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Abstract

Clinical coding is the task of transforming med-
ical documents into structured codes following
a standard ontology. Since these terminolo-
gies are composed of hundreds of codes, this
problem can be considered an Extreme Multi-
label Classification task. This paper proposes
a novel neural network-based architecture for
clinical coding. First, we take full advantage
of the hierarchical nature of ontologies to cre-
ate clusters based on semantic relations. Then,
we use a Matcher module to assign the prob-
ability of documents belonging to each clus-
ter. Finally, the Ranker calculates the proba-
bility of each code considering only the doc-
uments in the cluster. This division allows a
fine-grained differentiation within the cluster,
which cannot be addressed using a single clas-
sifier. In addition, since most of the previous
work has focused on solving this task in En-
glish, we conducted our experiments on three
clinical coding corpora in Spanish. The exper-
imental results demonstrate the effectiveness
of our model, achieving state-of-the-art results
on two of the three datasets. Specifically, we
outperformed previous models on two subtasks
of the CodiEsp shared task: CodiEsp-D (dis-
eases) and CodiEsp-P (procedures). Automatic
coding can profoundly impact healthcare by
structuring critical information written in free
text in electronic health records.

1 Introduction

The International Classification of Diseases (ICD)
is a medical glossary published by the World Health
Organization, which establishes specific coding
rules for healthcare procedures and diseases. Map-
ping electronic health records into alphanumeric
codes allows rapid summarization of information,
which is necessary to calculate costs, support clin-
ical decisions, and conduct detailed epidemiolog-
ical studies. However, manual coding is time-
consuming, resource-intensive, and error-prone,

even for specialists. For this reason, developing
tools to support this task is precious.

Extreme multi-label classification is a subset of
the multi-label classification task in which the ob-
jective is to learn feature architectures and classi-
fiers that can automatically tag a data point with the
most relevant labels from a huge label set (Bhatia
et al., 2016). The term extreme is justified in this
case since the space of possible labels is generally
very large and can exceed the number of documents
in a given corpus.

Figure 1: Example of a CodiEsp Electronic Health
Record annotated, every diagnostic and procedure men-
tion has a unique code. Every code from this Electronic
Health Record is aggregated, and the document is la-
beled with all the codes present in the document. Each
entity mention and its span is later used in the different
data augmentation techniques explained in 3.6. Figure
extracted from (Miranda-Escalada et al., 2020b).

Clinical coding is an important Natural Lan-
guage Processing (NLP) task that seeks to automat-
ically assign codes to medical documents following
a standard terminology, such as the ICD glossary.
Since each document can be labeled with more than
one code from an extensive list, this task can be
considered an Extreme Multi-label Classification
task (Liu et al., 2017). An example of a Codiesp-
D medical document is shown in Figure 1. De-
spite the availability of clinical coding datasets in
Spanish, such as CANTEMIST (Miranda-Escalada
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et al., 2020a) or CodiEsp (Miranda-Escalada et al.,
2020b), the size of these resources is not yet com-
parable to that for the English language. For ex-
ample, Codiesp has 1,000 clinical case reports,
while the MIMIC-III dataset (Johnson et al., 2016)
has 52.726 discharge summaries. This scarcity of
data forces models in other languages to have dif-
ferent architectures than those trained on English
datasets.

To fill this gap, we introduce a novel architecture
for solving clinical coding on three Spanish clini-
cal datasets. This architecture is composed of two
modules: the Ranker and the Matcher. The first
module calculates the probability of a document
belonging to a cluster, while the second performs
the classification of documents into codes. Each
cluster is created previously by analyzing the ontol-
ogy of each dataset. Our experimental results show
the effectiveness of our model, achieving state-of-
the-art performance on CodiEsp-D (diseases) and
CodiEsp-P (procedures) according to the Mean Av-
erage Precision (MAP) and F1 score.

