Proceedings of the Linked Data in Linguistics Workshop @ LREC2022, pages 61-68
Marseille, 24 June 2022
© European Language Resources Association (ELRA), licensed under CC-BY-NC-4.0

Spicy Salmon: Converting between 50+ Annotation Formats with Fintan,
Pepper, Salt and Powla

Christian Fath, Christian Chiarcos
Applied Computational Linguistics (ACoLi)
Goethe University Frankfurt, Germany
{faeth|chiarcos } @em.uni-frankfurt.de

Abstract

Heterogeneity of formats, models and annotations has always been a primary hindrance for exploiting the ever increasing
amount of existing linguistic resources for real world applications in and beyond NLP. Fintan - the Flexible INtegrated
Transformation and Annotation eNgineering platform introduced in 2020 is designed to rapidly convert, combine and
manipulate language resources both in and outside the Semantic Web by transforming it into segmented RDF representations
which can be processed in parallel on a multithreaded environment and integrating it with ontologies and taxonomies. Fintan
has recently been extended with a set of additional modules increasing the amount of supported non-RDF formats and the
interoperability with existing non-JAVA conversion tools, and parts of this work are demonstrated in this paper. In particular,
we focus on a novel recipe for resource transformation in which Fintan works in tandem with the Pepper toolset to allow
computational linguists to transform their data between over 50 linguistic corpus formats with a graphical workflow manager.

Keywords: Interoperability, Transformation, Annotation, Corpora, Ontologies, Linguistic Linked Open Data

1.

With the continued rise of corpus technologies in lan-
guage sciences and lexicography that we have seen in
the last decades, the number and diversity of linguistic
annotations has been growing at an exponential rate —
and this trend still continues. At the same time, the
increasing maturity of language technology and ma-
chine learning and their spread to novel domains calls
for ever increasing amounts of homogeneous training
and evaluation data, so that a core challenge of applied
NLP is, in fact, not so much to come up with innova-
tive algorithms, but to secure the availability and con-
sistency of the data needed for applying state-of-the-art
technology.

Indeed, the heterogeneity of formats, models and an-
notations has always been a primary hindrance for ex-
ploiting the ever increasing amount of existing linguis-
tic resources for real world applications in and be-
yond NLP. The Linguistic Linked Open Data (LLOD)
community has a decade-spanning history of creating
community standards for homogeneous data publica-
tion and interlinking. Relying on Semantic Web tech-
nology, Fintan - the Flexible INtegrated Transforma-
tion and Annotation eNgineering platform (Fith et al.,
2020) has been designed as a tool to rapidly convert,
combine and manipulate heterogeneous language re-
sources in a generic, sustainable and scalable way. Its
transformation and export capabilities are tailored to-
wards, but not limited to commonly used LLOD vocab-
ularies such as CoNLL-RDF (Chiarcos and Féth, 2017)
or Ontolex Lemon (Cimiano et al., 2016) and thus alle-
viate generation of LLOD datasets and their integration
into NLP workflows.

Fintan has recently been extended with a set of ad-
ditional modules increasing the amount of supported

Entree

61

non-RDF formats and the interoperability with exist-
ing non-JAVA conversion tools. In this paper, parts of
this work are demonstrated. In particular, we focus on a
novel recipe for resource transformation in which Fin-
tan works in tandem with the Pepper (Zipser and Ro-
mary, 2010) toolset to allow computational linguists to
transform their data between over 50 linguistic corpus
formats with a graphical workflow manager.

2. The Fish: Fintan

Although Fintan as a tool doesn’t have anything fishy
about it, the acronym is actually coined as a metaphor
to its generic, variable design. Fintan mac Béchra in
Irish folklore was a shape-shifting sage who survived a
great flood in the shape of a salmon (Macalister, 1941),
which is also reflected in the logo of the Fintan platform

(cf. Fig.[T).

2.1.

