
LChange 2022

3rd International Workshop on Computational Approaches
to Historical Language Change 2022

Proceedings of the Workshop

May 26-27, 2022



The LChange organizers gratefully acknowledge the support from the following
sponsors.

Gold

ii



©2022 Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-955917-42-1

iii



Preface by the General Chair

Welcome to the 3rd International Workshop on Computational Approaches to Historical Language Chan-
ge (LChange’22) co-located with ACL 2022. This year, LChange is held over two days, May 26–27
2022, as a hybrid event with participation possible both virtually and on-site in Dublin, Ireland. To sup-
port efforts in evaluation of computational methodologies for uncovering language change, LChange’22
features a shared task on semantic change detection for Spanish as one track of the workshop.

Characterizing the time-varying nature of language will have broad implications and applications
in multiple fields including linguistics, artificial intelligence, digital humanities, computational cognitive
and social sciences. In this workshop, we bring together the world’s pioneers and experts in compu-
tational approaches to historical language change with focus on digital text corpora. In doing so,
this workshop carries out the triple goals of disseminating the state-of-the-art research on diachronic mo-
delling of language change, fostering cross-disciplinary collaborations, and exploring the fundamental
theoretical and methodological challenges in this growing niche of computational linguistic research.

In response to the call we received 21 submissions. Each of them was carefully evaluated by at
least two members of the Program Committee, whom we believed to be most appropriate for each paper.
Based on the reviewers’ feedback we accepted 15 full and short papers as oral or poster presentations.
We had two distinguished keynote presentations: the first by Dirk Geeraerts (KU Leuven/University of
Gothenburg) who presented a talk entitled “Can historical semantics save lives? (And other questions for
computational diachronic semantics)”, and the second by Dominik Schlechtweg (University of Stuttgart)
with the talk “Human and Computational Measurement of Lexical Semantic Change”. Finally, we invited
two additional papers to be presented as posters, one published at the ACL 2022 conference and one in
Findings of NAACL, which are not included in the workshop proceedings.

The shared task on semantic change discovery and detection in Spanish was divided in two phases:
(1) graded change discovery; and (2) binary change detection. The main novelty with respect to the
previous tasks consisted in predicting and evaluating changes for all vocabulary words in the corpus. Six
teams participated in phase 1 and seven teams in phase 2.

To further support the community, we offered two student scholarships for the main conference in
addition to the workshop, as well as mentoring for young researchers. Five researchers were offered
mentoring on a topic of their choice, either during the workshop or virtually.

We hope that you will find the workshop papers insightful and inspiring. We would like to thank the
keynote speakers for their stimulating talks, the authors of all papers for their interesting contributions
and the members of the Program Committee for their insightful reviews. Our special thanks go to the
emergency reviewers who stepped in to provide their expertise. We also express our gratitude to the ACL
2022 workshop chairs for their kind assistance during the organization process. Finally, our thanks go to
our gold sponsor iguanodon.ai, as well as the research project “Towards Computational Lexical Semantic
Change Detection” (Swedish Research Council, contract 2018-01184) and the research program “Change
is Key!” (Riksbankens Jubileumsfond, contract M21-0021).

Nina Tahmasebi, workshop chair, University of Gothenburg (Sweden)
Syrielle Montariol, INRIA Paris (France)
Andrey Kutuzov, University of Oslo (Norway)
Simon Hengchen, University of Gothenburg (Sweden)
Haim Dubossarsky, University of Cambridge (United Kingdom)
Lars Borin, University of Gothenburg (Sweden)

LChange’22 Workshop Chairs
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Keynote Talk: Can historical semantics save lives? (And
other questions for computational diachronic semantics)

Dirk Geeraerts
KU Leuven/University of Gothenburg

Abstract: Drawing on a number (methodologically non-computational) diachronic semantic stu-
dies that I have carried out at various points over the past decades, I would like to draw the attention
to three issues that have so far played only a secondary role in the booming field of computational dia-
chronic semantics but that might provide some inspiration for a further expansion: first, the double-sided
status of textual interpretation, which can feature both as a descriptive target and as a methodological
source in historical semantics; second, the relevance of incorporating an onomasiological dimension
in the definition of semantic change; and third, the distinction between generalizations about semantic
change that are formulated in terms of structural and functional features (like isomorphism or frequency)
and generalizations that correlate semantic changes with external phenomena (like societal changes).

Bio: Dirk Geeraerts is professor emeritus of linguistics at the University of Leuven. His main research
focus involves the fields of lexical semantics and lexicology, with specific attention for social variation
and diachronic change of meaning and vocabulary. He is the founder of the journal Cognitive Linguistics,
and editor of The Oxford Handbook of Cognitive Linguistics (2007). Publications include The Structure
of Lexical Variation (Mouton De Gruyter 1994), Diachronic Prototype Semantics (OUP 1997), Words
and Other Wonders (Mouton De Gruyter 2006), Theories of Lexical Semantics (OUP 2010), and Ten
Lectures on Cognitive Sociolinguistics (Brill 2018).
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Keynote Talk: Human and Computational Measurement of
Lexical Semantic Change

Dominik Schlechtweg
University of Stuttgart/University of Texas, Austin

Abstract: Human language changes over time. This change occurs on several linguistic levels such
as grammar, sound or meaning. The study of meaning changes on the word level is often called Lexi-
cal Semantic Change (LSC) and is traditionally either approached from an onomasiological perspective
asking by which words a meaning can be expressed, or a semasiological perspective asking which mea-
nings a word can express over time. In recent years, the task of automatic detection of semasiological
LSC from textual data has been established as a proper field of computational linguistics under the name
of Lexical Semantic Change Detection (LSCD). Two main factors have contributed to this development:
(i) the *digital turn* in the humanities has made large amounts of historical texts available in digital
form. (ii) New *computational models* have been introduced efficiently learning semantic aspects of
words solely from text. One of the main motivations behind the work on LSCD are their applications in
historical semantics and historical lexicography where researchers are concerned with the classification
of words into categories of semantic change. Automatic methods have the advantage to produce seman-
tic change predictions for large amounts of data in small amounts of time and could thus considerably
decrease human efforts in the mentioned fields, while being able to scan more data and thus to uncover
more semantic changes which are at the same time less biased towards ad hoc sampling criteria used by
researchers. On the other hand, automatic methods may also be hurtful when their predictions are biased,
i.e., they may miss numerous semantic changes or label words as changing which are not. Results pro-
duced in this way may then lead researchers to make empirically inadequate generalizations on semantic
change. Hence, automatic change detection methods should not be trusted until they have been evaluated
thoroughly and their predictions have been shown to reach an acceptable level of correctness.

Despite the rapid growth of LSCD as a field a solid evaluation of the wealth of proposed models
was still missing in 2017. The reasons were multiple, but most importantly there was no annotated ben-
chmark test set available. In this talk I will describe the work done for my PhD from the last five years
aimed at standardizing the evaluation of LSCD models.

Bio: Dominik Schlechtweg did his PhD at the IMS (University of Stuttgart) working together with
Sabine Schulte im Walde on automatic detection of lexical semantic change. He held a PhD scholarship
from Konrad Adenauer Foundation. Since February 2022 he is a post-doctoral researcher at the IMS
(University of Stuttgart), working in the 6-year research program Change is Key! and in the research
project Towards computational lexical semantic change detection. Currently, he is doing a research in-
ternship with Katrin Erk at the University of Texas, Austin.
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Abstract

We present a benchmark in six European lan-
guages containing manually annotated infor-
mation about olfactory situations and events
following a FrameNet-like approach. The doc-
uments selection covers ten domains of inter-
est to cultural historians in the olfactory do-
main and includes texts published between
1620 to 1920, allowing a diachronic analysis
of smell descriptions. With this work, we aim
to foster the development of olfactory informa-
tion extraction approaches as well as the analy-
sis of changes in smell descriptions over time.

1 Introduction

Human experience is mediated through the senses,
which we use to interact with the world. Since
the perceptual world is so important to us, all lan-
guages have resources to describe the sensory per-
ception. Nevertheless, previous research showed
that, at least in Western European languages, the
visual dimension is prevalent in language, with a
richer terminology used to describe it, while the
olfactory dimension is less represented (Winter,
2019). For example, in English, there are less
unique words for the smell domain than for the
other senses. They are also used less frequently
and olfactory descriptions are often a target of
cross-modal expressions.