2 Related Work

In recent years, there has been a growing interest
from the NLP research community in studying the
clinical coding task. Early work focuses on creat-
ing machine learning-based classifiers with heavy
feature engineering (Larkey and Croft, 1995; Gold-
stein et al., 2007). However, as mentioned in Kaur
et al. (2021) and Teng et al. (2022), recent deep
learning advancements have greatly improved clin-
ical coding models’ performance for all languages.

Regarding extreme multi-label architectures,
there is one work that heavily inspired this work,
which is X-Transformers (Chang et al., 2020). It
proposes creating a clusterization of labels using
the distance between the label descriptions encoded
using contextualized embeddings retrieved from
transformers’ language models. Then they predict
the clusters using a transformers classifier, and fi-
nally, they predict the labels over the subset of
predicted clusters using one-vs-rest linear classi-
fiers. The design of this architecture was thought
to handle corpora much larger than the ones we
have studied in this work, thus prioritizing time
efficiency much more.

One of the most popular datasets used for clin-
ical coding for the Spanish language is CodiEsp
(Miranda-Escalada et al., 2020b). Most of the work
proposed formulated the problem as text classifi-

cation. In López-Garcıa et al. (2020), they used a
transformer-based model to classify the sentences
of the documents. Then, the whole document set
of codes is the union of the sentence-level codes.
Other approaches focused on solving the problem
as a Named Entity Recognition (NER) task. In
Cossin and Jouhet (2020), they created a dictio-
nary based on entity mentions and code definitions.
Then, they matched spans of documents with the
code definitions in the dictionary using a tree-based
algorithm. Finally, other ensemble-based models
combined text classification and NER tasks to solve
the clinical coding problem. For example, Blanco
et al. (2020) implemented a model that used string-
matching encoders and one-vs-rest document clas-
sification. This model obtained the best results in
the competition.

Another important task of clinical coding in
Spanish is Cantemist (Miranda-Escalada et al.,
2020a), which aims to identify codes present in can-
cer diagnoses. This task had two winner systems
obtaining the same MAP score. The first model
proposed by García-Pablos et al. (2020) used dif-
ferent transformer-based models to predict specific
parts of a code. These models were ensembled us-
ing a novel voting system. The second winner was
López-García et al. (2020), who reused their ap-
proach proposed in CodiEsp but further pre-trained
a language model with a private oncology corpus.

Recent work by López-García et al. (2021) out-
performed previous models in CodiEsp and CAN-
TEMIST by a wide margin. First, they trained three
multilingual language models using private oncol-
ogy datasets and then fine-tuned these models for
classifying documents into codes. To improve the
performance of their models, they ensembled the
results from five different instances of each trained
transformer.

3 Model

Our proposed architecture comprises two main
modules: the Matcher and the Ranker. The first
module calculates the probability that a document
belongs to some cluster, while the second one cal-
culates the probability of codes in the document.
The results of both modules are used to perform the
final prediction of codes. This process is carried out
by multiplying the probability of codes obtained
from the Ranker for each document with the code
cluster probability obtained from the Matcher mod-
ule. We refer to this approach as the Divide and
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emc
Code partitioning Assigned Cluster
From a00 to b99 Some diseases caused by infections and parasites
From c00 to d49 Tumors and neoplasia
From d50 to d89 Diseases of the blood and hematopoietic organs
From h00 to h59 Diseases of the eye and its adnexa
From h60 to h95 Diseases of the ear and mastoid process

Table 1: Example of five clusters defined for CodiEsp
Diagnostics.

Figure 2: Overview of the Matcher module. P (Ci):
probability of document having a code in cluster i.

Conquer (D&C) model since dividing the original
task into two simpler text classification subtasks
allows us to improve the results considerably.

3.1 Clusters
As a preliminary step before training our model,
we create partitions of semantically related codes
based on the ontologies hierarchy. We will refer to
these groups as clusters. In Table 1, we show an
example of clusters defined in the CodiEsp Diag-
nostics corpus. Here, we used the first three letters
of a code that, in the ontology, are related to a
disease category.

For Codiesp-D, we created 21 clusters; for
Codiesp-P 17 clusters; and for CANTEMIST 51
clusters. The clusters were defined using the cat-
egories systematized by the ontology’s creators
leveraging extensive work from clinicians world-
wide to group semantically related codes, which
gives us confidence about the quality of the selected
clusters.

