
physiological variables are recorded irregu-
larly, and they are important indicators of the
patient’s condition during the hospital stay.

We add the two different kinds of structured data
from the MIMIC-III dataset to the clinical text.
Data is preprocessed as in (Harutyunyan et al.,
2019), excluding ICU stays with missing events
or missing length-of-stay and excluding patients
younger than eighteen years of age since both clin-
ical dynamics and clinical documentation of pae-
diatrics facilities are significantly different from
those of adults.

3.3 Experiments
The experiments focus on the following two tasks -

• In-hospital mortality prediction : To predict
death by the end of the hospital stay based on
first 48 hours of observations. To prevent mor-
tality is the primary aim and a number of task
formulations as in (Harutyunyan et al., 2019)
and (Khadanga et al., 2019) attempt to predict
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patient survival at the end of the hospital stay.
The hypothesis is that observations from the
first 48 hours of a patient’s stay in the ICU
include crucial clues towards the probability
of survival.

• Phenotyping : To predict a patient’s pheno-
type at the time of discharge in terms of billing
codes. This is a multilabel classification task
and the target label set is derived from the
billing code at a patients discharge, which is
then converted to 25 labels following the pro-
cedure from (Harutyunyan et al., 2019).

The above two are standard tasks in clinical pre-
diction settings and allowed us to compare directly
with prior work such as (Harutyunyan et al., 2019)
and (Khadanga et al., 2019). They provide two
representative tasks in binary and multiclass, multi-
label settings. Multitask learning is a particularly
useful direction to explore in clinical settings with
potential to capture dependencies between tasks,
especially in low-data regimes. It was first pro-
posed in the clinical prediction setting by (Caruana
et al., 1995), where they used future lab values as
auxiliary targets during training improving predic-
tion of mortality among pneumonia patients.
Multimodal embeddings are used as the input to
the two task- specific components. Each layer per
task is a fully connected network with ht hidden
units, a dropout layer with dropout probability αt,
a ReLU activation, and an output layer matching
the shape of the individual component’s respec-
tive task. Each task-specific component shares the
base multimodal embedding but is independent of
the other layers. The multimodal encoder is com-
prised of one child encoder per input modality. In
the early fusion setup, the multimodal embedding
is a concatenation of the outputs from each child
encoder. In the late fusion setting, for each time
step, the model structure is a linear layer with 512
hidden states with ReLU activation projected to
a 128-dimensional linear layer to predict the out-
put class. For the phenotyping task each of the 25
output neurons has a sigmoid activation. The re-
sults for late fusion multimodal learning have been
reported only in single-task settings.

Each task-specific component can employ a task-
specific loss. To learn across both tasks simulta-
neously in the multitask experiments, we take the
weighted sum of all the losses resulting to form
the multitask loss. The current experiments use

cross entropy loss for both tasks. To find multitask
weights, we used uncertainty weighting described
in (Kendall et al., 2018).
Time series encoder.Given a patient’s ICU stay of
length of T hours, the time series data is resampled
with 1 hour interval to obtain [TSt] from t = 1 to t
= T. The time series encoder is an LSTM (Hochre-
iter and Schmidhuber, 1997). The input [TSt] at
time step t is directly the input to an LSTM model
(Hochreiter and Schmidhuber, 1997) along with
the previous states, and the next hidden state is the
extracted feature, denoted by fn

t .

fn
t = LSTM(TSt, f

n
t−1) (1)

The experiments use a 1-layer LSTM with 256 hid-
den units as the time series encoder.
Clinical Text Encoder. For each ICU stay,
there are N clinical notes recorded at irregu-
lar intervals.The chart time of these notes are
[Time(i)Ni=1] where N <= T The convolutional
model TextCNN in (Kim, 2014) is used to extract
features from textual clinical notes. To create em-
beddings from Nt notes collected at time Timei,
the CNN model gives us the feature matrix z per
clinical note. A weighted average of all notes,
weighted by recency produces a feature vector for
a record.

weight(t, i) = exp(−λ(t− Timei)) (2)

ft = γ
N∑

i=1

weight(t, i).zi (3)

Here, λ is a scaling factor and γ is a normaliza-
tion term. The embeddings are generated using
word2vec embeddings (Mikolov et al., 2013). The
TextCNN model has three 1-D kernels of size 2,3
and 4 with 128 filters each.
Tabular Data Encoder. To process the tabular
inputs, we learn an embedding table for each cate-
gorical input dimension as in (De Brébisson et al.,
2015) and individual features are concatenated to
form one tabular embedding. All features are rep-
resented as 32-dimensional embeddings.

In the early fusion setup, the default Adam opti-
mizer (Kingma and Ba, 2014) is used with a learn-
ing rate of 1e-4 with early stopping. The mortality
prediction task uses ht = 108. The phenotyping
task uses ht = 512. In the late fusion setup, we ran
the following sets of experiments -
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• Unified learning rate across modalities : We
use the default Adam optimizer with a learn-
ing rate of 3e-4 with early stopping. The mor-
tality prediction task uses ht = 108. The
phenotyping task uses ht = 512.

• Adapted learning rate per modality : We
use the best fine-tuned learning rate per modal-
ity for each of them while training the late-
fusion model.

We observed better results with the AdamW opti-
mizer (Loshchilov and Hutter, 2017) but report re-
sults using the default Adam optimizer to be able to
at least partially compare with (Harutyunyan et al.,
2019) since learning rates can vary a lot based on
the optimizer used.