Sensory terminology has been researched previ-
ously, with the goal to build resources and to anal-
yse how the different senses are described in lan-
guage (Tekiroğlu et al., 2014b,a). Some research
is specifically devoted to smell (Lefever et al.,
2018), but they all focus on contemporary lan-
guage. One notable exception is the collection of
essays published in Jędrzejowski and Staniewski
(2021), where olfaction in different languages is

analysed in a diachronic perspective. For exam-
ple, Strik Lievers (2021) describes how the olfac-
tory lexicon has changed from Latin to Italian.

In this work, we contribute to the diachronic
analysis of olfactory language by annotating
a multilingual benchmark with smell situations
spanning three centuries. Compared to existing
studies, our focus is not on the occurrences of sin-
gle terms, but we rather capture smell events in
texts, i.e. more complex structures involving dif-
ferent participants. The benchmark currently cov-
ers six languages (Dutch, English, French, Ger-
man, Italian and Slovene). Annotation of Latin
data is ongoing, but we do not include here the
results for this language because they are still pre-
liminary.

We describe the annotation guidelines and
the document selection process. Our bench-
mark includes texts issued between 1620 and
1920 covering ten domains of olfactory inter-
est to cultural history. We release the bench-
mark at https://github.com/Odeuropa/
benchmarks_and_corpora and we present a
first analysis of its content.

2 Related Work

Studies on olfactory language in cognitive science
primarily focus on the verbal expressions of the
odour perceived (Majid and Burenhult, 2014; Ma-
jid et al., 2018), while in historical studies, instead,
they mainly deal with the textual accounts of ex-
perienced smells, as in Tullett (2019). Within the
NLP community, little attention has been devoted
to the automatic analysis of smell references in
texts. Most works have focused on the creation
of lexical databases, for example Tekiroğlu et al.
(2014b,a) worked on the creation of Sensicon, rep-
resenting the first systematic attempt to build a lex-
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icon automatically associated to the five senses.
Other studies have focused on synaesthetic aspects
of language, dealing with the multisensoriality of
sensory words. For instance, Lievers and Huang
(2016) create a controlled lexicon of perception,
while Girju and Lambert (2021) propose to use
word embeddings for the extraction of sensory de-
scriptors and their interconnections in texts.

As regards smell-specific works, Brate et al.
(2020) propose both a simple annotation scheme
to capture odour-related experiences and two
semi-supervised approaches to automatically
replicate this annotation. Lefever et al. (2018)
present an automated analysis of wine reviews,
where olfaction plays a fundamental role, while
McGregor and McGillivray (2018) introduce an
approach to automatically identify smell-related
sentences in a corpus of historical medical records
using distributional semantic modelling. More
recently, Tonelli and Menini (2021) present
FrameNet-inspired guidelines to annotate smell
events in texts. We consider this work the starting
point upon which we build our annotation task. In
particular, we aim at assessing the underlying as-
sumptions of such guidelines: whether frames can
be applied diachronically and across languages
using the same annotation scheme.

3 Annotation Guidelines

Annotation of olfactory events and situations in
texts is a new task that was recently introduced in
Tonelli and Menini (2021). We adopt the same
framework in this work, whose guidelines are
summarised below.

Olfactory annotation is inspired by the
FrameNet project (Ruppenhofer et al., 2006)1

which, focusing on the semantic dimension of
situations and participants, should be easily ap-
plicable to multiple languages and constructions.
In FrameNet, events and situations are so-called
frames and are used as synonyms for schemata,
semantic memory or scenarios. They represent
the components of the internal model of the world
that language users have created by interpreting
their environment (Fillmore, 1976).

According to frame semantics, a frame includes
two main components: lexical units (LUs) and
frame elements (FEs). The former are words, mul-
tiwords or idiomatic expressions that evoke a spe-
cific frame, while the latter are frame-specific se-

1https://framenet.icsi.berkeley.edu

mantic roles that, in case of verbal LUs, are usu-
ally realized by the syntactic dependents of the
verb. For example, the Commerce pay frame
includes as lexical units ‘pay’, ‘payment’, ‘dis-
burse’, ‘disbursement’, ‘shell out’, and has the fol-
lowing frame elements: Buyer, Goods, Money,
Rate, Seller.

While FrameNet aims to be a general-purpose
resource, the guidelines we follow only concern
olfactory situations. Therefore, the scope of
our annotation considers only smell-related lexi-
cal units and a single frame of interest, the Ol-
factory event. The same structure as the original
FrameNet is adopted based on lexical units and re-
lated frame elements. When necessary, domain-
specific semantic roles are introduced upon dis-
cussions with experts in olfactory heritage and his-
tory. For example, the roles Smell source, Evoked
odorant and Odour carrier were not originally in
FrameNet, while some generic roles such as Per-
ceiver, Time, Location and Circumstances are bor-
rowed from the original resource. An overview of
the frame elements included in our annotation is
shown in Table 2.

The list of lexical units (LUs) was defined with
the help of domain experts, choosing smell-related
lexical units that evoke olfactory situations and
events. The LU lists were created in six languages,
namely English, Dutch, Italian, French, German
and Slovenian. They include basic smell-related
terms, which are generally comparable across lan-
guages (for instance the translation of words such
as ‘to smell’, ‘odour’ ‘odorous’, ‘smelly’, ‘per-
fume’). The lists were extended with language-
and culture-specific terms, such as German com-
pound nouns created with the roots ‘-gestank’
and ‘-geruch’, e.g. Regengeruch (’rain smell’) or
Viehgestank (’cattle stink’). The initial version of
the list is reported in Table 1.

We consider these guidelines appropriate for
our task because they have been designed follow-
ing a multilingual perspective, with no language-
specific adaptations. Furthermore, as we annotate
documents from different time periods, LU lists
are not fixed, giving the possibility to add new
items as the outcome of the annotation process.