3.2 Matcher
As shown in Figure 2, the Matcher module assigns
the probability of each document belonging to each
cluster. Each document is categorized with the clus-
ters mapped to the document labels, where each
label belongs to a single cluster. This task can be
formulated as multi-label text classification. No-
tably, the number of clusters is significantly lower
than the number of labels on the corpus. For ex-
ample, in the Codiesp-D subtask, the amount of
different labels is 2.557, and the number of clus-
ters is 21. This simplifies the task charged to the

Figure 3: Overview of the Ranker module. P (Lij):
probability of document having a mention of code i in
cluster j.

Matcher, classifying in fewer classes using signifi-
cantly more documents per class.

To perform this classification, we decided to fine-
tune a transformer-based architecture, as these mod-
els have boosted the performance of NLP architec-
tures in several NLP tasks, including text classifi-
cation. Transformers models are based entirely on
attention, replacing the recurrent layers most com-
monly used in encoder-decoder architectures with
multi-headed self-attention (Vaswani et al., 2017).
This aims to draw global dependencies between
input and output without the need for sequential
computation of Recurrent Neural Networks (RNN)
(Rumelhart et al., 1986) or Long short-term mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997).

3.3 Ranker

The Ranker module calculates, for each possible
code, the probability of belonging to the document.
This process is carried out by training a single bi-
nary model per code, following a one-vs-rest ap-
proach. Each model is trained only with documents
with codes belonging to the cluster, which allows
for a fine-grained differentiation between similar
codes. This way, the gold labels of this task are the
codes in the document.

Since each document can contain many codes,
this problem, like the Matcher, can be formulated
as a multi-label text classification task. However,
this subtask is considered extreme since possible
codes are much larger than the number of possible
clusters in the other task. The Ranker module is
based on the one-vs-rest approach, where the input
documents are binary classifiers encoded using the
TF-IDF method, and the output is fed into an Ex-
treme Gradient Boosting (XGBoost) model (Chen
et al., 2015).

We decided to use the Gradient Boosting Trees
algorithm considering the computational cost of
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training one model per label and also the quality of
the model’s predictions. Although, as previously
discussed, neural networks are the go-to choice
when solving an NLP task, it is not feasible to train
one neural network (specifically a Transformer or
LSTM) per label due to the computational costs
of training in an extreme multi-label environment.
Because each cluster has fewer examples than the
entire corpus, even training one neural network
model per cluster yields worse results because of
the data scarcity issue.

3.4 Combining output of Matcher and Ranker

Having trained both the Matcher and the Ranker,
the issue of how to combine the results is left. To
handle this task, we implemented two approaches;
one that outputs probabilities of all labels and an-
other that predicts the labels of the document.

First, to get the probabilities of all labels, it is
important to note that the output probabilities of
the Ranker are not precisely the probabilities of the
label because it was trained only with documents
in the cluster. More rigorously, these values can be
defined as the conditional probabilities of the label
given that it belongs to the cluster. Therefore, to
compute the probabilities of the label, we can use
the Bayes Theorem,

P (L) = PMatcher(C) ∗ PRanker(L|C), L ∈ C.
(1)

Where PMatcher(C) is the probability that the
Matcher module assigns a document to cluster C,
and PRanker(L|C) is the conditional probability
that the Ranker module assigns a label L to a docu-
ment given that it belongs to cluster C.

3.5 Ensemble

Using an ensemble of strong learners only lever-
ages different runs of the same computationally
expensive training process and thus confounds the
advances obtained by creating better architectures.
However, since most of the previous work proposed
ensemble models, we implemented an ensemble
strategy to perform a fair comparison with that sys-
tems.

The ranking of all the labels is done by summing
the probabilities of the ensembled models for each
label, where the prediction of the final labels is a
union of the predicted labels in all the ensembled
models.

