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Abstract

Aligned word embeddings have become a
popular technique for low-resource natural
language processing. Most existing eval-
uation datasets are generated automatically
from machine translations systems, so they
have many errors and exist only for high-
resource languages. We introduce the Wik-
tionary bilingual lexicon collection, which
provides high-quality human annotated trans-
lations for words in 298 languages to En-
glish. We use these lexicons to train and
evaluate the largest published collection of
aligned word embeddings on 157 different lan-
guages. All of our code and data is pub-
licly available at https://github.com/
mikeizbicki/wiktionary_bli.

1 Introduction

A bilingual lexicon is a mapping of words from a
source language into a target language. The bilin-
gual lexicon induction (BLI) problem is the task of
learning such a mapping from data. Most recent so-
lutions to this problem follow a two step procedure:
First, train word vectors on a large monolingual cor-
pus for each language individually using a standard
algorithm like word2vec (Mikolov et al., 2013a),
GloVe (Pennington et al., 2014), or fastText (Bo-
janowski et al., 2017). Then, learn a transformation
that aligns these two vector spaces into a common
space (e.g. Mikolov et al., 2013b; Xing et al., 2015;
Joulin et al., 2018; Artetxe et al., 2018a; Zhang
et al., 2019; Glavaš et al., 2019; Vulić et al., 2019).
The BLI problem is then solved by performing near-
est neighbor queries in the common space. The
focus of this work is the ground truth bilingual
lexicon used to train and evaluate these models.

Recent previous work has relied on the MUSE
lexicon collection (Conneau et al., 2017). This
collection provides bilingual lexicons between 45
languages and English. This lexicon is generated
from a machine translation system, and so suffers

from a number of problems. First, many of the
mappings in the lexicon do not contain real words
in either the source or target language (see Figure 1
for examples from Thai). Second, the distribution
of words is inconsistent between languages, with
many languages containing only proper nouns in
their training and test sets. Due to these problems,
Kementchedjhieva et al. (2019) suggest that future
research “avoids drawing conclusions from quanti-
tative results on this BLI dataset.” Other datasets
(described in Section 2 below) have even worse
limitations.

This paper introduces a new bilingual lexicon
collection based on Wiktionary. Wiktionary con-
tains more than 7 million words in 8166 languages
and has been collaboratively edited by 3.9 million
users.1 Our specific contributions are:

1. We use Wiktionary to construct high-quality
bilingual lexicons suitable for training and
evaluating BLI models from 298 languages
into English. Most of these languages are
extremely low-resource, and many of them
are extinct. We provide the first BLI datasets
for 253 of these languages, and for the re-
maining 45 we improve the quality of existing
datasets. Our lexicon collection is the first to
allow meaningful cross-lingual performance
comparisons on the BLI task.

2. We train the largest collection of BLI models
to date. Grave et al. (2018) provide pretrained
word vectors in 157 languages, and we train
BLI models between each of these languages
and English. 112 of these languages had not
previously had BLI models trained on them
because no training/evaluation data previously
existed. Of these 112 previously unstudied
languages, we identify 15 as having particu-
larly good performance (Armenian, Austurian,

1https://en.wiktionary.org/wiki/
Wiktionary:Statistics

https://github.com/mikeizbicki/wiktionary_bli
https://github.com/mikeizbicki/wiktionary_bli
https://en.wiktionary.org/wiki/Wiktionary:Statistics
https://en.wiktionary.org/wiki/Wiktionary:Statistics
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Thai “Word” English “Translation”

แคลอรี่ calories
โคมลอย lanterns
univ univ
bdfutbol bdfutbol
efm efm
พล็อต plot
getparent getparent
roca roca
เป๊ะ exactly
annie annie

Figure 1: The last 10 data points for the Thai test files in
the widely used MUSE dataset (Conneau et al., 2017).
These translation pairs were machine generated with-
out any human input, and this results in bad translation
pairs. For example, Thai words should always writ-
ten in the Thai script, but many words are written in
Latin script. Words like getparent do not even cor-
respond to words in any natural language and are an
artifact of JavaScript code incorrectly included in the
original source material. Our Wiktionary dataset con-
tains only high-quality human verified translations and
so does not have these problems.

Azerbaijani, Basque, Belarusian, Esperanto,
Galician, Georgian, Malayalam, Norwegian
Nynorsk, Serbian, Serbo-Croatian, and Welsh)
and thus potentially suitable for downstream
cross-lingual tasks.

