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Abstract

When mapping a natural language instruction
to a sequence of actions, it is often useful to
identify sub-tasks in the instruction. Such sub-
task segmentation, however, is not necessarily
provided in the training data. We present the
A2LCTC (Action-to-Language Connectionist
Temporal Classification) algorithm to automat-
ically discover a sub-task segmentation of an
action sequence. A2LCTC does not require
annotations of correct sub-task segments and
learns to find them from pairs of instruction and
action sequence in a weakly-supervised man-
ner. We experiment with the ALFRED dataset
and show that A2LCTC accurately finds the
sub-task structures. With the discovered sub-
tasks segments, we also train agents that work
on the downstream task and empirically show
that our algorithm improves the performance.

1 Introduction

Building computational agents that execute actions
given natural language instruction has a great deal
of potential in real-world applications. One com-
mon approach is to cast the problem as mapping
from instruction text into action sequence, and
train an agent with supervised learning (Chen and
Mooney, 2011; Mei et al., 2016). A challenge
on effective machine learning stems from a long
horizon of the tasks. Typical navigation tasks of-
ten involve more than a paragraph of instructions
(Chen and Mooney, 2011; Misra et al., 2017; Shrid-
har et al., 2020). In such cases, many existing
approaches exploit the task hierarchy, e.g., decom-
pose one episode of the task into sub-tasks and
treat them as separate training instances (Mei et al.,
2016), incorporate the hierarchical information into
the model (Zhu et al., 2020), or aid the learning
process with progress monitoring (Ma et al., 2019).

However, annotations for such a decomposition
are not necessarily available in training data. In
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Figure 1: Example illustrating a mapping from each
action to a corresponding fine-grained instruction

this case, previous work has attempted to perform
sub-task segmentation by augmenting data through
crowdsourcing (Hong et al., 2020), or developing a
heuristic algorithm (Zhu et al., 2020).

In this paper, we present A2LCTC (Action-to-
Language Connectionist Temporal Classification),
an unsupervised algorithm that automatically dis-
covers a sub-task segmentation of an action se-
quence. Given pairs of a natural language instruc-
tion and action sequence, A2LCTC maps each ac-
tion to a fine-grained instruction (Figure 1).

We formulate the problem of sub-task segmen-
tation as classification of each action into a fine-
grained instruction. Inspired by the connection-
ist temporal classification algorithm (Graves et al.,
2006), we consider an objective function that max-
imizes the log-likelihood of the coarsely aligned
data. This formulation allows us to learn the clas-
sification in a weakly-supervised manner without
any need of the ground truth mapping.

We experiment with the ALFRED dataset which
involves navigating a robot to perform household
task (Shridhar et al., 2020). A2LCTC successfully
discovers the sub-task information in the unseg-
mented training data (§3), which are shown to be
useful for the downstream task (§4).
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2 Learning Sub-task Segmentation

Given a training instance of a navigation task
which consists of language instruction X and ac-
tion sequence A = [aq,...,ar|, we aim at find-
ing a decomposition of the instance (X, A) =
[(X1,41),...,(X,Ar)], which is semantically
plausible and useful for learning the task.

Our approach starts with dividing the instruction
into fine-grained segments. In the experiment, the
segment X; corresponds to a verbal phrase (e.g.,
“go to the desk”) extracted from the instruction us-
ing a simple rule-based algorithm (Appendix A.1).

2.1 Formulating the Task as Temporal
Classification

We formulate the decomposition task as classi-
fication of actions into one of the fine-grained
instructions: our algorithm predicts a mapping
7 = [m1, ..., 7] where my € [1, L].

We assume that the alignment is monotonic, i.e.,
the actions and instructions are both arranged in a
chronological order, which typically holds for step-
by-step instruction text!. This formulation allows
us to develop an unsupervised learning method
to effectively solve the task without ground-truth
label mappings. We introduce A2LCTC (Action-to-
Language Connectionist Temporal Classification),
which is based on the CTC algorithm originally
used for speech recognition (Graves et al., 2006) or
action labeling in video (Huang et al., 2016).

Our model attempts to maximize the following
likelihood for each training instance:

>, PxIX, A (1)

{m|B(7)=[1,2,..,L]}

where B is the operator to remove repeated labels,
e.g.,, B([1,1,2,2,2,3]) = [1,2,3]. That is, the
objective is the sum of the probabilities over all
the possible assignments under the monotonic con-
straint. Under the conditional independence as-
sumption, we further decompose the likelihood
into P(r| X, A) = [} P(m|X, A).