4 Document selection

In close collaboration with cultural historians, we
defined ten domains of interest, where we ex-
pected to find a high number of smell-related
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English
Nouns: stink, scent, scents, smell, smells, odour, odor, odours, odors, stench, reek, aroma, aromas, aromatic, whiff, foetor, fetor, fragrance, musk,
rankness, redolence, pong, pungency, niff, deodorant, olfaction
Verbs: smelling, smelled , reeked, sniff, sniffed, sniffing, whiffed, fragrance, deodorized, deodorizing, snuffing, snuffed
Adjectives: stinking, stank, stunk, scented, odourless, odoriferous , odorous, malodorous , reeking, aromatic , whiffy, fetid, foetid, fragrant,
fragranced, redolent, frowzy, frowsy, pungent, funky, musty, niffy, unscented, scentless, deodorized, noisome , smelly, mephitic, olfactory
Adverbs: musky, pungently
Other: atmosphere, essence, putrid.
Dutch
Nouns: Aroma, Damp, Geur, Geurigheid, Geurstof, Geurtje , Luchtje, Miasma, Mufheid, Odeur, Parfum, Parfumerie, Reuck, Reuk, Reukeloosheid,
Reukerij, Reukje, Reukloosheid, Reukorgaan, Reukstof, Reukwater, Reukwerk, Reukzin, Riecking, Rieking , Ruiker, Snuf, Stank, Stinkbok ,
Stinker, Stinkerd, Stinkgat, Stinknest, Vunsheid, Waesem, Walm, Wasem, Deodorisatie, Desodorisatie
Verbs: Aromatiseren, Deodoriseren, Desodoriseren, Geuren, Meuren, Neuzen, Ontgeuren, Opsnuiven, Parfumeren, Rieken, Riecken, Ruiken,
Ruycken, Snuffelen, Stinken, Uitwasemen, Vervliegen, Wasemen, Zwemen
Adjectives: Aromatisch, Balsemachtig, Balsemiek, Geparfumeerd, Geurig, Geurloos, Heumig, Hommig, Hummig, Muf, Muffig, Neuswijze, On-
welriekend, Penetrant, Pisachtig, Reukloos, Riekelijk, Ruikbaar, Schimmelig, Soetgeurig, Soetreukig, Stankloos, Stankverdrijvend, Stankwerend,
Stinkend, Stinkerig, Vervliegend, Vuns, Vunze, Weeïg, Welriekend, Zwavelig
Adverbs: neusgierig, neuswijs, neuswijsheid, neuswijze, reuklustig, welgeneusd
Kinds of smell: aardgeur, aardlucht, aardreuk, aaslucht, ademlucht, ambergeur, amberlucht, amberreuk, anijsgeur, balsemgeur, balsemlucht ,
bosgeur, braadgeur, braadlucht, brandlucht, brandreuk, dennenlucht, gaslucht , gasreuk, graflucht, harslucht, houtlucht, Huim, lijklucht, Meur,
modderlucht , Muf, muskusgeur, muskusreuk, pestlucht, roetlucht, rooklucht, rotlucht, rozengeur, wierookgeur, wierookwalm, wierookwolk, wijn-
reuk, zweetlucht, Pekgeur, Pikreuk (and anything ending with -geur or -reuk).
Italian
Nouns: lezzo, morbo, putidore, fiatore, puzzo, puzza, fetore, miasma, putrefazione, effluvio, esalazione, estratto, odore, aroma, olezzo, fragranza,
profumo, aulimento, odoramento, afrore, tanfo, tanfata, zaffata
Verbs: odorare, puzzare, profumare, deodorare, odorizzare, aromatizzare, fiutare, annusare, nasare, olezzare, ammorbare, appestare, impestare,
impuzzare, impuzzire, impuzzolentire, impuzzolire, intanfare
Adjectives: puzzolente, fetente, fetido, deodorizzato, putrefatto, odorato, odoroso, odorifero, aromatizzato, profumante, profumato, suave, soave,
olfattivo, olfattorio, maleodorante, aromatico, pestilenziale, puzzoso, fragrante
Adverbs: profumatamente, odorosamente
Other: essenza, atmosfera, sentire
French
Nouns: puanteur, flair, odeur, odorat, parfum, arôme, déodorant, nez, narine, gaz, baume, senteur, fragrance, musc, senteur, aigreur, olfaction,
odorat, effluve, exhalaison, fumet, relent, pestilence, fétidité, remugle
Verbs: puer, flairer, exhalter, odoriser, renifler, schlinguer, chlinguer, empester, parfumer, désodoriser, humer, renifler, embaumer
Adjectives: puant, odorant, fétide, aromatique, olfactif, odorifère, odoriférant, nasal, pestilentiel, infect, malodorant, parfumé, inodore, piquant,
désodorisé, méphitique, olfactif, empesté, infect, nauséabond
Other: émanation, bouquet (about wine), sentir, sniffer, dégoûtant, dégoutant, écoeurant, percevoir
German
Nouns: Geruch, Gestank, Aroma, Parfum, Parfüm, Parfümöl, Duft, Dampf, Dunst, Duftstoff, Riechwasser, Duftwasser, Riechorgan, Geruchsorgan,
Nase, Riechstoff, Aromastoff, Riechwasser, Duftwasser, Riecher, Qualm, Zigarettenqualm Anything ending on -geruch / -gestank / -duft
Verbs: aromatisieren, riechen, stinken, schnüffeln, schnuppern, beschnuppern, parfümieren, ausdünsten, duften, qualmen, einatmen, inhalieren,
ausdünsten, exhalieren, verfliegen, verdampfen, evaporieren, sich verflüchtigen
Adjectives: parfümiert, olfaktorisch, wohlriechend, stinkend, duftend, riechend, muffig, modrig, aromatisch, blumig, geruchlos, penetrant, durch-
dringend, schimmlig, schimmelig Anything ending on -duft / - duftig / -riechend
Kinds of smell: Aasgestank, Abgasgeruch, alkoholisch, angebrannt, angenehm, anregend, Apfelduft, beißend, Babygeruch, blumig, brennend,
durchdringend, dominant, ekelerregend, ekelhaft, erdig, erfrischend, erregend, fade, faul, frisch, fruchtig, harzduftend, harzig, herb, herbstlich,
holzig, intensiv, kamillig, käsig, klinisch, ländlich, Lavendelduft, Lebkuchenduft, ledrig, Leichengeruch, Leichengestank, metallisch, mild, minzig,
mosig, Moschusgeruch, muffig, muffelig, nussig, Pfefferminzgeruch, pilzig, Puderduft, ranzig, rauchig, Regengeruch, salbeiartig, salzig, Sandel-
holzduft, säuerlich, schal, schwefelig, schweißig, Schweißfußgeruch, sommerlich, schwer, seifig, staubig, stechend, steril, stickig, streng, süßlich,
Tabakgeruch, unangenehm, Uringeruch, verbrannt, verfault, Viehgestank, Weihrauchduft, Wundgestank, würzig, zimtig, zitronig. Anything ending
on - duft / -geruch
Slovenian
Nouns: vonj, smrad, duh, voh, vonjava, dišava, umetna dišava, parfum, aroma, dišavina, priduh, vzduh, aromatičnost, pookus, pikantnost, zatohlost,
deodorant, dezodorant, zadah, zaudarjanje
Verbs: smrdeti, zaudarjati, dišati, zadišati, zavonjati, zadehteti, zaduhteti, vohati, duhati, vonjati, ovohati
Adjectives: gnil, smrdljiv, smrdeč, umazan, usmrajen, prijeten, dišeč, aromatičen, dišaven, zaudarjajoč, postan, zatohel, opojen, brez vonja,
vohalen, žaltav, strupen, toksičen, ogaben, oster, pikanten, vohalen, odišavljen
Other: plesniv, pokvarjen, zadušljiv, zadušen, čuten, zavdajati, buket

Table 1: Initial list of possible lexical units for each language of interest. We list under Other the terms that
were initially not included because they are ambiguous, but that were annotated as lexical units during benchmark
creation.

documents. These domains are: Household
& Recipes, Law and Regulations, Literature,
Medicine & Botany, Perfumes & Fashion, Pub-
lic health, Religion, Science & Philosophy, The-
atre, Travel & Ethnography. The additional cate-
gory Other was included in the list for documents
which are relevant to the olfactory dimension but
do not fall within any of the previously mentioned

categories. Ideally, the benchmark should contain
10 documents for each category, distributed evenly
over the time period between 1620 and 1920, for a
total of 100 documents. However, no strict length
requirements were defined for each document, be-
cause their availability and characteristics change
drastically across languages. In some cases, a doc-
ument may be few pages with dense olfactory in-
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Frame Element Example Sentence
Smell Source The person, object or place that has a specific smell.

The odour [of tar] and [pitch] was so strong.
Odour Carrier The carrier of an odour, either an object (e.g. handkerchief) or atmospheric elements

(wind, air)
The unpleasant smell [of the vapour] of linseed oil extended for a considerable distance.

Quality A quality associated with a smell and used to describe it.
Earth has a [strong], [aromatic] odour.

Perceiver The being that perceives an odour, who has a perceptual experience, not necessarily on
purpose.
The scent is described by [Dr. Muller] as delicious.

Evoked Odorant The object, place or similar that is evoked by the odour, even if it is not in the scene.
In offensive perspiration of the feet [a peculiar cabbage-like] stench is given off.

Location The location where the smell event takes place.
And, particularly, [at the foot of the garden], where he felt so very offensive a smell that
has sickened him.

Time An expression describing when the smelling event occurred.
Galeopsis smells fetid [at first handling], [afterwards] aromatic.

Circumstances The state of the world under which the smell event takes place.
[When stale] the lobster has a rank stench.

Effect An effect or reaction caused by the smell.
An ill smell [gives a nauseousness].

Creator The person that creates a (usually pleasant) smell.
The origin of perfume is commonly attributed [to the ancient Egyptians].

Table 2: Overview of the Frame Elements (FEs) related to Olfactory situations and events with corresponding
examples. Lexical units are underlined and the FE of interest is in square brackets. The same definitions hold for
all languages included in the benchmark. For more details on FEs descriptions see (Tonelli and Menini, 2021).

formation, while in some other cases a book could
contain smell references scattered throughout the
volume. Therefore, each of the six annotation
teams was free to apply the most appropriate cri-
teria for the selection of documents to annotate.
For example, Dutch annotators decided to focus
on short text snippets of around 20 sentences. For
Italian and English, longer passages up to a few
hundred sentences are included. Other differences
across languages concern the quality and variety
of available documents in digital format. While
for some languages, such as Dutch and English,
large online repositories exist and it was possible
to find documents belonging to each of the 10 do-
mains and covering the time span of interest, the
limited availability of digital repositories of Slove-
nian texts does not allow the collection of the full
set of documents. This is the main reason why
there are some qualitative and quantitative differ-
ences among languages.