Fintan is designed to adapt to the flood of data and for-
mats computational linguists are confronted with and
also enable users to integrate their data with a wealth of
resources from the Semantic Web. This is also reflected
by the internal architecture which heavily relies on Se-
mantic Web Standards such as SPARQL (Buil Aranda
et al., 2013)) and encourages users to take advantage of
graph-based transformation capabilities while adhering
to the following principles:

Software design

* Fintan is generic in that it builds on the trans-
formation of linguistic annotations, lexical data
structures, etc. into labeled directed multi-graphs
and back. In particular, this can represent every
type of linguistic annotation (Bird and Liberman,
2001).

SPARQL Workflows Deployment
DELETE INSERT -
‘ <-> e & Y
Fi n<carm @ @ docker leanga
Convert & Load Update Convert & Write
External RDF resources
o)
Apertium XML Ontolex
> >
Ontolex SPARQL scripts Turtle
|)
CoNLL CoNLL-RDF |—>
_I--b > > > > =
RDF -L ‘ CoNLL
———
S — T —
e e

Figure 1: The Fintan plattform

 Fintan is sustainable in that it builds on web
standards (RDF) and standardized, declarative
transformations (SPARQL) for representing and
manipulating these graphs. In particular, the
SPARQL scripts can be run fully independently
from the current Fintan code base, but against any
SPARQL end point or with any programming lan-
guage for which a SPARQL library is available.

* Fintan is designed to be scalable: It provides par-
allelized stream processing. Fintan hereby takes
advantage of the inherently localized structure of
most linguistic data which can often be divided
into self-contained segments like entries in dictio-
naries or sentences, tokens etc. in corpora. By
splitting data in such a way, we can process mul-
tiple segments at the same time while also mini-
mizing memory consumption during query execu-
tion resulting in increased scalability, stability and
faster execution.

Figure [I] provides an overview of the general software
architecture and its modular structure. Within Fintan,
data is transformed and streamed between components
each providing specific processing capabilities:

* Loader components prepare data for segmented
processing.

e Updaters apply SPARQL scripts on data seg-
ments, optionally also relying on external LLOD
resources such as OLiA (Chiarcos and Sukhreva,|
for transforming linguistic annotations or
DBpedia (Mendes et al., 2012)) for entity linking.

62

* Writer components producing RDF serializa-
tions such as Turtle or exporting tabular formats
like CoNLL.

Additional transformer components may also take
other script languages to process various types of data,
e.g. XSL for converting XML data as has been applied
in a complex workflow enabling the Apertium bilingual
dictionaries to be used for cross-lingual transfer learn-
ing in the pharmaceutical domain (Gracia et al., 2020).
The CoNLL-RDF (Chiarcos and Fith, 2017) library,
Fintan’s spiritual predecessor, is now also a native part
of the toolchain allowing Fintan to directly execute any
existing CoNLL-RDF pipeline.

By treating transformation scripts and pipeline config-
urations as data fed into standardized transformer com-
ponents, we also open possibilities to increase reusabil-
ity. Some scripts (like annotation transformation) may
be applicable in multiple workflows for several types of
resources including lexical and corpus data alike, albeit
this is highly dependent on how users structure their
pipeline configurations.

To alleviate this design process, Fintan also features
a stand-alone graphical workflow manager which ren-
ders existing components as processing nodes which
can be connected by edges reflecting data streams (cf.
Fig. [). Streams are hereby distinguished between un-
segmented text streams and streams of pre-loaded RDF
segments.

2.2. OpenAPI support

Pipelines created with the workflow manager can di-
rectly be inserted and run in the Fintan JAVA back-
end on a shell environment. However, they can also be