With this decomposition, we employ the forward
algorithm (Stratonovich, 1965) to efficiently calcu-
late the sum over all possible paths.

'In case that the monotonic assumption does not hold,
we could reorder instructions with some sentence-ordering
algorithm such as (Ghosal et al., 2021) as preprocessing.

2.2 Modeling with Neural Network

We model the probability computation using neural
networks. In our approach, each fine-grained in-
struction and action are represented as feature vec-
tors. We then define the probability P(m| X, A) as
the softmax of the dot product of the feature vectors
of the action a; and the instruction [x1, ..., zL]:

exp(a¢ - ;)
2521 exp(a; - x;)

In our implementation, a fine-grained instruction
X is tokenized into words and x; is computed as
the average of the word embeddings followed by
a linear layer. The action feature vectors are com-
puted by feeding action embeddings [a1, ..., @]
into a one-layer bidirectional LSTM (Hochreiter
and Schmidhuber, 1997) to capture the semantics
of actions in the context.

At inference time, the model induces the best
mapping 7 that maximize P(7w|X,A) with the
viterbi algorithm to form decomposed instances
(Xi, Ai).

P(m =i X, A) = )

2.3 Stabilization of Unsupervised Learning

Optimizing the aforementioned objective function
with neural networks turns out to be highly unsta-
ble. Therefore, we further employ the following
techniques to better guide the training process.
Length-based curriculum learning. The training
objective (1) is defined as the sum of the proba-
bilities over all possible assignments, whose size
grows at the speed of O(L”). When L and T are
large, too many degenerated assignments take up
a large part of the probability mass, which hinders
the training especially at the beginning of training.
To address this problem, we adopt the curricu-
lum learning framework (Bengio et al., 2009). At
the beginning of training, we restrict the train-
ing instances with a shorter action sequence and
gradually expose the model to longer instances
(Spitkovsky et al., 2010). Details are shown in
Appendix A.4.
Initializing with pre-trained word embeddings.
We initialize the word embeddings w with the
Glove embeddings (Pennington et al., 2014) to in-
ject a model with the prior knowledge of words.
Initializing with pre-trained action embeddings.
We also initialize the action embeddings @ with pre-
trained embeddings. We obtain action embeddings
from the action sequences in the training data with
Skip-gram (Mikolov et al., 2013).



3 Experiments

We test A2LCTC with the ALFRED dataset (Shrid-
har et al., 2020) 2, where the agent performs house-
hold tasks in a simulated indoor environment given
English instruction. We choose this dataset because
(1) the data involves relatively long sequence of ac-
tions (over 100); (2) it offers ground-truth sub-task
segmentation data which allows the evaluation of
our algorithm. Although the ALFRED task itself
involves understanding visual inputs, which is cur-
rently beyond the scope of A2LCTC, the action set
defined in the dataset is semantically rich enough
for A2LCTC to solve the segmentation problem.

3.1 Experimental Setups

Training and Evaluation Data. The dataset con-
tains expert demonstrations, which are split into
the training set and two validation sets: valid_seen
and valid_unseen. In valid_seen, the ALFRED
tasks are given in the same set of environments as
the training data, while unseen environments are
used for valid_unseen. We use valid_seen as the
validation set during training and report the results
evaluated with both of them.

The task defines 12 types of actions: five
for navigation (e.g., LookUp, MoveForward,
RotateRight) and seven for interaction (e.g.,
Pickup, Slice). To simplify training and eval-
uation, we preprocess data by merging the same
consecutive navigation actions into a single action
(see Appendix B for detailed statistics on the data).
Evaluation Metrics. Each training instance in the
ALFRED dataset contains ground-truth sub-goal
segments for instructions and actions. We use them
to evaluate the learned sub-task segments.

Note that our algorithm operates on finer-grained
instructions segmented into verbal phrases, while
the ground-truth segments are coarser; some sen-
tences contain a couple of verbal phrases (e.g.,
“Rinse the sponge out in the sink, and pick it up
again”). In our evaluation, we first merge the fine-
grained instructions into their corresponding sub-
goal instruction, together with the mapped actions,
and then compare the overlap with the gold sub-
goal segments of actions.