Annotations were performed using INCEp-
TION (Klie et al., 2018), a web-based platform
which allows three levels of authorisations (ad-

ministrator, curator, annotator) and is therefore
particularly suitable to support large annotation ef-
forts like ours. A screenshot of the interface is
shown in Figure 1.

5 Quality control

We implement two quality control measures: 1)
a web-based consistency checker, and 2) double
annotation of a set of documents for each language
to compute inter-annotator agreement and discuss
difficult cases.

5.1 Quality Consistency Check

Given the complexity of the annotation process,
which is carried out by multiple annotators for
each of the six languages, it is important to ensure
that the different annotations are consistent with
the instructions provided in the guidelines.

To facilitate a consistency check, we developed
a web-based tool to automatically find when an-
notations are not compliant with the guidelines.
The tool takes an exported WebAnno file from IN-
CEpTION as input and outputs a report describing
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Figure 1: Screenshot of the INCEpTION annotation tool

which inconsistencies are found and where (with
document ID, sentence number and string). This
makes it straightforward to find the mistake and
fix it quickly.

The inconsistencies identified in the files are re-
lated to both incorrect and missing annotations,
focusing on the annotation procedure and not the
content of the annotations. For instance, it checks
if every frame element is properly connected to a
smell word and if all selected spans have been as-
signed to a corresponding label. Operating at the
level of labels and relations, that are the same for
every language, and not considering the text con-
tent, the tool is language-independent.

After analysing the annotation output, the qual-
ity checker returns details about five error types:

• Spans that have been selected but not labeled;

• Smell words with double annotation, which
have not been linked to themselves;2

• Frame elements that despite being annotated
are not linked to any other element in text;

• A Smell_Word is the starting point of a rela-
tion instead of the ending point;

2There are instances where the same token can be at the
same time a Smell_Word and another frame element related
to the Smell_Word itself. For instance, ‘odoriferous’ may be
both a Smell_Word and a Quality. In these cases, a relation
should be set between the FE label and the smell word. This
error notifies the absence of this relation.

• Frame elements connected to something
other than a Smell_Word.

Given the complexity of the annotation, for all
languages involved the quality check step has been
very useful to identify formal mistakes, allowing
the removal of dozens of inconsistencies.

5.2 Inter-Annotator Agreement

Having at least two annotators for each language is
necessary to obtain a double annotation of a sub-
set of the benchmark and compute inter-annotator
agreement, which is commonly considered a mea-
sure of annotation quality (Artstein and Poesio,
2008).

INCEpTION contains an integrated set of tools
to compute inter-annotator agreement.3 Among
the proposed metrics, the most suitable for our task
is Krippendorff’s alpha (Krippendorff, 2011), as
it supports more than two annotators (that is the
case for some of the languages). This measure
considers also partial overlaps, e.g. one annota-
tor labelled only a noun while the other included
also its article.

Inter-annotator agreement between two raters
was computed, usually over a set of around 200
annotations (both FEs and smell words). In gen-
eral, this was carried out after an extensive ini-

3More details about this function are documented
at https://inception-project.github.io/
releases/20.2/docs/user-guide.html#sect_
monitoring_agreement
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Dutch English French German Italian Slovenian
Smell words 1,788 1,530 845 2,659 1,254 1,973
Total FEs 4,962 4,023 1,876 5,885 2,664 4,445
Source 1,922 1,313 710 2,297 952 1,638
Quality 1,071 1,084 450 1,730 707 936
Perceiver 336 362 140 399 153 266
Circumstances 399 248 88 274 202 228
Odour carrier 351 310 106 170 195 408
Effect 243 187 53 425 104 214
Evoked Odorant 228 91 103 258 74 285
Place 255 302 172 200 158 394
Time 127 126 49 131 119 75
Creator 30 0 5 1 0 1

Table 3: Overview of benchmark content for each language.

tial training of annotators. Agreement is 0.68
for English, 0.56 for Slovenian, 0.62 for French
and 0.74 for Italian. For the other languages
the process is still ongoing. In general, the ma-
jor sources of disagreement are the extent of FE
spans, a rather long distance between a FE and a
smell word and possible different interpretations
of some roles, in particular Location vs. Circum-
stances and Smell source vs. Odour carrier. While
annotation guidelines were updated to make these
distinctions clearer, some cases of disagreement
are still very much dependent on annotators’ pref-
erences and interpretation.

6 Benchmark statistics

In this section, we detail the content of our bench-
mark in each language. Table 3 shows the num-
ber of occurrences of smell words and frame ele-
ments. Overall, for each language a good number
of smell-related events and situations were anno-
tated.

The average number of frame elements (FEs)
associated with each smell event is between 2.1
and 2.7 for all languages, showing an interesting
common feature. Furthermore, the most frequent
FE is the Smell Source, followed by the Qual-
ity for all languages. This shows a pattern in
the way smell situations and events are typically
described, where the source and the quality are
clearly core elements that are necessary to char-
acterise the scene.

The FE element with the least annotations is in-
stead ‘Creator’. This is due to the fact that this
role was added at a later stage in the annotation

process, mainly to cover documents related to per-
fumery. It is therefore present only in the bench-
marks that contain this kind of documents. For
further discussion see Section 8.

In Figure 2, we report the number of documents
per domain in each language-specific benchmark
(see list of domains in Section 4). Overall, we ob-
serve a prevalence of literary texts (LIT), proba-
bly because this is the most represented domain in
large repositories such as Wikisource and Project
Gutenberg. Travel literature and medical texts are
also well-represented in all languages. Despite the
effort to have a balanced benchmark covering the
same domains in all languages, however, results
are mixed. For some languages, well-represented
in large digital repositories, this balance was pos-
sible to some extent, with English being the only
one covering all domains. For other languages, the
benchmarks are affected by the limited variety of
resources available in digital format, see for ex-
ample Slovenian. Availability is a major obstacle
when trying to create historical corpora that cover
different domains.

In Figure 3, we report the temporal distribu-
tion of the documents present in the benchmark
for each language. All languages overlap in the
time period of interest, with the Dutch benchmark
including some earlier texts but no data after 1880,
and the Italian dataset going beyond 1930. Similar
to the above remarks, also in this case we observe
that, due to different data availability, not all time
periods are covered equally.
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Figure 2: Number of documents per domain in each language-specific benchmark. HOUS = Household & Recipes,
LAW = Law, LIT = Literature, MED = Medicine & Botany, OTH = Other, PER = Perfumes & Fashion, PUB =
Public health, REL = Religion, SCIE = Science & Philosophy, THE = Theatre, TRAV = Travel & Ethnography.

Figure 3: Temporal distribution of documents in each language-specific benchmark

7 Towards smell related information
extraction

One of the goals of this benchmark is to enable
temporal-aware information extraction tasks re-
lated to the olfactory domain. As a first step in this
direction, we explore sentence classification using
the English benchmark. Since our corpus consists
of historical documents, we evaluate performance
of a transformer model that is pre-trained using
historical corpora, in light of Lai et al. (2021)’s
proposal.

We focus on the task of classifying sentences as
smell-related or not. Since the corpus is annotated
at token level, we first label the sentences that con-
tain any smell event annotation as smell-related,
which are 897 out of the total 3,141 sentences. We
randomly choose 650 (190 smell-related, 460 not
smell-related) sentences as a held-out to measure

the performance of fine-tuning on the remaining
2,491 sentences.