exported as dockerizeﬂ web services to be integrated
into decentralized complex workflows. To achieve this
we built a Python server which can expose the Fintan
backend as an OpenAPﬂ compliant web service and
provides functionality to upload scripts and data and to
run pipeline configurations. While this server can be
run stand alone, the Workflow manager can also cre-
ate a makefile to directly build an integrated Docker
container containing all relevant data and a specific
pipeline configuration. The make script includes all rel-
evant code and resources for automated deployment.
However, OpenAPI support is not just limited to de-
ployment of workflows. Instead, we recently integrated
API functions which allow external web services to be
run as part of Fintan pipelines. This API is mostly
based on the Swagger Code Generatmﬂ and has orig-
inally been created specifically for the use case de-
scribed in this paper, but has been slightly redesigned
to host generic services by exposing most configura-
tion options (i.e. request methods etc.) as parameters
in the Fintan JSON configuration. The generic wrapper
component is however structurally limited to single re-
quests per transformation as more complex operations
would require specific treatment (possible wait opera-
tions, poll for success etc.) which are highly service
specific. Such peculiarities must be addressed by im-
plementing service specific wrapper components using
the Fintan AP

This not only allows to address existing web services
but also provides a means to wrap other toolsets which
are structurally incompatible or not natively available
in JAVA directly within Fintan.

3. The Spices: Salt and Pepper

Language resource interoperability is, indeed, a prob-
lem that has received a lot of attention over the years,
and as far as linguistic annotations are concerned,
the state of the art in this regard is represented by
the Linguistic Annotation Framework
LAF). LAF defines an abstract data model

(a generic labelled directed acyclic multi-graph over
streams of primary data) and an XML syntax (GrAF),
and it is designed to be able to represent any linguistic
annotation.

In terms of processing tools, however, very few tech-
nology seems to be around that actually implements
LAF/GrAF directlyEl Instead, real-world tools use a

"https://www.docker.com/

nttps://www.openapis.org/

*https://swagger.io/tools/
swagger—-codegen/

*A detailed description on how to create and integrate
custom components into Fintan is available here: https:
//github.com/acoli-repo/fintan-doc/blob/
master/3c-build-custom-components.md

>There are a number of third-party converters, but the only
tool natively building on LAF/GrAF seems to be the ANC-
Tool (ISuderman and Ide, 2006[).

63

[infrastructure tool

B salt-based

W workfiow tool

(% ANNIS
Analysis

% Atomic

Multi-layer
annotation

£ Pepper
Migration

Figure 2: Interdependencies in the Salt/ANNIS uni-
verse of tools, taken from Druskat et al. (2016).

number of derivative formats (usually with less generic,
but otherwise equivalent features), a notable example
being the JSON-LD based LAPPS Interchange Format
(Verhagen et al., 2015| LIF) developed by the creators
of LAF. One such application is the converter suite
Salt’n Pepper, to some extent overlapping in spirit to
Fintan, but firmly integrated in its own, independent
technological ecosystem

3.1. ANNIS and Salt ecosystem

ANNIS is a corpus management system specifically

designed for dealing with multi-layer corpora
et al., 2004). With this goal in mind, its developers
adopted early drafts of the LAF standard
as the underlying data model and devel-

oped a large set of converters from and to various es-
tablished corpus formats.

ANNIS provides search and visualization capabili-
ties for of multi-layer corpora, it supports annota-
tions of different types (spans, trees with and with-
out labelled edges, dependencies, arbitrary pointing
relations), internally represented as a directed acyclic
multi-graph. ANNIS comes with convenient visualiza-
tions and with different backend implementations as in-
memory database (ANNIS1), relational database (AN-
NIS2, ANNIS3) and an experimental graph backend
(Krause et al., 2016, GraphANNIS). The primary input
format to ANNIS is PAULA XML (Sect. @), and the
underlying PAULA Object Model represents the basis
for a small universe of interconnected tools, specifica-
tions and resources (Chiarcos et al., 2008}, [Druskat et

al., 2016), see Fig. |Z| for an architectural overview. In
addition to ANNIS, these include

PAULA (XML format and abstract data model)

AQL (ANNIS Query Language)

Salt (Java API and theory-neutral meta model)
Pepper (converter suite)
Atomix/Hexatomic (annotation tool)

Laudatio (corpus repository)

https://www.docker.com/
https://www.openapis.org/
https://swagger.io/tools/swagger-codegen/
https://swagger.io/tools/swagger-codegen/
https://github.com/acoli-repo/fintan-doc/blob/master/3c-build-custom-components.md
https://github.com/acoli-repo/fintan-doc/blob/master/3c-build-custom-components.md
https://github.com/acoli-repo/fintan-doc/blob/master/3c-build-custom-components.md

ANNIS operates a powerful, tagset-independent and
theory-neutral meta model, and with its reference im-
plementation in the Salt API, it allows for storing, ma-
nipulating, and representing nearly all types of linguis-
tic data.