The remainder of this paper is organized as fol-
lows. Section 2 discusses related work. Section
3 describes the lexicon construction procedures.
Section 4 experimentally demonstrates that the re-
sulting lexicons are of high quality, and trains the
new models.

2 Related Work

Applications. Aligned word embeddings have
many applications. They are an important com-
ponent in many document-level translation systems
of low-resource languages (Di Gangi and Federico,
2017; Neishi et al., 2017; Artetxe et al., 2017b,
2018b; Qi et al., 2018; Ding and Duh, 2018; Kim
et al., 2018; Xia et al., 2019; Font and Costa-Jussa,
2019; Chen and Basirat, 2020). They are also used
on non-translation tasks like cross-lingual morpho-
logical segmentation (Chimalamarri et al., 2020),
dependency parsing (Ahmad et al., 2018), infor-
mation retrieval (Vulić and Moens, 2015), and
document classification (Klementiev et al., 2012;
Mogadala and Rettinger, 2016). Our Wiktionary
dataset allows better aligned word embeddings to
be trained on more languages, allowing all of these

“downstream tasks” to be extended into these other
languages as well.

Wiktionary. Wiktionary is a valuable resource and
widely used by the NLP community. A google
scholar search for “Wiktionary” produces 21 000
results on diverse tasks such as synonym detection
(Navarro et al., 2009), idiom extraction (Muzny and
Zettlemoyer, 2013), and word sense disambigua-
tion (Ben Aouicha et al., 2018). The prior works
most closely related to our own are general purpose
information extractors (e.g. Acs, 2014; Sérasset,
2015; Nastase and Strapparava, 2015; Kirov et al.,
2016; Sajous et al., 2020; Wu and Yarowsky, 2020).
Although these extractors can be used to extract
translation information, they have not been used
explicitly for the purpose of generating datasets for
machine translation problems like the BLI prob-
lem.

Alternative Datasets. Many datasets have been
proposed for the training and evaluation of word
vectors. Prior to the MUSE lexicons (Conneau
et al., 2017), papers studying BLI all used their
own ad-hoc datasets. For example: Mikolov et al.
(2013b) introduce Spanish-English and Czech-
English lexicons; Dinu and Baroni (2014) intro-
duce an Italian-English lexicon; Artetxe et al.
(2017a) introduce German-English and Finish-
English lexicons; and Zhang et al. (2017) intro-
duce Spanish-English and Chinese-English lexi-
cons. Since the introduction of MUSE, Glavaš et al.
(2019) followed a similar procedure to create an
additional 28 bilingual lexicons for high-resource
non-English language pairs. Using a machine trans-
lation system makes it impossible to create lexicons
for low-resource languages without introducing se-
rious mistakes as seen in Figure 1. Furthermore,
inter-language comparisons should not be done be-
cause the topics covered by the languages’ test sets
vary considerably (Kementchedjhieva et al., 2019).
Our Wiktionary dataset fixes all of these problems.

3 Dataset Overview

In this section, We first describe the data extraction
process, then we describe how we split the data
into training and test sets. Both steps use language-
agnostic approaches. Our goal is to make the data
for each language as similar as possible so that
cross-lingual evaluations can be made in a fair and
consistent manner.
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Category Small Full

Adjective 50 350
Adverb 25 150
Conjunction – 25
Determiner – 25
Interjection – 25
Noun 125 500
Number – 50
Pronoun – 25
Proper noun – 50
Verb 50 300

Total 250 1500

Table 1: The number of source words of each part of
speech for the small and full test sets.

3.1 Data Extraction

Users enter all their data into Wiktionary using the
MediaWiki Markdown language. This language is
designed primarily for human editors, but contains
sufficient semantic annotations to enable machine
parsing of entries. We extract all words, also stor-
ing the associated language, part of speech, and
English-language definition.

Table 2 summarizes the total number of words
extracted for selected languages, including a break-
down by part of speech. Many of the languages for
which we provide BLI data are now extinct. For
example, Ancient Greek has 11381 data points, Old
English has 7362, and Tocharian B has 1807.

3.2 Train/Test Splits

In order to train BLI models, we need to split the
data extracted above into training and testing sets
for each language. We follow the precedent of the
MUSE dataset and have the “full test set” contain
1500 words. To facilitate comparison between low
resource languages for which it will be difficult
to find 1500 meaningful words, we also create a
“small test set”, which is a subset of the full test set
containing 250 words.