3.6 Data Augmentation
In addition, to improve the performance of our
models, we implemented four data augmentation
techniques. Three methods are based on entity
mentions associated with the codes, while the other
uses code descriptions. Specifically, we added new
documents as follows:

• NE Mentions: Each entity mentioned is a
new document.

• NE Sentences: Each sentence in the original
corpus is considered as a new document.

• NE Stripped: New documents only with
words that participate in some entity mention.

• Definition codes: Each definition of a code is
a new document.

The first three techniques need to have a corpus
in which the different labels are associated with
a span of the document (Named Entity), which is
widespread because most corpora are created to
solve Named Entity Recognition tasks and Text
Classification tasks. Not all of these data augmen-
tation techniques are used by the Matcher and the
Ranker. In fact, the Matcher uses a transformer ar-
chitecture that is trained using sentences and needs
semantic context, so for the Matcher, NE Stripped
would only make the results worse and is not used.

4 Experiments

4.1 Datasets
We conducted our experiments with three clini-
cal coding corpora in Spanish. Table 2 shows a
summary of descriptive statistics for each corpus:
CodiEsp-D, CodiEsp-p, and CANTEMIST.

• CodiEsp1 (Miranda-Escalada et al., 2020b):
Corpus composed of 1,000 clinical cases
manually annotated using the guidelines
ICD10-Clinical Modification and ICD10-
Procedure. This dataset was used for two
shared tasks: CodiEsp Diagnostics (CodiEsp-
D) and CodiEsp Procedures (CodiEsp-P).

• CANTEMIST2 (Miranda-Escalada et al.,
2020a): Corpus composed of 1,301 oncologic
clinical case reports annotated using the ICD-
O-3 codes.

1https://zenodo.org/record/3837305
2https://zenodo.org/record/3978041
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CodiEsp-D CodiEsp-P CANTEMIST
Train Dev Test Train Dev Test Train Dev Test

Documents 500 250 250 500 250 250 501 500 300
Avg document length 410 411 414 410 411 414 894 804 812
Avg codes per document 14.4 13.7 14.7 3.9 4.2 4.4 12.8 12 12.1
Avg clusters per document 4.9 4.9 4.8 1.9 2.0 2.0 2.8 2.8 2.8
Number of different codes 2557 870 850
Number of clusters 21 17 51

Table 2: Descriptive statistics of the datasets.

4.2 Settings

For ease of reading, we explain the different hy-
perparameters and strategies used for the Matcher
and the Ranker training. We used the same data
splits as in previous work (Miranda-Escalada et al.,
2020b,a) to guarantee a fair comparison.

Regarding the Matcher module, we fine-tuned a
Biomedical version of RoBERTa in Spanish, leav-
ing only the last layer trainable. We trained our
model during 15 epochs using the Adam with
weight decay optimizer (Loshchilov and Hutter,
2017), which is an improved version of Adam
(Kingma and Ba, 2014) using a batch size of 25
documents. To handle overfitting, we employed a
linear scheduler with warmup, which linearly in-
creases the learning from 0 to the max learning rate
during warmup and then decreased the learning
rate to 0. This module was implemented using the
Flair framework (Akbik et al., 2019).

To choose the optimizer, we used the defaults of
the Flair framework. The number of epochs was
chosen after training on the train split and evalu-
ating on the Codiesp-D validation split. The loss
reduction stagnated at epoch 10. Given that we
used a Linear Scheduler that decreases the learning
rate for each epoch, we used 15 epochs to ensure
that we reached the best performance.

Each one-vs-rest model of the Ranker was cre-
ated using the XGBoost implementation provided
by the Sklearn library (Pedregosa et al., 2011). Re-
garding the hyperparameters, we used the exact tree
method, the ratio of the negative class to the posi-
tive class as the scaling weight, the Dart enhancer,
and 60% of subsample and column subsample.

To ensure the reproducibility of our results, we
released an open-source library3 with the code of
our experiments. This framework allows extending
the model to other datasets by simply implementing
the preprocessing data functions. Likewise, data
augmentation techniques can be extended to other
corpora by implementing a preprocessing function

3https://github.com/plncmm/dac-divide-and-conquer

that obtains the span, the document, and the men-
tion of a code. All the experiments were performed
using a GPU Nvidia DGX A100.