3.2. Pepper plattform

The Pepper (Zipser and Romary, 2010) plattform and
its internal theory-neutral Salt meta model compose a
framework which enables means of direct conversion
between at least 20 formats for annotated corpora in-
cluding EXMARaLDA, Tiger XML, MMAX2, RST,
TCF, TreeTagger format, TEI (subset), PAULA and
moreﬂ Pepper’s general architecture is partly reminis-
cent of Fintan in that it is based on Java and Maven and
divides its processing steps into Importers (correspond-
ing to Fintan’s Loaders), Manipulators (corresponding
to Fintan’s Transformers and Updaters) and Exporters
(corresponding to Fintan’s Writers). However, the im-
plementation and design principles differ in many re-
gards:

* Pepper uses the Salt model as an internal abstrac-
tion layer for the processed data. This introduces
compatibility between modules but also narrows
the aim towards corpora and may result in a loss
of unsupported pieces of information stored in the
original data. Fintan on the other hand is com-
pletely format-independent.

* Pepper focuses on fully designed converters as
modules. Fintan instead emphasises on atomic
reusable operations, e.g. by allowing users to di-
rectly load and manipulate transformation scripts
for components.

« Since Pepper is focused on corpora, it cannot eas-
ily replicate Fintan’s ability to side-load ontolo-
gies or external RDF repositories for Annotation
Engineering and resource enrichment tasks.

As a corpus transformation tool, Pepper, nevertheless,
is a valuable addition to Fintan’s portfolio and extends
its coverage of corpus formats. Because of the struc-
tural similarities, we were first considering a direct in-
tegration as a native Java library, however there were
some drawbacks to consider:

* Pepper exclusively uses file I/O and is not natively
streamable without major refactoring or caching.

* Pepper uses the OSGi framework while Fintan op-
erates on native Java and Apache Jena, thus in-
troducing additional complexity and risks when
trying to directly map Pepper modules as Fintan
components.

SA full list of “known” modules is provided by the
developers: https://corpus—-tools.org/pepper/
knownModules.html

* Pepper needs a lot of additional module data
(bloating a possible direct integration into Fintan’s
backend)

For these reasons, we decided to treat Pepper as a
stand-alone converter module and wrapped it into a
dockerized OpenAPI service which is specifically de-
signed to generate POWLA-RDF (cf. Sect. data
from any corpus format supported by a Pepper Im-
porter. This service can be accessed within Fintan
workflows using the OpenAPI transformer component.

4. The Scullions: PAULA and POWLA

PAULA is an abstract data model for the ANNIS
query language AQL, underlying the Salt API and the
PAULA XML format, but also POWLA, an OWL2/DL
data model for linguistic annotation on the web (Chiar-
cos, 2012), and in terms of its expressivity, it is equiva-
lent (but slightly older than) the ISO-standardized Lin-
guistic Annotation Framework (LAF).

4.1. PAULA

PAULA’s underlying data model, much like RDF, is
represented by labeled directed acyclic (multi)graphs
(DAGs) and thus contains various types of nodes, la-
bels and edges:

* Nodes are distinguished between terminals (to-
kens or spans of characters in the source data),
markables (flat, positional annotations referring
to spans of terminals) and structs (functioning as
structural parents to other nodes in a tree).

* Edges can thus be dominance relations (parent to
child in structs) or simple pointing relation (di-
rected, but without hierarchical implications).

* Labels can be attached to nodes and edges alike
representing linguistic annotations.