4 Results

Since the mortality prediction is a binary classifi-
cation problem, we report the AUC-PR numbers,
which is a standard evaluation metric. Because dis-
eases can co-occur and a majority of patients often
have more than one diagnosis, phenotyping is a
multilabel classification problem, which requires
the performance to be reported by averaging across
labels or examples. These labels have varying base
rates. In imbalanced tasks, (Lipton et al., 2014)
show that if the predictive features for rare labels
are lost, which is possible due to feature selec-
tion, macro F1 is an unsuitable metric. We report
the macro AUC-ROC, which is the unweighted
mean of AUC-ROC for each label. We also add
a weighted average AUC-ROC metric accounting
for base rate of the diseases in Table 3. The pheno-
typing task does not categorically benefit from the
multitask setting. The model is trained to jointly
predict 25 labels which in itself might have a reg-
ularizing effect akin to multitask learning and the
additional regularization expected from adding the
in-hospital mortality prediction task may be unable
to provide further significant improvement over the
single-task setting.
We follow (Harutyunyan et al., 2019) as the base-
line for the MultiTask TimeSeries set-up and
(Khadanga et al., 2019) for the SingleTask Notes
+ TimeSeries set-up. We show results of the early
fusion runs in Table 1 and the late fusion runs in
Table 2.
We also report error bounds for the experiments by
choosing observations at the 2.5th percentile and
the 97.5th percentiles and reporting the median.

This was computed by drawing 5000 samples with
replacement 100 times from the test set.

5 Related Work

We refer to (Harutyunyan et al., 2019) that uses a
single modality of time series in a multi-task setting
using LSTMs and channel-wise LSTMs. Similarly,
(Khadanga et al., 2019) presents a unimodal model
with clinical notes only for individual task settings
but they also report additional results in a multi-
modal setting using both time series and text data
without using multitask learning. We reuse some
of the multitasking configuration for the MIMIC
dataset described in (Huang et al., 2020). There are
also available comparisons against baseline logis-
tic regression and random forest models in (Zhang
et al., 2020). All of these use only a unified learn-
ing rate across modalities. A number of works note
the need of exploiting modality-specific features
such as (Wang et al., 2015; Liu et al., 2018) for
combining text with other modalities such as im-
age and audio. In the late-fusion setting, a closely
related work is (Yao and Mihalcea, 2022) that in-
vestigates modality-specific learning rates. They
do not investigate a multitask setting and also study
modalities structurally different from ours. Another
closely related work is (Fujimori et al., 2019) that
take up the issue of potential overfitting to certain
modalities. Their approach is via early stopping
and is still closer to our unified learning rate set
up. It is also worth noting that the typical modal-
ities in clinical data are very domain-specific and
even well-studied modalities such as text in general-
domain NLP often behave differently in the clinical
domain (Rumshisky et al., 2020).

6 Limitations and Future Work

This work investigates one way to adapt learn-
ing rates to modalities. There can be more adap-
tive strategies that take a priori clinical knowledge
about a modality into account, which is a possi-
ble topic of future work. The late fusion meth-
ods discussed are also occasionally unstable during
training. It is also conceivable that clinical text
with different linguistic structure (e.g. short, more
standardised radiology reports vs longer, less struc-
tured progress reports) behave differently when
combined with other modalities. Further investiga-
tion is required to mitigate these issues. The current
work aims to show the effect of adding modalities
and adapting parameters specific to useful modal-
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Task Modality IHMortality Phenotype
SingleTask Notes 0.517±0.052 0.712±0.004
SingleTask TimeSeries 0.423±0.052 0.788±0.004
SingleTask Notes + Tabular 0.519±0.04 0.72±0.007
SingleTask Notes + TimeSeries 0.580±0.05 0.796±0.005
SingleTask Notes + TimeSeries + Tabular 0.570±0.051 0.814±0.005
MultiTask TimeSeries 0.423±0.052 0.77±0.005
MultiTask TimeSeries + Tabular 0.526±0.003 0.781±0.002
MultiTask Notes + TimeSeries 0.601±0.05 0.773±0.005
MultiTask Notes + TimeSeries + Tabular 0.599±0.051 0.813±0.004

Table 1: Effect of multimodal learning with early fusion

RateAcrossModality Modality IHMortality Phenotype
- Notes 0.517±0.052 0.712±0.004
- Time series 0.423±0.052 0.788±0.004
unified Notes + TimeSeries 0.590±0.049 0.802±0.005
multimodal Notes + TimeSeries 0.614±0.047 0.803±0.004
unified Notes + TimeSeries + Tabular 0.601±0.051 0.815±0.005
multimodal Notes + TimeSeries + Tabular 0.62±0.050 0.817±0.004

Table 2: Effect of multimodal learning with late fusion with varying learning rate across modalities

Task Modality Phenotype
SingleTask Notes 0.707±0.003
SingleTask TimeSeries 0.781±0.005
SingleTask Notes + Tabular 0.73±0.006
SingleTask Notes + TimeSeries 0.789±0.007
SingleTask Notes + TimeSeries + Tabular 0.808±0.002
MultiTask TimeSeries 0.767±0.006
MultiTask TimeSeries + Tabular 0.772±0.002
MultiTask Notes + TimeSeries 0.766±0.004
MultiTask Notes + TimeSeries + Tabular 0.812±0.004

Table 3: Effect of multimodal learning with early fusion on phenotype (AUC-ROC weighted by label prevalence)

ities. Future work will also address comparisons
not possible with existing baselines. More complex
models with advanced architecture can be applied
in a modular fashion in both single task and multi-
task settings.
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