We take particular care to construct these test
sets so that fair comparisons can be made between
languages. In particular, we use the part of speech
information extracted from Wiktionary to ensure
that each test set has the same number of words
in each part of speech. Table 1 shows the number
of words. The small test set includes only the “se-
mantic” parts of speech (Adjective, Adverb, Noun,
Verb) and not the “syntactic” parts of speech be-
cause many low-resource languages lack entries
for the syntactic parts of speech and we believe
the semantic parts of speech to be more intuitively

meaningful.
To populate the small test set, we select the most

frequent words from each category. A sampling
strategy could result in a harder test set for lan-
guages with more words to choose from because
they might select less-frequently used words. The
remaining words in the large test set are sampled
uniformly from the 10 000 most common words
for each category. In practice, this allows ranked as
high as 20 000 to be included in the test set. This
choice makes the Wiktionary test sets significantly
harder than the MUSE test sets, which use the 5000-
6500 most frequent words regardless of their part
of speech.

Finally, we note that not all languages will be
able to fully construct test sets according to the
procedures above. For example, the Finish lexicon
is large (76 375 words), but it only has 17 deter-
miners, and so the final full test set cannot contain
1500 words. This is not due to a defect of the
Wiktionary dataset in this language, but just due to
the fact that Finish naturally has fewer determiners
than other languages. We do not resolve this con-
flict by adding more words of a different part of
speech to the test set, as this would distort the pro-
portions of each part of speech, making the results
less comparable. Instead, we simply use a smaller
test set. Most languages have a truncated test set
due to this effect. Table 3 shows the number of lan-
guages with different size test sets. We suggest that
meaningful inter-lingual comparisons can be made
with models evaluated on 80% of a complete small
test set, and so there are 298 languages that can be
evaluated using our Wiktionary dataset. Of course
many of these languages will have essentially no
training data available, and so these languages rep-
resent an extreme test-case for unsupervised vector
alignment algorithms.

4 Experiments

We perform three experiments. The first experi-
ment measures the importance of the size of the
BLI training dataset on model performance. The
second experiment compares the quality of the
MUSE and Wiktionary lexicons. The final exper-
iment trains BLI models on 112 new, previously
unstudied languages.

For all experiments, we align the common crawl
vectors provided by Grave et al. (2018) to the
English-language vectors trained on the common
crawl provided by Mikolov et al. (2018). We use
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Parts of Speech

Rank Language Total Adj Adv Conj Det Interj Noun Num Pron PN Verb

1 Italian 82 948 22 045 3 799 91 49 123 45 264 108 118 2 809 8 542
2 Finnish 76 375 11 832 3 843 48 17 298 46 631 145 123 1 381 12 057
3 Chinese 75 750 7 142 1 813 192 18 199 43 472 111 387 9 892 12 524
4 Spanish 69 086 17 827 2 605 37 54 201 39 353 53 93 2 488 6 375
5 French 60 692 15 613 2 857 26 25 183 33 444 94 100 2 492 5 858
6 Romanian 54 068 11 873 545 25 38 118 29 537 44 89 7 310 4 489
7 Japanese 47 965 3 052 1 029 94 0 231 32 936 67 225 3 330 7 001
8 German 47 128 11 385 1 071 60 37 141 25 004 242 96 3 116 5 976
9 Serbo-Croatian 47 040 8 793 3 606 92 3 106 24 579 84 231 1 524 8 022

10 Portuguese 41 621 9 428 1 458 33 6 213 22 579 55 75 3 592 4 182
11 Polish 40 096 7 427 1 855 81 0 181 20 939 123 97 1 106 8 287
12 Russian 38 799 7 258 1 467 45 13 215 18 876 52 93 1 680 9 100
13 Dutch 34 716 4 952 792 49 59 161 16 415 105 110 7 539 4 534
14 Macedonian 30 149 7 356 2 681 30 26 91 13 382 53 69 578 5 883
15 Czech 26 958 6 557 702 65 0 133 14 972 45 83 849 3 552
16 Latin 23 155 6 545 1 112 58 19 47 10 074 97 56 2 004 3 143
17 Korean 22 796 790 511 2 97 89 17 814 161 89 1 276 1 967
18 Catalan 22 024 4 528 965 14 19 48 12 266 104 81 1 033 2 966
19 Hungarian 21 660 4 735 967 69 27 143 11 605 215 138 677 3 084
20 Swedish 18 933 3 543 1 002 45 13 88 10 461 145 111 781 2 744