4.2. POWLA

The POWLA vocabulary shown in Figure |3| is an
OWL2/DL implementation of the PAULA Object
Model and preserves similar data structures for linguis-
tic annotations, as an example, syntactic tree structures
are rendered in POWLA by means of:

* powla:Node for tokens and phrasal nodes,

* powla:hasParent for hierarchical relations
between nodes,

* powla:next for sequential relations between
nodes, and

* powla:Relation (withpowla:hasSource
and powla:hasTarget) for labelled edges.

PAULA thus has a high level of compatibility with ex-
isting Fintan workflows, as its OWL2/DL implementa-
tion POWLA is used in conjunction with CONLL-RDF

https://corpus-tools.org/pepper/knownModules.html
https://corpus-tools.org/pepper/knownModules.html

POWLAElement

hasAnnotation

I

Terminal |

end, start,
string
hasTarget,
I hasSource
Relation >
next —
| | hasParent
hasLayer
= —
|| Abstract Recommended

Obligatory

Figure 3: The POWLA vocabulary

(Chiarcos et al., 2021) to model linguistic data struc-
tures that exceed beyond labels of or pointers between
individual words (Chiarcos and Glaser, 2020). PAULA
and POWLA thus form a natural technological bridge
between Pepper and Fintan, and here, they are being
used to connect both technologies.

5. Main Course: Converting 50 Formats

Now that we have all ingredients and helpers ready, we
can start concocting our workflow.

5.1. Preparations and Workflow
Since POWLA is a supported format in the CoNLL-

RDF toolset (Chiarcos and Glaser, 2020) it can be con-
verted to CoNLL-RDF by a set of SPARQL updates:

e Token level annotations in the form of
conll:COL for typical columns such as
WORD, POS etc. are derived from PAULA labels
on markables and terminals.

Dependencies are derived from dominance rela-
tions.

Since POWLA does not necessarily anno-
tate sentence boundaries, CoNLL-RDF’s
nif:Sentence nodes also need to be de-
rived from the hierarchical data structure in order
to produce a fully delimited CoNLL corpus. In
case this fails or produces inconsistent output
(e.g. if the corpus is annotated with a lot of
cross-sentence relations), we can optionally split
sentences purely based on punctuation in a post
processing step

65

The sample configuration in Figure [] shows how to
convert data from the original PAULA XML format
via POWLA into segmented CoNLL-RDF for fur-
ther processing within Fintan. As a first step, we
use the Pepper API service to transform PAULA to
POWLA, then we use the RDF Splitter to induce
the CoNLL-RDF data structure and split it by sen-
tences into segmented graphs, which can be simul-
taneously processed with the RDF Updater for fur-
ther customization. The splitting process uses Fintan’s
ITERATE_CONSTRUCT method by first selecting all
sentence nodes in order with an iterator query:

SELECT ?s
WHERE {
?s a nif:Sentence
BIND (xsd:integer (
REPLACE (STR(?s),
) AS ?snr)
} order by asc(?snr)

I["O_g]/,l’)

Subsequently, for each sentence ?s, we execute a con-
struct statement in which the wildcard <?s> is re-
placed by the specific sentence identifier:

CONSTRUCT {
<?s> ?sp
W ?wp

} WHERE {
<?s> ?sp 7?so
?w conll:HEAD+ <?s>
W ?wp

?s0
WO

?WO

}
The RDF Writer and CoNLL-RDF Formatter can then

output structured CoNLL or the CoNLL-RDF canoni-
cal format.

5.2. Adjusting the Recipe

The workflow depicted in Figure 4| is prepared to in-
troduce additional processing steps. Since the result-
ing CoNLL-RDF data is already split into sentences,
it is possible to directly execute updates on the seg-
ments transforming the existing annotations to com-
monly used schemes such as Universal Dependencies
e.g. by using OLiA. OLiA at this point supports over
50 annotation schemes in its stable branch and features
partial support for various additional models or refer-
ence catalogues including ISOcat and GOLD. In a sim-
ilar manner, dictionaries could be side-loaded to infer
foreign language lemmatization. Depending on the in-
put data, even a complete recombination and restructur-
ing of corpora is possible as we demonstrated by engi-
neering a gold corpus for Role and Reference Grammar
(Chiarcos and Fith, 2019).