4.3 Metrics

To evaluate the performance of our model, we com-
pute the metrics used in previous work on CodiEsp
and CANTEMIST. First, we calculate the MAP,
which is a widely used evaluation score for ranking
problems (Miranda-Escalada et al., 2020b) and has
shown good discrimination and stability (Schütze
et al., 2008). MAP is defined as the mean of the
average precision (AP) of all documents:

AP =

∑
P (k) ∗ rel(k)

number of relevant labels
,

where P (k) is the precision at position k, and
rel(k) is an indicator function equaling 1 if the
item at rank k is a relevant label, zero otherwise.
Second, we calculated the micro average F1 score,
corresponding to the harmonic mean of the preci-
sion and recall.

These metrics were evaluated on the test set pro-
vided by the shared tasks, so comparability to other
models is assured. To correctly determine whether
the differences between the performance of our
model and the other models are reliable or due to
statistical chance, we have done five different eval-
uation rounds, each with a different seed, ensuring
different results. The results reported are the mean
of these five evaluation rounds, and the standard
deviation is also reported.

Regarding the performance of the ensemble mod-
els, the report of different evaluation rounds is un-
feasible due to the high computational time cost.
However, the ensemble interiorizes the statistical
chance because it uses 15 different instances of the
architecture.

To provide a more comprehensive analysis of the
architecture, we computed metrics for each one of
the modules. These metrics help us gain insights
into which part of the architecture levels are accept-
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able and allow us to know when high scores for the
architecture as a whole can be expected.

Regarding the Matcher module, we report the
MAP and the F1 score when the gold labels are
the clusters. In the case of the Ranker module, we
had to approach the issue of creating metrics that
could evaluate its performance independently from
the Matcher step, which is not straightforward. To
overcome this issue, we have defined a weighted
version of the metrics in which, for each cluster,
we calculate the MAP and the F1 score for that
cluster’s sentences. Then, the cluster metrics are
aggregated and weighted by the number of sen-
tences in each cluster. This metric indicates how
well the Ranker is labeling the documents. This
metric can be interpreted as what the metric would
be if the Matcher had a perfect performance and
thus acts as a ceiling for the DAC model’s final
performance.

5 Results

Table 3 shows the overall results of our model. We
reported two different results for the DAC archi-
tecture: the average of five different evaluation
rounds using the original approach and other re-
sults from a version that ensembled 15 different
model instances.

Our base model achieves state-of-the-art re-
sults in both CodiEsp tasks, surpassing the best
base model (Clinical Coding Transformers - Best
(López-García et al., 2021)) by 8% in CodiEsp di-
agnostics and by 6% in CodiEsp procedures. Even
in comparison with an ensemble of strong learners,
which obtains a similar performance (Clinical Cod-
ing Transformers - Ensemble (López-García et al.,
2021)), our base model surpasses their results by
a small margin of 0.5% in CodiEsp Diagnostics
and 0.2% in CodiEsp Procedures. Their results
correspond to 15 different runs of 3 strong learn-
ers, where each language model was trained with
a private oncology corpus. Unlike the mentioned
work, we used only publicly available resources
and a simpler architecture regarding computational
cost.

Most notably, our ensemble-based version of 15
different instances of our model outperformed pre-
vious results in the CodiEsp tasks by a wide margin,
outperforming state-of-the-art methods, including
ensembles of strong learners, in CodiEsp-D and
CodiEsp-P by 3.0% and 3.3%, respectively.

We hypothesize that the high performance of

our model is explained since the original text clas-
sification task is reduced to two subtasks, where
the number of possible labels is smaller. First, the
Matcher module performs a text classification in
which the number of labels equals the number of
clusters. Second, the Ranker is trained only with
documents belonging to a cluster, which allows
for a fine-grained differentiation between similar
codes.