...
101 Zulu 2 208 24 35 15 1 9 1 346 0 42 3 733
102 Volapük 2 194 198 72 20 18 8 1 454 42 48 119 215
103 Basque 2 168 210 59 14 9 18 1 487 31 36 114 190
104 Yoruba 2 165 62 33 10 13 11 1 503 73 38 170 252
105 Westrobothnian 2 107 410 111 15 5 9 879 10 26 5 637
106 Northern Kurdish 2 079 255 42 8 0 5 1 536 21 17 58 137
107 Cimbrian 2 020 199 106 24 13 9 1 095 49 67 23 435
108 Interlingua 2 017 430 60 8 19 7 1 072 24 29 67 301
109 Old Irish 2 013 322 33 33 18 3 1 033 22 42 57 450
110 Egyptian 2 001 67 34 1 25 12 991 21 74 110 666

...
201 Laz 688 20 4 0 0 3 641 7 1 9 3
202 Chechen 686 74 14 3 0 0 498 25 6 17 49
203 Karelian 683 69 13 0 9 0 484 16 29 14 49
204 Tuvan 683 109 27 8 6 4 363 20 27 7 112
205 Low German 683 82 20 8 1 2 487 22 12 10 39
206 Romagnol 683 102 13 3 2 1 415 12 6 12 117
207 Piedmontese 674 118 2 0 0 1 389 28 11 9 116
208 Kavalan 669 63 7 1 0 1 568 11 14 0 4
209 Maquiritari 654 0 72 0 0 3 347 7 27 6 192
210 Zazaki 648 51 15 6 0 3 463 27 21 19 43

...
501 Khaling 127 2 9 1 0 0 76 0 19 1 19
502 Muong 127 17 2 0 0 0 77 11 4 0 16
503 Western Lawa 126 11 1 0 0 1 77 2 1 0 33
504 Picard 126 6 3 0 1 0 77 0 5 3 31
505 Old Marathi 125 17 5 0 0 0 88 0 0 2 13
506 Pohnpeian 125 17 1 1 4 3 70 1 1 1 26
507 Saaroa 123 1 0 0 0 0 121 1 0 0 0
508 Jingpho 121 6 1 0 0 0 81 9 2 0 22
509 Sierra Miwok 120 6 8 1 3 0 88 0 0 0 14
510 Khorezmian Turkic 120 1 1 0 0 0 1 0 0 0 117

...

Table 2: Number of words in the Wiktionary Dataset broken down by their part of speech. Nouns form the bulk
every language’s vocabulary. The column abbreviations are Adj: Adjective, Adv: Adverb, Conj: Conjunction, Det:
Determiner, Interj: Interjection, Num: Number, Pron: Pronoun, PN: Proper Noun.
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Percent Small Full

100 164 8
90 236 81
80 298 104
70 356 124
60 412 153
50 478 185

Table 3: The “Small” and “Large” columns indicate the
number of languages whose completed test set is “Per-
cent” the size that it is supposed to be. For example,
only 8 languages can construct a proper full test set
with 1500 source words, but 104 languages can con-
struct a full test set with (80%)(1500) = 1120 words.
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Figure 2: BLI accuracy as a function of dataset size.

the iterative normalization preprocessing procedure
(Zhang et al., 2019) to transform both the source
and target language vectors before learning. This
is different than the most common evaluation setup
in the literature, which aligns vectors trained on
wikipedia provided by Bojanowski et al. (2017).
We use this non-standard setting because our pre-
liminary tests (not shown) found it to give signifi-
cantly better results for the low-resource languages
that we study in Section 4.3 and equivalent results
for the high-resource languages.

4.1 Training Dictionary Size

The goal of this experiment is to measure the ef-
fect of training dataset size on the performance of
supervised BLI models. There are two reasons for
performing this experiment. The first is computa-

tional. The runtime and memory usage of most
BLI training algorithms is proportional to the in-
put training set size. So for languages with large
training sets, we want to learn at what size should
we truncate the dataset in order to speed up train-
ing without sacrificing performance. The second
reason is statistical. The size of the training sets
we extracted from Wiktionary follow a power law
distribution, with a small number of high-resource
languages having many translations, but most lan-
guages having few translations. We want to under-
stand how having a small training set will effect
the BLI performance of these datasets.