For native CoNLL output the CoNLL-RDF Formatter
also alleviates structural customization, such as column
reordering to directly feed data into subsequent NLP
tools. With the CoNLL-RDF Ontology and CoNLL
Transform (Chiarcos et al., 2021} we even introduced a
means to automatically derive transformation pipelines
from one CoNLL dialect to another which we aim to
use as a blueprint for other formats as well.

In addition to producing CoNLL-RDF and CoNLL,
also, other conventional corpus formats can be pro-
duced from POWLA. This includes bracketing formats
as commonly used in treebanks such as the Penn Tree-
bank (Marcus et al., 1993). XML-augmented TSV for-
mats are SketchEngine (Kilgarriff et al., 2014)) and the
Corpus Workbench (Evert and Hardie, 2011)) as also
supported by the Fintan/CoNLL-RDF tool chain, but at
the moment primarily as input formats.

6. One for the road

We have not just been cooking this up. Taking the com-
bined capabilities of Pepper, Fintan and their config-
uration options into consideration, we are capable to
cross-transform and recombine over 50 formats with
a multitude of annotation schemes also taking advan-
tage of parallelized stream processing. At the mo-
ment, this includes any CSV format (via Fintan’s Tarql
wrapper), 24 TSV formats (different CONLL formats,
Universal Morphology format, Sketch Engine/Corpus
Workbench formats, OMW TSV format via CoNLL-
RDF), 28 common corpus formats (via Pepper), all
XML formats (with format-specific XSLT scripts for
individual formats, e.g. for the Apertium dictionaries),
the TBX format and numerous serializations of RDF
data (RDF/XML, Turtle, JSON-LD, etc.). In addition
to supporting different types of input data, Fintan also
supports side-loading SKOS taxonomies, OWL ontolo-
gies, RDF and RDFS knowledge graphs as well as any
custom XML or C/TSV resource when preprocessed

66

into RDF graphs. As output formats we primarily sup-
port RDF serializations and customizable TSV formats.
Since Fintan is an open platform, the number of sup-
ported formats can always be extended by building cus-
tom transformer components.

This combined support for taxonomies and both dictio-
nary and corpus data inside a complex workflow man-
ager which not only allows recombining existing con-
verter components but alleviates full customization of
transformation scripts is a somewhat unique approach
to the data transformation challenge. Instead of dish-
ing a buffet we provide ingredients and recipes in a
prepare-your-own-pipeline package. Surely this is not
a one-click solution and workflow accuracy is tied to
the transformation components used. Specifically the
preprocessing of data into POWLA using the Pepper
framework heavily depends on individual Pepper mod-
ules and how lossless they render data in the internal
SALT model. However, the resulting data can always
be optimized within Fintan by additional resources or
transformation steps in order to meet the requirements
for specific use cases. Such preconfigured workflows
can then be exported as stand-alone dockerized web
services and made available in a sustainable way on
Docker Hutﬂ or as part of the European Language
Gri(ﬂ (ELG), which could also establish an interface to
create additional processing nodes in large-scale infras-
tructure efforts such as the Switchboard or WebLicht
platforms from CLARIN (de Jong et al., 2020).

We would like to emphasize that the integration of Pep-
per into Fintan not only increases the number of input
and output formats supported by the platform. More
importantly, it means that existing Fintan and CoNLL-
RDF workflows can now be complemented with sup-
port for doing manual annotation (from HexAtomic,
via Pepper), linguist-friendly means of querying and
visualization (from ANNIS, via Pepper). And from
the perspective of the Pepper/ANNIS universe, the ad-
dition of Fintan means that more advanced means of
automated annotation and annotation engineering now
become available that the native Java implementation
of Salt’n’Pepper did not provide. Finally, via Fintan,
Salt’n’Pepper can be connected with general-purpose
NLP workflow management systems such as Teangeﬂ
linking it to the more algorithmic side of corpus lin-
guistics with a possibility to integrate external webser-
vices and Docker containers in annotation pipelines.