We compare the performance obtained us-
ing BERT base uncased with sequence length
1284 (Devlin et al., 2019), RoBERTa base case-
sensitive with sequence length 5125 (Liu et al.,
2019), and MacBERTh (Manjavacas and Fonteyn,
2021)6 to identify sentences that are smell-related
in English. MacBERTh is a BERT variant that is
uncased with sequence length 128 and pre-trained
from scratch using historical corpora. Each model
was fine-tuned five times using five different ran-

4https://huggingface.co/
bert-base-uncased, accessed on February 27,
2022

5https://huggingface.co/roberta-base,
accessed on February 27, 2022

6https://www.github.com/emanjavacas/
macberth-eval, accessed on February 27, 2022.
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dom seeds (42, 43, 44, 45, 46) for all random as-
pects of the fine-tuning, batch size of 64, sequence
length of 64, learning rate (2e-5), epochs (30),
and random splitting for obtaining a development
set from the training set (.15). Table 4 demon-
strates the median performance of each fine-tuned
model in terms of Matthews Correlation Coeffi-
cient (MCC), Precision, Recall, and F1-macro on
the held-out dataset. We observe that macBERTh,
which was pretrained using historical data, out-
performs the base transformer models BERT and
RoBERTa. This confirms the need to build mod-
els that are temporal-aware when dealing with his-
torical corpora. Furthermore, the performance
achieved by all models is above 0.90, showing that
it is possible to yield good results in the task even
if using relatively few training data.

Model MCC Precision Recall F1-macro
BERT 81.44 92.82 90.17 90.43

MacBERTh 85.66 94.08 91.91 92.72
RoBERTa 84.51 93.43 91.43 92.11

Table 4: Median scores in terms of Mathews Correla-
tion coefficient (MCC) and macro precision, recall, and
F1 over five runs

We analyzed the predictions of the best
RoBERTa and MacBERTh models on 300 test
sentences divided into two groups: the first one
includes test sentences from documents published
between 1619 and 1846, while the second cov-
ers the time period between 1847 and 1925.
The F1-macro obtained with the MacBERTh
model is 95.40 and 90.46 for the earlier (1619-
1846) and later periods (1847-1925) respectively.
The RoBERTa model achieves 92.46 and 91.42
F1-macro in the same setting. Although the
MacBERTh model yields significantly better re-
sults for data published in the earlier period, the
RoBERTa model yields a balanced performance
across periods.

8 Discussion

During the creation of the benchmark, we have
encountered two major issues related to working
with historical data. The first, already mentioned
in Section 6, is the limited availability of doc-
uments for some languages, domains and time
spans. This has affected the possibility to cre-
ate balanced benchmarks for all six languages, al-
though a remarkable effort was put in manually

looking for digital collections and selecting rele-
vant documents.

Another major issue was the need to clean or
correct some of the texts before the annotation,
mostly due to the limits of OCR applied to old
documents. Problematic transcriptions can be
connected in part to stains or other imperfections
in the paper, and in part to the evolution of lan-
guage, with older documents presenting letters
that have fallen into disuse in contemporary lan-
guage. For instance, in French, Italian and En-
glish we found lost characters (e.g. long s "

∫
", of-

ten confused with "f" as in “perfumes", misspelled
as “persumes" in English), characters used differ-
ently (v instead of u, like in “vne" for French,
or “vlcers" for English), changes in word spelling
(“pourquoy" instead of “pourquoi" in French), and
abandoned words.

Another interesting element is that annotation
guidelines were adapted several times during the
benchmark creation process, because it was not
possible to foresee all potential issues we encoun-
tered during annotation. Indeed, domain speci-
ficity of some texts and the different use of lan-
guage in historical documents made it difficult to
straightforwardly follow annotation instructions.
For example, frame element definitions have been
adjusted and the ‘Creator’ element was added.
Furthermore, the initial list of lexical units (Table
1) was extended in the process, enabling annota-
tors to add new terms encountered during manual
labelling.

9 Conclusion and Future Work

In this paper, we presented a multilingual bench-
mark annotated with smell-related information
and covering six languages, which we make avail-
able to the research community. We have de-
scribed the document selection rationale, the an-
notation process and the main challenges related
to the creation of a multilingual benchmark con-
taining historical documents. Annotation of Latin
is in progress, and it will be added to the bench-
mark as soon as it is complete.

The benchmark is only a first step towards the
analysis and extraction of olfactory information
from historical documents. The work introduced
in Section 7 will be extended to all six languages,
using historical BERTs when available. Further-
more, we will go beyond simple sentence classi-
fication, training multilingual classifiers to iden-
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tify lexical units and frame elements. Since the
size of the benchmark is rather limited, we will try
to expand it in the future but also explore semi-
supervised, few-shot and cross-lingual approaches
to olfactory information extraction.
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Serra Sinem Tekiroğlu, Gözde Özbal, and Carlo Strap-
parava. 2014a. A computational approach to gen-
erate a sensorial lexicon. In Proceedings of the 4th
Workshop on Cognitive Aspects of the Lexicon (Co-
gALex), pages 114–125, Dublin, Ireland. Associa-
tion for Computational Linguistics and Dublin City
University.
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Abstract

Languages around the world employ classifier
systems as a method of semantic organization
and categorization. These systems are rife with
variability, violability, and ambiguity, and are
prone to constant change over time. We explic-
itly model change in classifier systems as the
population-level outcome of child language ac-
quisition over time in order to shed light on the
factors that drive change to classifier systems.
Our research consists of two parts: a contrastive
corpus study of Cantonese and Mandarin child-
directed speech to determine the role that am-
biguity and homophony avoidance may play in
classifier learning and change followed by a se-
ries of population-level learning simulations of
an abstract classifier system. We find that acqui-
sition without reference to ambiguity avoidance
is sufficient to drive broad trends in classifier
change and suggest an additional role for adults
and discourse factors in classifier death.

1 Introduction

Classifier and measure word systems are common
across the world’s languages. While they are the
most common and most associated with Southeast
and East Asia, they are also present in some lan-
guages of South Asia, Australia, the Pacific, and the
Americas among others (Aikhenvald, 2000). Sys-
tems vary language-to-language, but share some
general properties. They divide up the space of
nouns along some semantic space, often encoding
lexical semantic information including animacy,
concreteness, and size and shape categories. For
example, Mandarin has classifiers for long objects
(e.g., tiáo 條), some animals (zhı̄ 隻), and vehi-
cles (liàng輛). On the other hand, some classifiers
like the Mandarin general classifier gè個 do not
seem to pick out anything in particular, or they in-
stead pick out extremely narrow, almost lexicalized
classes, such as zūn 尊, which as a classifier ap-
plies only to certain colossal metal objects such

Figure 1: The Z-model of change extended to a popula-
tion setting

as cannons and Buddhist statues (Gao and Malt,
2009).

Compared to most inflectional noun class sys-
tems, classifiers are more subject to variable dis-
course conditions. Several classifiers may be used
grammatically with a given noun as conditions al-
low. For example, ‘a goat’ may be expressed with
the animal classifier zhı̄ or general classifier gè,
but also tiáo or tóu頭 used for livestock (Erbaugh,
1986). The balance of semantic specificity, arbi-
trariness, and variability presents a challenge for
native learners. How do individuals acquire both
the semantic conditions and arbitrary lexical pat-
terns of classifier systems?

Parallel to this, classifier systems are subject to
constant change, both for language-internal reasons
(e.g., grammaticalization of new classifiers, word
death of old classifiers) and external ones, particu-
larly contact (Aikhenvald, 2000). Erbaugh (1986)
illustrates a few cases of changes in classifier usage
in Mandarin and its ancestors over the past 3500
years. Gè個, the overwhelming majority catch-all
classifier in the modern language only gained this
status during the Qing Dynasty (CE 1644-1912).
For the millennium prior since the Tang dynasty,
méi枚 had been the default, but it has since been
relegated to a niche classifier for small needle and
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badge-like objects. Both gè and méi began as niche
classifiers in their respective eras before gradually
generalizing. In a similar vein, Habibi et al. (2020)
explore how linguistic categories change through
chaining, via the usage of Mandarin Chinese classi-
fiers in the past half century. The latter two studies
discuss the development of Mandarin classifiers
over time. They are based on careful research, but
they are also limited to a single language. Erbaugh
(1986) in particular stops short of a quantitative
assessment.