To perform the experiment, we construct modi-
fied training sets by taking the first n samples from
the Wiktionary training set, where n ranges from
0 to 100 000. For each truncated training set, we
train the supervised VecMap model (Artetxe et al.,
2018a), and evaluate on both the small and full test
sets. Results are shown in Figure 2 for the Spanish-
English and Chinese-English language pairs. In
both cases, BLI accuracy rapidly increases as the
number of training samples reaches 5k, and then
tapers off. After 20k training points, there is min-
imal improvement and the performance occasion-
ally decreases due to statistical randomness.2 This
is consistent with previous findings on the effect of
training dataset size using the MUSE dataset (Vulić
and Korhonen, 2016; Qiu et al., 2018; Glavaš et al.,
2019).

In the experiments below, we will train many
models. For computational reasons, we truncate
the training set size to 20k and expect not to lose
any accuracy. We also know that if we observe
extremely poor BLI performance in an experiment
with at least (about) 5k entries in the BLI train-
ing set, then the poor performance is likely not
explained by the size of the BLI training set but by
some other cause.

4.2 MUSE Corpus vs Wiktionary Corpus

Our next experiment attempts to measure the qual-
ity of the MUSE and Wiktionary datasets for the 45
language pairs supported by both datasets. The first
three columns of Table 4 show summary statistics
of both datasets (details are provided in the table
caption). The fourth column is the most interesting,
and is the focus of our explanation here.

We train the VecMap (Artetxe et al., 2018a) BLI

2Other language pairs are not shown for space reasons, but
all had similar results.
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model on each language pair, once on the MUSE
dataset and once on the Wiktionary dataset. Then
for both models, we evaluate on the Wiktionary
dataset. The results are shown in the rightmost
column of Table 4. Surprisingly, the MUSE train-
ing set outperforms the Wiktionary training set for
22/45 of the languages despite coming from a seem-
ingly different distribution. This suggests that de-
spite the high quality nature of the Wiktionary test
set data, it is not complete, and more data from
more data sources could still be used to improve
the alignment of vector spaces.

We hypothesize two reasons to explain this ef-
fect. First, the effect only happens when the MUSE
training set is much larger than the Wiktionary
training set. For example, in the case of Slovak, the
MUSE training set has 36 891 data points and the
Wiktionary set has only 5 396. The experiments
in Section 4.1 above suggest that our Wiktionary
dataset’s size of about 5k words is large enough to
get meaningful results, but that a larger dictionary
would still improve performance. Second, Wik-
tionary is naturally biased towards containing the
"dictionary" (i.e. unconjugated) forms of words.
Slovak is a fusional language with many inflected
forms for each word, and this helps explain the
smaller size of the wiktionary dataset.

4.3 The Grave et al. (2018) Languages

Grave et al. (2018) released word vectors in 157
languages trained on the common crawl corpus (a
multi-petabyte collection of webpages). All 45 of
the languages in the MUSE corpus studied above
appear in the Grave et al. (2018) corpus; so in
this section we focus on the 112 languages that do
not. As far as we are aware, no one has previously
attempted to align these embeddings, and there
are no previously published datasets of bilingual
lexicons suitable for training or evaluation. The
Wiktionary corpus is therefore the first publicly
available dataset for training and testing alignment
models in these languages. The size of each lan-
guage’s dataset and the accuracy for each model on
the small and full test set are shown in Table 5.

We train 3 alignment models on each lan-
guage: the Procrustes (Xing et al., 2015) and Boot-
strap Procrustes (Glavaš et al., 2019; Vulić et al.,
2019) as implemented by the MUSE project, and
VecMap (Artetxe et al., 2018a). There are many
other supervised methods and unsupervised meth-
ods that would be interesting to train on these

datasets, but we did not have the computational
resources to do so. Thirteen languages achieve
an accuracy on the full test set greater than 30:
Esperanto (50.00), Galician (46.62), Armenian
(39.15), Azerbaijani (37.38), Georgian (37.30),
Austurian (36.92), Basque (36.32), Belarusian
(35.75), Welsh (34.84), Malayalam (33.62), Serbo-
Croatian (33.17), Norwegian Nynorsk (32.35), and
Serbian (30.76). An additional 2 languages achieve
an accuracy on the small test set greater than 30:
Urdu (37.08) and Mongolian (31.38). We call out
the 30% threshold in particular because these lan-
guages achieve competitive performance with the
languages from the widely used MUSE test set
(Table 4), and therefore are good candidates for
downstream applications. Because of the careful
construction of the test set, as described in Section
3.2 above, it is reasonable to compare the abso-
lute performance between languages. Such com-
parisons were not recommended for the MUSE
dataset (Kementchedjhieva et al., 2019) due to the
high variability in quality and content between lan-
guages.