We report the sub-goal exact match (EM) score
defined as the percentage of the sub-goal segments
perfectly reconstructed. We also report the sub-
goal F1 score defined as the macro average of the

https://askforalfred.com/, MIT License

F1 scores calculated by taking the overlap between
the predicted and ground-truth segment.

3.2 Baselines

Under our task formulation, A2LCTC offers an
advantage that it can take into account the tem-
poral constraint and the semantics of instructions.
However, many existing unsupervised sequence
alignment algorithms (e.g., IBM models) operate
only between discrete symbols and are not directly
applicable in this situation where we need to align
actions to text (or a bag of words in our model).
Thus, we compare A2LCTC with two baselines
that do not consider the textual information.
Uniform. The uniform baseline assigns an equal
number of actions to each of the fine-grained in-
structions.

Byte-pair Encoding. The byte-pair encoding
(BPE) baseline is based on a data compression al-
gorithm that finds repeated patterns in the data and
merges them into chunks (Gage, 1994; Sennrich
et al., 2016). Concretely, we repeat the following
two steps until each action sequence is split into the
number of the corresponding fine-grained instruc-
tions: (1) count bigrams in the action sequences;
(2) merge the most frequent bigrams.

3.3 Results

Table 1 shows that A2LCTC significantly out-
performs the baselines, which indicates that our
model successfully leverages textual information
and learns meaningful alignments between the fine-
grained instructions and actions.

Although the BPE baseline does not use textual
information, it exhibits reasonable F1 scores (61.9
points in valid_unseen and much higher EM scores
than UNIFORM (27.1 vs. 9.3 points). This reflects
the characteristics of the ALFRED dataset. As
each episode in the dataset is generated from spe-
cific templates, the actions follow specific patterns,
which enable the BPE to learn correct segmenta-
tion to some extent.

3.4 Ablation Study

In A2LCTC, we utilize several techniques to stabi-
lize the training process. Table 2 shows the effects
of ablating one stabilization method from the full
A2LCTC model. Our results indicate that curricu-
lum learning is most essential to successful train-
ing. Without curriculum learning, A2LCTC suffers
from significant performance degradation (41.2 —
14.6 in EM and 78.2 — 36.7 in F1 score).


https://askforalfred.com/

valid_seen  valid_unseen

EM Fl EM F1
UNIFORM 8.8 544 9.3 55.5
BPE 22.8 619 27.1 65.9
A2LCTC 612 853 58.5 85.1

Table 1: Performance for sub-task segmentation. The
value of A2LCTC is the best among 10 runs with differ-
ent random seeds.

EM F1
Full 41.2+10.2 78.2+10.8
- pre. language 33.5£14.1 70.2+18.0
- pre. action 41.14+£134 76.9+18.2
- curriculum 146 £5.7 36.7+8.0

Table 2: Ablation model performance (valid_seen). The
values show the mean and standard deviation of 10 runs.

Ablating pre-training language or action embed-
dings still obtains mean values comparable to the
full A2LCTC but yields much larger standard devi-
ations. This indicates that these two stabilization
methods are also beneficial for A2LCTC.

4 Evaluation with the Downstream Task

We evaluate the effectiveness of sub-task segments
induced by A2LCTC on the downstream ALFRED
task.

Models. Our baseline agent (BASELINE) is based
on the CNN-LSTM sequence-to-sequence archi-
tecture in Shridhar et al. (2020), which takes the
whole instruction and current state as input and
then predicts an action at each time step. Unless
specified, we use the same hyperparameters as the
original implementation.

To incorporate the sub-task information, we ex-
tend the baseline with the progress monitoring mod-
ule (Ma et al., 2019). We use two progress moni-
toring schemes from Shridhar et al. (2020), which
estimate the current time step and the completed
sub-tasks. Specifically, the modules are trained to
predict the proportion of elapsed steps or completed
sub-tasks to the total numbers.