We provide a computational analysis of di-
achronic trends in classifier systems which com-
plements prior developmental and historical re-
search. We approach the problem in two ways.
First, we present a quantitative analysis of clas-
sifiers in Cantonese and Mandarin child-directed
speech to investigate the possibility of a functional
role for classifiers as disambiguators which could
influence the direction of child-driven change. Sec-
ond, we model a simulated classifier system using
a population-level transmission model to determine
how language acquisition may drive trends in clas-
sifier patterns over time. We find support for input
sparsity and learning, without reference to specific
functional concerns, as a primary driver for gradual
classifier generalization over time.

1.1 Outline

The paper is organized as follows. Section 2 sur-
veys cross-linguistic patterns in classifier acquisi-
tion and summarizes work connecting language
acquisition to change. Section 3 is a comparative
study of adult classifier use in Cantonese and Man-
darin child-directed speech corpora. This motivates
our simulation. We show that the historical devel-
opment of classifiers is unlikely to be driven by
functional communicative concerns such as ambi-
guity avoidance on behalf of the learner. Section 4
describes our simulation, which falls under the um-
brella of neutral or drift-based models of change.
We find that classifiers tend to generalize, fail to
maintain distinct semantic features, and also can-
not go out of use randomly. Section 5 discusses
the implications of our simulation in reference to
Chinese in particular and provides suggestions for
future extensions to this line of work.

2 Classifier Learning and Change

Language acquisition has long been implicated as a
driver of language change (Paul, 1880; Halle, 1962;

Andersen, 1973; Baron, 1977; Lightfoot, 1979;
Niyogi and Berwick, 1997; Yang, 2002; Kroch,
2005; van Gelderen, 2011; Yang, 2016; Cournane,
2017; Kodner, 2020, i.a.), and this has particu-
larly been true for morphology, where child over-
productivity errors (Marcus et al., 1992; Mayol,
2007) quite often mirror the processes of analog-
ical change, which is itself closely connected to
productivity (Hock, 2003, p.446).

Classifier systems are not structurally morpho-
logical and do not trigger syntactic agreement like
inflectional noun class systems, but they share some
key properties in both their use and acquisition.
Both often encode lexical semantic information in-
cluding animacy, concreteness, and size and shape
categories. For example, the Bantu language Shona
has noun classes for mostly long-skinny things
(e.g., class 11 ru-), classes for animals (e.g., class 9
(i)-), and miscellaneous classes (e.g., class 7 chi-)
which correspond broadly to the Mandarin clas-
sifiers described in Section 1. Both noun classes
and classifiers may be semantically porous with
many lexical exceptions. And while classifiers are
generally more variable than inflectional classes,
the later may also show variability. In Shona again,
people usually take the class 1 mu- prefix (mu-nhu
’person’), but if a speaker wishes to highlight that
a person is particularly tall and thin, they may em-
ploy the long-skinny class 11 prefix (ru-nhu).

Learners of classifier languages exhibit gener-
ally competent classifier use by age 4 or 5, though
they show some command over their syntax much
earlier (Chien et al., 2003; Tse et al., 2007; Liu,
2008). Children are prone to overusing the gen-
eral or default classifier in Japanese (Uchida and
Imai, 1999), Mandarin (Liu, 2008), Cantonese (Tse
et al., 2007), and Vietnamese (Tran, 2011), similar
to the over-extension of default patterns in morphol-
ogy (Pinker and Prince, 1994). They take longer
to acquire rare classifiers and those with complex
semantic restrictions (Yamamoto and Keil, 2000).

A division of classifiers into semantically well-
defined and arbitrary features is well-motivated by
a series of experiments carried out by Gao and
Malt (2009) on Mandarin. This further clarifies
what the learning task entails. Children must work
out whether classifiers are lexically defined or ap-
ply generally to a given semantic class and is con-
sistent with observed developmental trajectories:
young learners pass through an early lexicalized
stage in which classifiers are defined narrowly by
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which lexical items they match with rather than
their general semantics. This is by a higher than
adult-rate use of generic classifiers, before they set-
tle on an adult-like distribution (Erbaugh, 1986).
This is parallel to the classic inflectional learning
trajectory, a pre-generalization period, followed by
over-generalization of defaults, followed by set-
tling on an adult-like distribution.

Erbaugh (1986) explicitly connects classifier ac-
quisition to change in Chinese and notes several
parallels between Chinese classifier acquisition and
change. Most relevant for the present study, classi-
fiers are narrowly, perhaps lexically, defined when
they enter the language and then trend towards gen-
erality. Furthermore, they apply to concrete objects
with real-world identifiable semantics before ab-
stract concepts, in line with children’s preference
for real world referents in their dialogues.

Taken together, classifier systems have enough
in common with inflectional class systems that their
acquisition and change can be modeled similarly.
Linguistic transmission, the passing of a language
from one generation to the next through native lan-
guage acquisition (Weinreich et al., 1968), provides
a fundamental role for acquisition in change. An-
dersen (1973) formalizes change as the long-term
consequence of abductive processes in language
acquisition through his Z-model: Speakers have
some internal grammar which generates a set of
linguistic examples which serve as the input to the
next generation. The next generation acquires a
grammar based on these finite inputs and produces
outputs for the next generation. This process pro-
ceeds indefinitely. Abduction is error-prone, and
differences between the grammars of the first and
second generation are tantamount to change.

But language change is fundamentally a
population-level process (Weinreich et al., 1968;
Labov, 2001), so the Z-model must be thought of
as countless parallel lines of transmission and not
a single Z-shape. Additionally, transmission does
not proceed through discrete generations, but rather
is continuous across age cohorts in the population,
so the Z-model should be staggered both across
the population and across time. This view, dia-
grammed in Figure 1, forms the conceptual basis
of our simulation.

A population-based transmission model in which
what is acquired is driven primarily by the input and
not additional functional factors may be described
as neutral. This is often assumed as the baseline

in biological evolution (Neutral Theory; Kimura,
1983), and may be relevant for language change as
well (Kauhanen, 2017). The following section tests
an alternative, that classifiers emerge to decrease
homophony, before adopting a neutral approach.

3 Classifiers and Homophony

This section quantifies classifier use in Mandarin
and Cantonese child-directed speech (CDS). Their
systems are quite similar, both having descended
from Middle Chinese. Since their divergence, the
languages have undergone substantial phonological
divergence resulting in much less syllable diversity
in Mandarin compared to Cantonese.1 For this
reason, Mandarin is expected to show more ho-
mophony than Cantonese, though this is offset by
an increase in polysyllabic words in Mandarin.

Disambiguation of homophones is one possible
function of classifiers and a potential functional
(i.e., non-neutral) driver of change. More elaborate
classifier systems may develop in response to more
rampant homophony. We compare Mandarin and
Cantonese CDS to determine whether homophony
avoidance is plausibly part of the child’s role in the
development of the Chinese classifier systems. If
true, we would expect Mandarin CDS to show more
noun form ambiguity than Cantonese and show
more classifier disambiguation of homophonous
word types. For comparison, we also investigated
the rate of polysyllabic noun forms in Mandarin
and Cantonese. The increase in polysyllabicity
in Chinese varieties is traditionally taken to be a
response to increased homophony due to phonemic
mergers (Karlgren, 1949).

All POS-tagged Mandarin and Cantonese cor-
pora were extracted from the R conversion
(Sanchez et al., 2019) of the CHILDES database of
child-directed speech corpora (MacWhinney, 2000)
except for Erbaugh, which could not be retrieved.
The first two data rows of Table 1 summarize the
corpora, and (1)-(2) provide example utterances
together with translations that we sourced from
speakers of those languages. We extracted classi-
fiers tagged cl from adult speech in the corpora
if they preceded a noun, or preceded an adjective
or adverb which preceded a noun, along with the
noun itself. Sometimes transcription lines did not
align with the characters, which we attempted to
resolve by tracking known classifier characters and

1E.g., Mandarin’s 4 (5) tones, and ∼34 syllable rimes
compared to Cantonese’s 9 and 60.
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Corpus #Types (%Poly) %Types HP %Disamb #Toks (%Poly) %Toks HP %Disamb #Cl
Cantonese 1182 (55.6) 4.653 20.000 19880 (21.4) 7.706 6.201 76
Mandarin 2151 (71.8) 7.345 22.785 30891 (41.8) 28.558 6.506 149
Mandarintype 1182.2 (63.0) 8.815 20.430 28066 (39.0) 28.264 6.776 140.0
Mandarintok 221.9 (43.0) 4.778 16.981 19880 (31.9) 23.431 3.078 98.5

Table 1: Adult Cantonese, Mandarin, avg. type freq-controlled Mandarintype, and avg. token freq-controlled
Mandarintok corpus size, %nouns polysyllabic, % nouns which are homophonous (HP), the % of homophonous
nouns which are disambiguated by their classifiers, and # classifiers.

examining the neighbourhood of the incongruency
in the sentence. A handful of cases could not be re-
solved, so they were omitted. We omitted classifier
pro-forms since no noun surfaces in the utterance.
We define homophones as two word forms with
different characters but the same transcription.