We observe that the higher-resource languages
(top of table) tend to have better BLI performance
than the lower resource languages (bottom of ta-
ble). We suggest that this difference is not due to
a lower quality of the Wiktionary lexicons, but to
the lower quality of the Grave et al. (2018) word
vectors trained on smaller datasets. We note that
in our dictionary size experiment from Section 4.1
above, training lexicons as small as 5k examples
give strong performance when the monolingual
word vectors are high quality. In Table 5, however,
we see performance drop off long before this 5k
mark. This is particularly notable in the Latin and
Sanskrit languages. Both languages have a large
Wiktionary dataset (41 278 and 11 363), but poor
BLI performance (13.03 and 2.98 on the full test
set). We attribute this to the fact that these lan-
guages are of particular interest to the Wiktionary
community for their historical importance, and thus
have a lot of entries; but their historical nature also
means there are few webpages written in these lan-
guages, and so the word vectors trained on the
common crawl corpus will be of low quality. Word
vectors trained on small corpuses are known to be
less stable (Pierrejean and Tanguy, 2018; Wend-
landt et al., 2018; Leszczynski et al., 2020; Burdick
et al., 2021) and therefore difficult to align even
with large BLI training data (Vulić et al., 2020).
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Full Vocab Size Fraction Distinct Distinct Vocab Size BLI Accuracy

Source Language MUSE Wikt MUSE Wikt MUSE Wikt MUSE Wikt

af Afrikaans 37 421 4 848 0.30 0.95 11 226 4 605 42.13 35.08
ar Arabic 31 355 26 361 1.00 1.00 31 355 26 361 31.94 30.35
bg Bulgarian 55 170 13 827 1.00 1.00 55 170 13 827 48.91 52.84
bn Bengali 23 829 5 712 1.00 1.00 23 829 5 712 28.34 26.68
bs Bosnian 43 318 73 449 0.38 0.99 16 460 72 714 35.95 29.49
ca Catalan 78 081 116 348 0.30 0.99 23 424 115 184 49.79 49.53
cs Czech 64 211 35 879 0.55 0.98 35 316 35 161 47.78 49.67
da Danish 81 959 16 680 0.46 0.94 37 701 15 679 49.79 53.56
de German 101 997 68 029 0.52 0.94 53 038 63 947 47.46 48.88
el Greek 45 515 32 519 1.00 1.00 45 515 32 519 53.02 55.45
es Spanish 112 583 91 066 0.45 0.95 50 662 86 512 54.40 54.67
et Estonian 32 776 6 901 0.64 0.98 20 976 6 762 50.04 48.07
fa Persian 41 321 14 238 1.00 1.00 41 321 14 238 37.39 39.40
fi Finnish 43 102 105 030 0.62 0.99 26 723 103 979 43.90 43.11
fr French 113 324 78 837 0.35 0.90 39 663 70 953 53.92 53.57
he Hebrew 45 679 12 234 1.00 1.00 45 679 12 234 33.47 35.32
hi Hindi 31 046 21 887 1.00 1.00 31 046 21 887 33.99 38.28
hr Croatian 56 424 73 449 0.49 0.99 27 647 72 714 47.57 45.21
hu Hungarian 42 823 34 569 0.62 0.99 26 550 34 223 45.48 49.29
id Indonesian 96 518 12 269 0.30 0.97 28 955 11 900 35.20 40.15
it Italian 103 613 119 697 0.40 0.98 41 445 117 303 46.43 45.47
ja Japanese 25 969 73 669 1.00 1.00 25 969 73 669 24.96 24.96
ko Korean 20 549 34 739 1.00 1.00 20 549 34 739 23.84 31.64
lt Lithuanian 33 435 6 270 0.55 1.00 18 389 6 270 51.22 49.86
lv Latvian 46 385 14 428 0.72 1.00 33 397 14 428 50.11 52.12
mk Macedonian 43 935 41 054 1.00 1.00 43 935 41 054 37.97 40.23
ms Malay 73 092 5 821 0.23 0.97 16 811 5 646 27.60 28.56
nl Dutch 93 853 67 309 0.38 0.97 35 664 65 289 39.78 36.57
no Norwegian Bokmål 75 171 21 386 0.37 0.95 27 813 20 316 54.24 43.96
pl Polish 73 901 66 225 0.48 0.98 35 472 64 900 44.18 41.11
pt Portuguese 108 686 55 927 0.42 0.95 45 648 53 130 58.42 58.68
ro Romanian 80 821 65 122 0.39 0.93 31 520 60 563 48.96 48.58
ru Russian 48 714 70 740 1.00 1.00 48 714 70 740 46.99 39.86
sk Slovak 65 878 5 681 0.56 0.95 36 891 5 396 54.29 53.27
sl Slovene 62 890 4 401 0.53 0.99 33 331 4 356 49.40 40.86
sq Albanian 52 090 8 628 0.53 1.00 27 607 8 628 36.97 33.47
sv Swedish 82 348 27 724 0.42 0.95 34 586 26 337 49.12 52.82
ta Tamil 21 230 8 376 1.00 1.00 21 230 8 376 29.11 21.20
th Thai 25 332 19 988 0.38 1.00 9 626 19 988 19.70 23.33
tl Tagalog 34 984 17 817 0.28 0.98 9 795 17 460 28.24 30.14
tr Turkish 68 611 15 271 0.42 0.98 28 816 14 965 34.51 40.49
uk Ukrainian 40 723 16 910 1.00 1.00 40 723 16 910 59.10 59.18
vi Vietnamese 76 364 9 708 0.08 1.00 6 109 9 708 11.34 12.34
zh Chinese 21 597 119 459 1.00 1.00 21 597 119 459 24.66 27.78