We evaluate the segmentation of A2LCTC as
well as the two baseline methods (UNIFORM and
BPE). Those algorithms are applied on the training
data and the agents are trained with the progress
monitoring according to the segmentation.
Metric. We evaluate the agents with the subgoal
sequence accuracy. The agent predicts the next

valid_seen  valid_unseen
BASELINE 57.6 + 2.0 296 £1.5
UNIFORM  63.6 £2.5 388+1.4
BPE 66.0 = 2.0 39.14+04
A2LCTC 69.7+1.4 41.4+0.8

Table 3: Performance on the ALFRED task measured
by the subgoal sequence accuracy. The values show the
mean and standard deviation of 5 runs.

action given the history from an expert trajectory.
The metric measures how many subgoal chunks of
actions, which is defined by the ground-truth seg-
mentation of the dataset, are successfully predicted
in the evaluation data. Note that this metric sim-
plifies the original task in that it ignores the object
interactions and focuses on action prediction’.
Results. Table 3 summarizes the result. On
both valid_seen and valid_unseen splits, the agents
trained with fine-grained instruction (UNIFORM,
BPE and A2LCTC) significantly outperform
BASELINE. The fact that UNIFORM achieves im-
provement indicates that keeping track of detailed
progress is helpful even if it inaccurately performs
the fine-grained task segmentation (see Section 3.3).
A2LCTC performs best because of the better ac-
curacy of the segmentation than the others. This
demonstrates that A2LCTC successfully provides
more informative instructions for the agent in solv-
ing the downstream task.

5 Conclusion

We presented A2LCTC, which finds a hierarchical
structure of an action sequence by mapping each
action to fine-grained natural language instructions
without ground-truth mapping data. We demon-
strated that A2LCTC successfully learns meaning-
ful segments and training the ALFRED agents with
these segments leads to improved performance.
A2LCTC currently relies only on semantic cor-
respondence between actions and text. Applying
A2LCTC to the tasks with low-level actions is an
important extension, e.g., actions specifying the di-
rection to move. Furthermore, the instruction may
often describe the visual input whose information
is not encoded in the actions. Another important fu-
ture direction is to incorporate visual or additional
information to tackle a broader range of domains.

*We find the original navigation task is too difficult for
the baseline model: the success rate is very low with high
variance, which prevents meaningful comparison among the
variants of the model (Appendix D).
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A Implementation details of A2LCTC

A.1 Instruction Decomposition

We split a whole instruction into fine-grained instructions each of which is a verbal phrase. Our current
implementation employs a simple rule-based algorithm, which segments a whole instruction at periods,
commas, phrases such as and or then. For example, “Turn around and go back to the table” will
be segmented into [“Turn around”, “go back to the table’’], while we also write few rules to handle
erroneous splits such as conjunctions between nouns ([“fake the apple”, “(and) banana’]), commas before
a prepositional phrase ([“Put the bow!l”, “(,) on the coffee table to the left of the statue’]), or verbal phrases

that cannot be instruction by itself ([“go to the left”, “(and) face the bathtub’)).

A.2 Neural Network Architecture

Instruction Feature Vectors

The feature vector of a fine-grained instruction X is simply modeled by taking the average of the word
embeddings [w;, ..., wy] followed by a linear layer (the results from different encoding strategies are
shown in Appendix C).

N
T = tanh(Linear(% Z w;)). 3)

In our experiment, the dimension of word embeddings, the input and output size of the linear layer is
all set to 50. The total number of parameters of A2LCTC is about 44K. The training takes approximately
one hour with a single GPU.

Action Feature Vectors

The action feature vectors are computed through feeding embeddings for primitive actions [a1, ..., Gr] to
a one-layer bidirectional LSTM.

ai,...,ar :LSTM(dI,--'adT) )

where [@1, ..., 7] are embeddings for primitive actions.
The size of the action embeddings and the hidden size of the LSTM are set to 50. The outputs of LSTM
in the forward and backward directions are summed to merged into one single feature vector.

A.3 Hyperparameters for training

optimizer Adam
learning rate 0.001

batch size 128
validation metric the sub-goal F1 score
patience 5

A.4 Stabilization of Unsupervised Learning

Length-based curriculum learning

We set the maximum length of training instances for each training epoch according to a schedule. In our
experiment, the maximum length starts at 20, and linearly increases to 60 with 30 steps.

Initializing with pre-trained action embeddings

We use the gensim library* to train action embeddings. We use the Skip-gram algorithm and the
hyperparameters are shown in Table 4

“https://radimrehurek.com/gensim/



embedding size 50
window size 1
# of iterations 15
# of negative samples 5

Table 4: The hyperparameters for training action embeddings

B Data Statistics

Our experiments are based on the expert demonstration data in the ALFRED dataset (Table 5).

training data  valid_seen valid_unseen

21,023 820 821

Table 5: The number of expert demonstrations in the ALFRED dataset.