7. Acknowledgements

The research described in this paper has been partially
conducted in the context of the BMBF Early Career Re-
search Group ‘Linked Open Dictionaries (LiODi)’, and
partially in the context of the Horizon 2020 Research
and Innovation Action ‘Pret-a-LLOD’, Grant Agree-
ment number 825182.

"https://hub.docker.com/
8https ://www.european—language—grid.eu
https://github.com/Pret-a-LLOD/teanga

https://hub.docker.com/
https://www.european-language-grid.eu
https://github.com/Pret-a-LLOD/teanga

Input

RDF
SDIIHM

to_ cmll

spllt snt

customize

CoMNLL-ROF
Formatter

CoNLL-RDF
Quitput
Data Result
L.Iudaber

RDF Writer

Figure 4: Fintan workflow converting PAULA to CoNLL-RDF

8. Bibliographical References

Bird, S. and Liberman, M. (2001). A formal frame-
work for linguistic annotation. Speech communica-
tion, 33(1-2):23-60.

Buil Aranda, C., Corby, O., Das, S., Feigenbaum,
L., Gearon, P.,, Glimm, B., Harris, S., Hawke,
S., Herman, 1., Humfrey, N., Michaelis, N., Og-
buji, C., Perry, M., Passant, A., Polleres, A,
Prud’hommeaux, E., Seaborne, A., and Williams, G.
(2013). Sparql 1.1 overview. https://www.w3.
org/TR/sparqglll-overview.

Chiarcos, C. and Fith, C. (2017). CoNLL-RDF:
Linked corpora done in an NLP-friendly way. In
International Conference on Language, Data and
Knowledge, pages 74—88. Springer.

Chiarcos, C. and Fith, C. (2019). Graph-based anno-
tation engineering: towards a gold corpus for role
and reference grammar. In 2nd Conference on Lan-
guage, Data and Knowledge (LDK 2019). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik.

Chiarcos, C. and Glaser, L. (2020). A tree extension
for CONLL-RDF. In Proceedings of the 12th Lan-
guage Resources and Evaluation Conference, pages
7161-7169.

Chiarcos, C. and Sukhreva, M. (2015). OLiA - ontolo-
gies of linguistic annotation. Semantic Web Journal,
518:379-386.

Chiarcos, C., Dipper, S., Gotze, M., Leser, U,
Liideling, A., Ritz, J., and Stede, M. (2008). A Flex-
ible Framework for Integrating Annotations from
Different Tools and Tag Sets. TAL (Traitement au-
tomatique des langues), 49(2):217-246.

Chiarcos, C., Ionov, M., Glaser, L., and Fith, C.
(2021). An ontology for CoNLL-RDF: Formal data
structures for TSV formats in language technol-
ogy. In 3rd Conference on Language, Data and

67

Knowledge (LDK 2021). Schloss Dagstuhl-Leibniz-
Zentrum fiir Informatik.

Chiarcos, C. (2012). POWLA: Modeling linguistic
corpora in OWL/DL. In 9th Extended Semantic Web
Conference (ESWC-2012), pages 225-239, Herak-
lion, Crete, May.

Cimiano, P., McCrae, J., and Buitelaar, P. (2016). Lex-
icon Model for Ontologies. Technical report, W3C
Community Report, 10 May 2016.

de Jong, F., Maegaard, B., Fiser, D., van Uytvanck,
D., and Witt, A. (2020). Interoperability in an in-
frastructure enabling multidisciplinary research: The
case of CLARIN. In Proceedings of the 12th Lan-
guage Resources and Evaluation Conference, pages
3406-3413, Marseille, France, May. European Lan-
guage Resources Association.

Dipper, S., otze, M. G., Stede, M., and Wegst, T.
(2004). ANNIS: A linguistic database for explor-
ing information structure. In Interdisciplinary Stud-
ies on Information Structure, ISIS Working papers of
the SFB 632 (1), pages 245-279. Universititsverlag
Potsdam.