Total Best 35 10 14 45 24 21 22 23

Table 4: A comparison of the MUSE and Wiktionary datasets. The “Full Vocab Size” measures the total number
of source/target word pairs in each dataset. Recall, however, that the MUSE dataset is machine translated, and
has many artifacts from this process. One such artifact is the presence of many duplicate entries where the source
and target words are the same, and frequently not valid words in either language (See Figure 1 for examples in
Thai). The “Fraction Distinct” column measures the fraction of source/target word pairs where the source value
does not equal the target. This number is extremely low for many of the MUSE lexicons (e.g. 0.38 for Thai
and 0.08 for Vietnamese) due to the machine translation generation process. This number is high for all of the
Wiktionary lexicons because they are sourced from high quality human generated translations. All of the duplicate
entries are the result of true cognate words between the source language and English. The “Distinct Vocab Size”
column computes the total number of distinct source/target pairs in each lexicon, and is equal to the Full Vocab
Size column times the Fraction Distinct column. We see that many of the MUSE lexicons are still larger than the
Wiktionary lexicons because they allow conjugates of words to appear in a lexicon multiple times, but this does
not happen in the Wiktionary lexicon. Finally the “BLI Accuracy” column presents the result of a MUSE-trained
model and a Wiktionary trained model on the Wiktionary test set. See Section 4.2 for details.
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Small Test Set Full Test Set

Rank Source Language Vocab Size Proc Proc-B VecMap Proc Proc-B VecMap

1 sr Serbian 73 449 28.51 47.79 42.57 19.43 30.76 29.27
2 sh Serbo-Croatian 73 449 42.34 52.42 46.37 28.64 33.17 31.78
3 la Latin 41 278 14.11 14.11 21.37 9.65 9.65 13.03
4 ga Irish 26 579 24.79 24.79 29.75 16.20 16.20 18.81
5 hy Armenian 22 748 50.00 52.02 50.40 37.91 38.10 39.15
6 nn Norwegian Nynorsk 19 881 26.53 26.53 28.98 30.17 30.17 33.25
7 is Icelandic 19 570 32.52 36.59 39.43 29.82 29.91 34.59
8 gl Galician 19 155 47.77 52.63 51.82 45.06 45.32 46.62
9 ka Georgian 18 898 36.71 36.71 42.19 34.14 34.14 37.30