After the instruction decomposition, the instructions contain 10 fine-grained instructions on average.
The entire distribution is shown in Figure?2.
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Figure 2: The distribution of the number of fine-grained instructions in the training split
To simplify training and evaluation, we preprocess data by merging the same consecutive actions into

one single action. This results in the average sequence length of 25. The entire distribution before and
after the merge preprocessing is shown in Figure3 and 4.
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Figure 3: The distribution of action sequence length in the training split.
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Figure 4: The distribution of action sequence length in the training split after the merge preprocessing.

C Additional Results for the Segmentation Task

Here we compare different strategies for encoding instruction segments. Besides the mean pooling of
word embeddings followed by a linear layer in A2LCTC (MEAN), we also tried the summation of word
embeddings (SUM), the mean pooling of one-layer Bi-LSTM outputs LSTM. The hidden size of LSTM
is set to 50, which is the same as the word embeddings, and the vectors of the forward and backward
directions were summed to form the output vectors. The result is shown in Table 6.

valid_seen valid_unseen
EM F1 EM F1

MEAN 41.2+10.2 7824108 445+12.1 79.0£11.5
Sum 34.5+£13.8 70.7+£15.2 36.8+£84 73.3+12.1
LSTM 18.9+10.8 51.8£+£20.3 33.8+18.2 65.1£20.6

Table 6: Performance for sub-task segmentation. The value of A2LCTC is the best among 10 runs with different
random seeds.

We find that MEAN gives the most stable result. LSTM exhibits the worst performance, indicating that it
is hard to optimize the unsupervised objective in A2LCTC with an overly complex architecture.



D Additional Results for the Downstream Task

D.1 Results with the ground-truth sub-goal annotation

In section 4, we compared the models trained with automatically generated fine-grained sub-task segments.
Here we provide the results from the model trained with the ground-truth sub-goal segments (SUBGOAL)
in Table 7. Note that the granularity of SUBGOAL is coarser than the other models.

valid_seen valid_unseen

BASELINE 57.6 2.0 296 £1.5
SUBGOAL 59.5+2.1 314+1.4

UNIFORM 63.6 &= 2.5 388+1.4
BPE 66.0 £ 2.0 39.1+04
A2LCTC 69.7+14 414408

Table 7: Performance on the ALFRED task measured by the subgoal sequence accuracy. The values show the mean
and standard deviation of 5 runs.

SUBGOAL provides better results than BASELINE, which demonstrates the benefit of the ground-truth
sub-gold segmentation in the dataset. However, the improvement is limited compared to the UNIFORM
segmentation, which segments an action sequence into the chunks of the same size. The model benefits
from inaccurate but finer-grained segmentation more than accurate but coarse segmentation.

We hypothesize that this reflects the characteristics of the dataset. The ALFRED dataset is created by
generating expert trajectories from task templates. As a result, the type of actions are somewhat correlated
with the time step within an episode. For example, navigation actions such as MoveForward are more
likely to be executed at the beginning of the episode, whereas interactive actions such as Put Object are
at the end. Adding finer-grained progress monitoring supervision at training time can help the agent learn
the correlation between time steps and actions better than coarser progress monitoring.

D.2 Success Rates of the Downstream Task

In our preliminary experiments, we find the original navigation task is too difficult for the baseline model:
the success rate is very low with high variance, which prevents meaningful comparison among the variants
of the model. The success rate (SC) and goal condition success rate (GC) are provided on Table 8. With
multiple runs, we did not observe any significant difference (p > 0.05 in the Welch’s t-test) among the
models.

SC GC
valid_seen valid_unseen | valid_seen valid _unseen

Baseline 24+£09 0.0£0.0 9.5+0.5 6.7+0.3
SUBGOAL 2.6£0.5 0.0£0.0 8.9=£0.8 6.6 £0.4
A2LCTC 23+£0.7 0.0£0.0 9.4£0.8 6.7+0.3

Table 8: Performance on the ALFRED task measured by the task success rate (SC) and goal condition success rate
(GC). The values show the mean and standard deviation of 5 runs.