We believe that the incapability to obtain state-
of-the-art for CANTEMIST is because it is a sim-
pler task than Codiesp-D and Codiesp-P. This is
noticeable by looking at the performance of every
model in each task. Our architecture is built to
thrive under challenging tasks where a straightfor-
ward fine-tuning of a transformer is not the best
approach. Nonetheless, our architecture is the third
best evaluated for CANTEMIST, considering that
ICB-UMA (López-García et al., 2020) and Clinical
Coding Transformers (López-García et al., 2021)
are from the same authors and used the same ap-
proach. Therefore, we obtained competitive results
compared to state-of-the-art models and surpassed
the performance of most of the systems (Miranda-
Escalada et al., 2020a).

6 Module Analysis

In Table 4, we report the mean results using dif-
ferent language models and compare the perfor-
mance with the ensemble for each corpus. We
performed experiments for 15 instances of the ar-
chitecture with different seeds, five using BioClin-
ical RoBERTa, five using BioMedical RoBERTa,
and five using BETO.

Notably, the MAP and F1 scores for the Matcher
are high in all experiments. This is required for
the architecture to be competitive; otherwise, the
error propagation leads to a low-quality final model.
Another interesting finding is that we can see no
significant difference between the domain-specific
language models (BioMedical RoBERTa and Bio-
Clinical) across all our experiments. However, the
general-domain language model we have tested
(BETO) has significantly lower performance on
all tasks. Finally, it is worth mentioning that the
ensemble-based architecture significantly outper-
forms all base models at hand, at least in the MAP
metric. According to the F1 metric, it surpasses the
models in the CodiEsp tasks and fails in the Can-
temist corpus. This adds room for improvement in
how the class prediction is combined to calculate
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CodiEsp-D CodiEsp-P CANTEMIST
Model MAP F1 MAP F1 MAP F1

IXA-AAA (Blanco et al., 2020) 0.593 0.009 0.425 0.008 - -
IAM (Cossin and Jouhet, 2020) 0.521 0.687 0.493 0.522 - -
FLE (García-Santa et al., 2020) 0.519 0.679 0.443 0.514 - -
The Mental Strokers (Costa et al., 2020) 0.517 0.591 0.445 0.488 - -
Vicomtech (García-Pablos et al., 2020) - - - - 0.847 0.855
ICB-UMA (López-García et al., 2020) 0.482 0.009 - - 0.847 0.013
Clinical Transformers - Best (López-García et al., 2021) 0.616 - 0.514 - 0.862 -
Clinical Transformers - Ensemble (López-García et al., 2021) 0.662 - 0.544 - 0.884 -
Divide and Conquer (DAC) 0.665 0.746 0.545 0.553 0.788 0.712
Divide and Conquer - Ensemble (DAC-E) 0.682 0.744 0.562 0.560 0.804 0.695

Table 3: Overall results on three clinical coding datasets. Results of the Clinical Transformers are taken from the
author’s paper, all the other results are obtained from the competitions overview. Some results are missing because
those approaches were not implemented for the corresponding tasks.

Codiesp-D Matcher Ranker DaC
MAP F1 MAP F1 MAP F1

BioClinical RoBERTa - Mean 0.930 0.852 0.729 0.726 0.665 0.727
BioMedical RoBERTa - Mean 0.938 0.865 0.730 0.726 0.665 0.729
BETO - Mean 0.916 0.824 0.728 0.728 0.653 0.713
Ensemble - - - - 0.682 0.744
Codiesp-P Matcher Ranker DaC

MAP F1 MAP F1 MAP F1

BioClinical RoBERTa - Mean 0.941 0.879 0.614 0.584 0.545 0.536
BioMedical RoBERTa - Mean 0.947 0.867 0.617 0.587 0.546 0.531
BETO - Mean 0.936 0.853 0.612 0.587 0.533 0.525
Ensemble - - - - 0.562 0.560
CANTEMIST Matcher Ranker DaC

MAP F1 MAP F1 MAP F1

BioClinical RoBERTa - Mean 0.953 0.900 0.821 0.711 0.788 0.706
BioMedical RoBERTa - Mean 0.948 0.898 0.819 0.713 0.784 0.708
BETO - Mean 0.915 0.857 0.822 0.712 0.763 0.692
Ensemble - - - - 0.804 0.695

Table 4: Report of metrics for each module and model trained in CodiEsp-D, CodiEsp-P, and CANTEMIST. The F1

scores of both the DaC model and the Ranker use only the first three characters of the code as the label in Codiesp-D
and the first four characters of the code in Codiesp-P. We used only the first characters following the procedures of
evaluating the models created by the competition. The bolded results indicate the best metric score for each module,
and the underline marks the worst performance.

the F1 metric.