(1) Cantonese (HKU-70; Fletcher et al., 1996)
INV:你得一個啤啤 zaa4 .
%mor: pro|nei5=you stprt|dak1
num|jat1=one cl|go3=cl
n|bi4&DIM=baby sfp|zaa4 .

“You only have one baby?!”

(2) Mandarin (Zhou1; Zhou, 2001)
MOT:开这个盒子 .
%mor: v:resc|kai1=open
det|zhe4=this cl|ge4 n|he2zi=box .

“Open this box.”

Since corpus size could have a substantial ef-
fect on the ratios reported in the corpora, we opted
to downsample the Mandarin corpus to match the
size of Cantonese and compare both the downsam-
pled and raw Mandarin. We dropped out Mandarin
tokens selected uniformly at random until the cor-
pus matched the Cantonese corpus in type or to-
ken count. This was repeated for 100 trials and
the counts for each trial were averaged. The re-
sulting Mandarintype matched for type count and
Mandarintok matched for token count are the last
two rows in Table 1. When matched for types, the
Mandarin corpus has substantially more polysyl-
labic words than Cantonese, and when matched
for tokens, it has substantially more polysemous
tokens. It also has a wider range of classifiers and
measure words.

The table also shows the rates of homophonous
word types in the corpora as well as the proportion
of those which are disambiguated. We defined a
homophonous word type as disambiguated if every
homophone is attested with at least one classifier
not attested with any other homophone in a set, and
a disambiguated word token as any token which
belongs to a disambiguated word type. Despite the

increase in polysyllabicity, Mandarin is still much
more ambiguous than Cantonese. Nevertheless,
its homophones are not significantly more disam-
biguated.2

This analysis is consistent with (but does not
prove) the idea that polysyllabicity emerged in
Chinese in a response to ambiguity. In contrast,
it does not support a role for homophony avoid-
ance in adults as a motivation for the classifier
system. Even though the Mandarin acquisition
corpora attest more classifiers and measure words,
only about 1/5 of homophonous types and 1/18 of
homophonous tokens are disambiguated by classi-
fiers. The fact that tokens are much less likely than
types to be disambiguated, and that the type dis-
ambiguation rate declines as the number of types
fall in Table 1, also indicates the type disambigua-
tion rate is generous and inflated by low frequency
and edge cases. Additionally, Mandarin does not
exhibit more classifier disambiguation even though
it is more homophonous than Cantonese. Given
this, we can justify our major modeling assump-
tion, that changes to the classifier system need not
be primarily driven by communicative concerns.
We consider potential alternative sources of func-
tional pressure in Section 5.

4 A Classifier System in a Population

The empirical analysis in the previous section mo-
tivates a neutral model of change for the Chinese
classifier system. In this section, we introduce a
population-level model of linguistic transmission
to investigate the dynamics of classifier systems
over time. We describe the details of our simula-
tion, including the algorithm and parameters, their
relevance, and their specific empirical motivations.
We then discuss our findings across different pa-
rameter settings, and consider their implications

2One-sided Z-test on Cantonese vs. Mandarintype types
is insignificant: Z = 1.570 at α = 0.05, while test on
Cantonese vs. Mandarintype tokens shows that Cantonese
has significantly fewer disambiguated homophones Z =
−2886.511.
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in the study of classifiers, learning, and language
change.

4.1 Methodology

At a high level, our simulation consists of a popu-
lation of entities sorted by age into “children” who
are still acquiring a classifier system and “adults”
with productive representations of classifiers. At
the start of each iteration, the oldest adult “dies,”
a new child is “born,” and every entity’s age is
incremented, with the eldest child maturing into
an adult, as we describe later. During the itera-
tion, adults interact with a subset of children, and
children learn from these interactions. Crucially,
transmission flows from the pool of adults as a
whole. Ages are continuous, and children can learn
from the youngest adults as well as the oldest. This
admits the diffusion of innovations, thus actuat-
ing the change (Labov et al., 1972) and potentially
yields significant variable input for the learners.
Algorithm 1 formalizes the population model.3

Algorithm 1 Simulation iteration algorithm
1: CH ← List of children of size K
2: AD ← List of adults of size N −K
3: for s := 1...S do
4: Delete AD[−1] as oldest adult "dies"
5: Move CH[−1] to AD[0] as oldest child "matures"

using productivity method PROD
6: A new child is "born" at CH[0]
7: for all adult ∈ AD do
8: mutate_classifier_set(adult, A,D)
9: for i := 1...I do

10: child← random child ∈ CH
11: nouns← J random lexical items
12: interact(adult, child, nouns)
13: end for
14: end for
15: end for

Classifiers in the simulation are represented as
abstract binary semantic features (abstract, but con-
ceptually equivalent to ±ANIMATE, ±FLAT, etc.).
These are encoded as binary vectors of size F . Lex-
ical items are organized along a Zipfian distribu-
tion, since it is observed to fit token frequencies
well across languages (Zipf, 1949; Baayen, 2001;
Yang, 2013). At initialization, each adult has the
same set of C classifiers. This set includes at least
one “most general” classifier, while other classifiers
are initialized randomly. Children are initialized so
that at the first iteration it is as if the eldest child has
gone through K iterations (and therefore rounds of
interactions) already.

3Parameterized according to Table 2 in the Appendix.

Nearly all simulations run using a feature hier-
archy: features are organized hierarchically with
one most generic parent feature and up to B sub-
features such that there are F total features. The
presence of a sub-feature implies the presence of
its parent features. Depending on the simulation,
up to H features are assigned in this manner. A flat
representation would make for ambiguous results
in this already abstract simulation, since it would
be unclear whether more features correspond to a
more general or more specific classifier.

Children learn as follows: in each iteration, chil-
dren observe many classifier-noun pairs. They add
the features on the noun to a running tally of ob-
served features for the classifier, but crucially, they
do not yet know which features actually select the
classifier, since nouns may contain properties that
are just incidental and unrelated to the particular
choice of classifier. After some K iterations, a
child matures. The child evaluates whether a classi-
fier productively expresses a feature by comparing
its observations against a threshold for productiv-
ity provided by the Tolerance Principle (TP; Yang,
2016), a quantitative model of productivity learning
which has been successful in accounting for devel-
opmental patterns in morphology and elsewhere.

For a given feature f observed with a noun
paired with the classifier c, if the number of at-
tested paired noun types that do not express that
feature (the exceptions, ecf ) is less that the tolerance
threshold θcf for that classifier, then that feature
will be productive on the classifier. The tolerance
threshold is calculated as in Eqn. 1. N c is the total
number of noun types attested with the classifier.4

ecf < θcf , where

θcf =
N c

lnN c

(1)

We provide a role for adults as drivers of change
by introducing two additional parameters. An adult
may drop a classifier with probability D by setting
it to be non-productive on all features, and provided
there is an opening (i.e., some classifier is non-
productive on all features) add a new classifier with
probability A. This is taken to represent choices
available to adults in response to discourse and
sociolinguistic factors. We believe that such factors
affecting adults may be responsible for the death of

4See (Yang, 2018) for a summary of the TP’s psychological
motivation and mathematical derivation.

15



high frequency general classifiers, since no child
in a neutral model of change would fail to learn
something so well and so diversely attested.

There is always a worry that a highly parame-
terized simulation will do something akin to over-
fitting to the pattern that the researcher is trying
to recreate. To guard against this, we test a wide
range of parameter settings to confirm that the sys-
tem’s dynamics are inherent to the model and not
driven by a convenient parameterization. To the
extent possible, default parameters were motivated
empirically (e.g., Zipfian token frequency distri-
bution) or according to practical concerns (e.g., if
the number of classifiers far exceeds the number of
semantic features C ≫ F , most classifiers will be
synonymous and redundant). A full list of parame-
ters available to the model are presented in Table 2
in the Appendix.