10 eo Esperanto 18 534 49.36 49.36 54.94 47.14 47.14 50.00
11 te Telugu 13 289 14.11 14.11 15.77 13.81 13.81 16.19
12 gd Scottish Gaelic 12 443 9.80 9.80 11.84 8.32 8.32 8.53
13 km Khmer 11 378 21.54 26.42 22.76 16.28 17.56 18.50
14 sa Sanskrit 11 363 4.08 4.08 1.22 2.98 2.98 1.56
15 kk Kazakh 11 323 26.67 26.67 23.33 27.11 27.11 27.20
16 ceb Cebuano 10 853 5.88 5.88 5.88 8.22 8.22 3.88
17 az Azerbaijani 10 713 37.65 39.27 38.46 36.09 37.38 37.12
18 azb Southern Azerbaijani 10 713 2.10 2.10 1.40 2.91 2.91 1.82
19 cy Welsh 10 459 40.57 46.31 44.26 30.98 34.34 34.84
20 io Ido 8 127 14.00 14.00 14.00 12.30 12.30 12.75
21 gv Manx 8 105 5.93 5.93 3.39 6.39 6.39 3.27
22 mt Maltese 8 089 0.00 0.00 0.00 0.00 0.00 0.00
23 ml Malayalam 7 465 27.78 28.63 30.34 29.60 32.47 33.62
24 lb Luxembourgish 7 438 4.88 8.54 5.69 10.89 11.99 6.13
25 sw Swahili 7 324 12.45 12.86 15.35 15.94 18.01 17.49
26 ur Urdu 7 013 26.25 37.08 26.25 23.64 29.73 24.81
27 yi Yiddish 6 869 4.86 4.86 5.26 7.79 7.79 9.79
28 my Burmese 5 902 13.52 16.80 13.11 13.77 15.90 15.26
29 ast Asturian 5 645 27.98 30.86 33.33 30.12 33.65 36.92
30 bcl Bikol Central 5 069 6.22 6.22 4.98 5.16 5.16 3.53
31 be Belarusian 4 598 27.92 30.00 27.92 32.81 35.75 33.92
32 mn Mongolian 4 470 21.34 31.38 19.67 21.10 27.97 19.14
33 as Assamese 4 341 1.28 1.28 1.70 4.49 4.49 4.72
34 oc Occitan 4 317 16.96 18.70 20.87 20.26 22.23 22.23
35 gu Gujarati 4 068 10.78 18.53 10.34 10.85 16.81 12.51
36 ba Bashkir 4 053 7.00 7.00 9.47 9.03 9.03 9.54
37 sco Scots 3 734 9.09 9.09 3.54 10.82 10.82 8.19
38 mg Malagasy 3 634 5.26 5.26 4.78 4.05 4.05 3.64
39 vec Venetian 3 570 3.24 3.24 2.43 3.94 3.94 3.48
40 yo Yoruba 3 536 1.34 1.34 0.00 0.87 0.87 0.00
41 bo Tibetan 3 438 1.02 1.02 0.00 1.48 1.48 0.00
42 sah Yakut 3 265 2.87 2.87 0.82 4.00 4.00 2.83
43 qu Quechua 3 190 4.13 4.13 0.00 3.60 3.60 0.00
44 eu Basque 3 117 20.89 38.67 23.56 25.42 36.32 23.48
45 mr Marathi 3 016 11.02 22.88 13.98 13.73 19.82 12.85
46 pnb Western Punjabi 2 692 0.00 0.52 0.00 0.00 0.37 0.00
47 pa Punjabi 2 692 4.66 4.66 2.54 5.35 5.35 3.36
48 vo Volapük 2 673 2.98 2.98 0.85 3.92 3.92 2.04
49 ku Northern Kurdish 2 658 2.87 1.64 2.87 5.52 5.79 3.77
50 rm Romansch 2 479 2.03 2.03 1.22 5.64 5.64 4.05
51 ia Interlingua 2 397 7.29 10.12 4.45 8.25 9.68 5.22
52 ne Nepali 2 185 7.88 10.37 2.07 10.11 10.51 4.65
53 fy West Frisian 2 137 7.50 10.83 4.17 10.48 14.06 5.41
54 scn Sicilian 2 050 2.86 2.86 1.63 5.41 5.41 2.85
55 ug Uyghur 1 919 1.72 1.72 0.00 3.78 3.78 0.15
56 als Alemannic German 1 888 0.50 0.50 0.00 2.64 2.64 0.00
57 uz Uzbek 1 845 8.06 8.06 7.11 12.64 12.64 8.58
58 kn Kannada 1 837 6.19 20.00 8.10 9.12 21.40 7.19
59 tg Tajik 1 725 11.79 18.34 14.69 16.25 0.00 0.00
60 jv Javanese 1 641 0.00 0.00 0.00 0.00 0.00 0.00

Table 5: Results of the experiment described in Section 4.3. Displayed are results on the languages with the 60
largest lexicons from the Grave et al. (2018) corpus that are not also included in the MUSE corpus.
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