7 Conclusions and Future Work

This paper proposes a novel model for clinical
coding in Spanish, outperforming previous results
in two datasets; CodiEsp-D and CodiEsp-P. Our
method uses a Divide and Conquer approach that
creates semantic groups of codes to build an archi-
tecture composed of two specialized modules: the
Matcher and the Ranker.

The clinical coding task is separated into two
simpler tasks solved with the modules mentioned
above. First, the Matcher predicts the clusters of
each document, and then the Ranker predicts the
codes of each document given a cluster. This divi-

sion allows us to use state-of-the-art transformers
to solve the task of cluster prediction and permits a
fine-grained differentiation between similar codes
in a cluster using XGBoost.

Although our base model achieves better results
than previous ensemble-based models, we included
the results of an ensemble strategy to perform a fair
comparison with previous work. Our experimental
results demonstrate that ensembling models yield
better results than our base model. Furthermore,
our DaC approach allows us to identify where fu-
ture research can have a greater impact on improv-
ing accuracy. The results of each module indicate
that there is more potential for improvement focus-
ing on the Ranker module.

Future directions include implementing and test-
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ing the Divide and Conquer model on other multi-
label text classification corpora. First, we expect
to test the DaC architecture on clinical corpora in
other languages, including languages with more
resources, such as English. Second, we expect to
test the architecture on other extreme multi-label
classification corpora. This poses a challenge since
the number of labels we have processed thus far,
although very vast, falls into the category of small
extreme multi-label classification datasets (Bhatia
et al., 2016). We expect to encounter issues with
the training time required to process other large cor-
pora, forcing us to modify the library to optimize
the speed.

In terms of improving the performance using
this architecture, we identify opportunities to opti-
mize the number of layers that we left fine-tuneable
in the Matcher module, given that we have seen
research that shows that fine-tuning more layers
provides better results (Lee et al., 2019). Also, for
the Ranker, we know that XGBoost can be trained
with a ranking objective function, thus providing
an alternative to the one-vs-rest approach. Imple-
menting the Ranker using this approach would be
faster to train and may provide similar or better
results. In addition, we would like to improve data
augmentation techniques by improving NER mod-
els. This can be achieved by using contextualized
embeddings at the character level, which has been
shown to improve the performance of models on
various NLP tasks (Rojas et al., 2022a,b).

Finally, the DaC architecture is a black box when
defining which labels to assign for each document.
Recently, explainability features of the different
architectures are gaining more relevance. It is
paramount that the model’s predictions are under-
stood to help the user make appropriate choices
(Duque et al., 2021). We expect to develop explain-
ability to the labels predicted by providing textual
queues of what features the model used to choose
each label. The textual queues that support label
assignment can be provided by the Ranker lever-
aging the explainability features of tree ensembles
(Petkovic et al., 2018), and the textual queues that
support the cluster choice can be obtained using
the attention weights of the transformer model (Liu
et al., 2021).

Limitations

Although our approach achieved excellent results
across all the corpora in this research, they have

clear limitations. The main drawback is that to ap-
ply this approach, it is necessary to have codes that
can be clusterized. In fact, only a thorough catego-
rization of similar codes into groups yields accurate
results. Another major drawback is that the archi-
tecture predicts codes at the document level, thus
having information that is not as complete as an
entity-level prediction.

Finally, one limitation of the Matcher module is
that it has a maximum document size of 512 tokens
since it uses pre-trained transformers, which can
contribute to losing important information on the
cluster prediction process.
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