Druskat, S., Gast, V., Krause, T., and Zipser, F. (2016).
corpus-tools. org: An interoperable generic soft-
ware tool set for multi-layer linguistic corpora. In
Proceedings of the Tenth International Conference
on Language Resources and Evaluation (LREC’16),
pages 4492-4499.

Evert, S. and Hardie, A. (2011). Twenty-1st century
Corpus Workbench: Updating a query architecture
for the new millennium. In Proc. of the Corpus Lin-
guistics 2011 conference, Birmingham. University
of Birmingham.

Fith, C., Chiarcos, C., Ebbrecht, B., and Ionov, M.
(2020). Fintan - Flexible, Integrated Transformation
and Annotation eNgineering. In Seventh conference

https://www.w3.org/TR/sparql11-overview
https://www.w3.org/TR/sparql11-overview

on International Language Resources and Evalua-
tion, LREC 2020.

Gracia, J., Fith, C., Hartung, M., Ionov, M., Bosque-
Gil, J., Verissimo, S., Chiarcos, C., and Orlikowski,
M. (2020). Leveraging linguistic linked data for
cross-lingual model transfer in the pharmaceutical
domain. In International Semantic Web Conference,
pages 499-514. Springer.

Ide, N. and Romary, L. (2004). A registry of standard
data categories for linguistic annotation. In Proc.
the 4th International Conference on Language Re-
sources and Evaluation (LREC-2004), pages 135—
139, Lisbon, Portugal.

Ide, N. and Suderman, K. (2014). The linguistic an-
notation framework: a standard for annotation inter-
change and merging. Language Resources and Eval-
uation, 48(3):395-418.

Kilgarriff, A., Baisa, V., Busta, J., Jakubicek, M.,
Kovit, V., Michelfeit, J., Rychly, P., and Suchomel,
V. (2014). The sketch engine: ten years on. Lexi-
cography, 1(1):7-36, Jul.

Krause, T., Leser, U., and Liideling, A. (2016).
graphannis: A fast query engine for deeply anno-
tated linguistic corpora. J. Lang. Technol. Comput.
Linguistics, 31(1):1-25.

R. A. S. Macalister, editor. (1941). Lebor Gabdla
Erenn: Book of the Taking of Ireland, volume 2 and
3. Irish Texts Society, Dublin, Ireland.

Marcus, M. P., Santorini, B., and Marcinkiewicz, M. A.
(1993). Building a large annotated corpus of En-
glish: the Penn treebank. Computational Linguis-
tics, 19:313-330.

Mendes, P., Jakob, M., and Bizer, C. (2012). DBpe-
dia for NLP: A multilingual cross-domain knowl-
edge base. In 8th international Conference on Lan-
guage Resources and Evaluation (LREC-2012), Is-
tanbul, Turkey, May.

Suderman, K. and Ide, N. (2006). Layering and
merging linguistic annotations. In Proceedings of
the 5th Workshop on NLP and XML (NLPXML-
2006): Multi-Dimensional Markup in Natural Lan-
guage Processing.

Verhagen, M., Suderman, K., Wang, D., Ide, N., Shi,
C., Wright, J., and Pustejovsky, J. (2015). The lapps
interchange format. In Proc. of the Int. Workshop on
Worldwide Language Service Infrastructure, pages
33-47. Springer.

Zipser, F. and Romary, L. (2010). A model oriented
approach to the mapping of annotation formats us-
ing standards. In Proceedings of the Workshop on
Language Resource and Language Technology Stan-
dards, LREC 2010, Malta.

68

	Entree
	The Fish: Fintan
	Software design
	OpenAPI support

	The Spices: Salt and Pepper
	ANNIS and Salt ecosystem
	Pepper plattform

	The Scullions: PAULA and POWLA
	PAULA
	POWLA

	Main Course: Converting 50 Formats
	Preparations and Workflow
	Adjusting the Recipe

	One for the road
	Acknowledgements
	Bibliographical References