We ran five sets of simulations testing distinct
hypotheses. The first set included 58 simulations,
and did a broad sweep of the parameter space,
testing parameter values on either side of their de-
faults as well as different non-numeric parameters.
The second set included 37 simulations, and varied
the probability that adults add or drop classifiers,
since these values are internal to the simulation.
The third set included 20 simulations, running 4
parameter settings in repetition 5 times to weed
out uniquely random outcomes. The fourth set in-
cluded 15 simulations, varying a few parameters
but running and repeating settings for 5,000 iter-
ations to observe what happens in the very long
term. Finally, the fifth set included 20 simulations
ran on default parameters, which we took the aver-
age of to affirm general trends. In total, we ran and
examined 150 simulations.5

4.2 Results
We found that many parameterizations admitted
complex dynamics, and successive runs with the
same settings sometimes yielded different out-
comes. All the same, there were particular trends
which emerged. We observe three findings repeated
across a range of settings which we believe char-
acterize neutral transmission of classifiers more
broadly. Figure 2 is an average of 20 simulations
ran on default parameters. We chose these settings
as the simplest ones that still admit interesting dy-
namics into the system. Figures 3-9 are select but

5All code, including the specifications of our sets of sim-
ulations, is publicly available at https://github.com/
an-k45/classifier-change
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Figure 2: Average of 20 simulations run on default
parameters
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Figure 3: Typical outcome for a simulation run on
default parameters

representative simulations which demonstrate par-
ticular trends.6 They show how the maximum, min-
imum, and average number of features, as well as
the 25th and 75th percentiles, averaged over the 10
youngest adults, change over time.

Figure 3 shows the behaviour of a typical run
with default parameters. The average number of
features per classifier trends downwards after a pe-
riod of instability but does not do so monotonically.
In contrast, Figure 4 shows a less common case
where the mean number of features trending back
up again. While this happens in the occasional sim-
ulation, it is an outlier. Figure 2 shows the average
across 20 simulations ran on default parameters,
and affirms both non-monotonicity and the general
downward trend. We also introduce a further ele-

6Parameterizations for each given simulation are specified
in Table 4 in the Appendix.
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Figure 4: Atypical outcome on default parameters:
mean no. features trends up
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Figure 5: A simulation with variable branching in the
feature hierarchy showing typical behaviour

ment of randomness in Figure 5 by allowing the
branching factor of the feature hierarchy to vary,
but to the same effect. This outcome is consis-
tent with the diachronic trend observed by Erbaugh
(1986) in which general classifiers emerge from
more specific classifiers over time.

Our simulations often settle on a steady state
after many iterations (Fig. 6). This could indicate
insufficient churn in the set of available classifiers.
To test this, we increased the rate of adults adding
classifiers by a factor of 10, as a proxy for increased
adult innovation in the classifier system. This did
not have a significant effect on the average number
of features over time (Fig. 7), and failed to con-
sistently stave off the slow gradual generalization
seen in earlier simulations. Robustness to this pa-
rameter choice further confirms that it is learning,
and not adult innovation, to combat ambiguity, for
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Figure 6: Simulation run for 5,000 iterations, default
parameters.
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Figure 7: Simulation with variable feature initialization
and 10x new classifier adding

example, that is driving the trends we observe here.
Finally, if new classifiers were initialized with a

random, potentially large, number of features (Fig.
8), or if adults drop random classifiers instead of the
most general ones (Fig. 9), the system rapidly and
consistently devolves into one with a few more gen-
eral classifiers. This outcome is inconsistent with
what should happen in a classifier system, either in
ordinary simulations or the diachronic data. How-
ever, it follows from the particular parameterization.
A new classifier that is very semantically restricted
is unlikely to be sufficiently attested for children
to learn all of its features. Similarly, if classifiers
are dropped randomly, highly specific classifiers
will be dropped with some probability. Children
will have less evidence to learn them, and they will
not be acquired in their full specificity, indicating
a maximum viable level of semantic specificity in
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Figure 8: A simulation with multiple feature initializa-
tion showing rapid contraction
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Figure 9: A simulation with random classifier dropping
showing rapid contraction

classifiers over time.

5 Discussion and Conclusion

In this paper, we advocate for a view of language
change as a natural outcome of language acqui-
sition over time and across a population. This
acquisition-driven view of change provides insight
into the long-term dynamics of classifier systems
through a cross-linguistic corpus study of modern
Chinese child-directed speech and a population-
level simulation of classifier change.

The cross-linguistic study (Section 3) contrasts
Mandarin and Cantonese, two closely related but
not mutually intelligible languages with a recent
common ancestor, to test the hypothesis that clas-
sifier use is driven by homophony avoidance. We
found that though Mandarin child-directed speech
has substantially more homophonous types than

Cantonese, its classifiers actually disambiguate ho-
mophones significantly less often. This is con-
trasted with polysyllabicity in Mandarin, which
does show a trend consistent with homophony
avoidance.

This result motivates a neutral model of classi-
fier change driven by matters of learning and input
sparsity not primarily concerned with functional
pressures. We apply the Tolerance Principle (TP),
a model of productivity learning, to our population-
level simulation and observe general trends. The
TP was chosen because it successfully models U-
shaped learning trajectories in morphology where
learners develop through memorization to over-
generalizing phases. This is similar to the develop-
mental pattern observed in classifier learning. Chil-
dren begin by memorizing classifiers and the nouns
they apply to, then move to over-use of general
classifiers. A similar trend towards generalization
is observed empirically in the history of Chinese
classifiers. New classifiers are specific when they
are introduced and tend towards generality over
time. This is not a lockstep relationship along the
lines of “ontogeny recapitulates phylogeny,” but
two parallel trends which emerge independently
from the same learning process. Our population-
level simulation of TP learners (Section 4) achieves
this pattern under a wide range of parameter set-
tings, providing support for the role of learning and
neutral processes in this change.

5.1 Future Work

This paper opens up several avenues for future in-
quiry. One question that deserves more attention is
the role that ambiguity and homophony avoidance
play in shaping the classifier system. We show
that adults (particularly in CDS) do not seem to
employ classifiers as disambiguators to a greater
degree in Mandarin than in Cantonese despite Man-
darin showing a higher rate of ambiguity. The same
question could be asked for children. Do young
Mandarin-learning children use classifiers to dis-
ambiguate their speech more often than Cantonese
learners? Unfortunately there is not enough child-
produced speech in the Cantonese corpus to carry
out a reasonable comparison.

Another question that has yet to be resolved is
what could have caused the replacement of the
Tang-Qing general classifier méi with the Qing-
modern gè. We believe that the solution likely lies
in discourse factors. Adults may choose more spe-
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cific classifiers over the most general one in order
to emphasize qualities of the noun being modified.
This would explain why méi was not completely
replaced when it lost its generic status and was in-
stead reduced to a narrow semantic scope. Change
here may be modeled as a sociolinguistic variable
(Labov, 1994). However, such socially conditioned
change is lead by young adults rather than young
learners. A fully developed mechanism for changes
in the classifier system would require modeling
both acquisition-driven and sociolinguistic change
simultaneously.

As an initial test of this hypothesis, we compared
simulations in which adults drop the most generic
classifier with some low probability (representing a
sociolinguistic choice to prefer an innovative classi-
fier) against simulations in which adults drop clas-
sifiers at random. We find that the former allows
for the expected slow generalization of classifiers
while the latter causes the system to rapidly col-
lapse (Fig. 9). We interpret this as supportive of the
discourse driven account, but sophisticated exten-
sions would be needed to demonstrate it. Similarly,
the population model could be extended to better
capture sociolinguistic network topology (Milroy
and Milroy, 1985; Kodner and Cerezo Falco, 2018).

Parallel to this, a complete account would incor-
porate more concrete semantic representations and
algorithms to represent word coining into our simu-
lations (Habibi et al., 2020; Xu and Xu, 2021). Our
simulation does not meaningfully account for the
creation of new classifiers, which tend to emerge
through grammaticalization of nouns (Aikhenvald,
2000), nor does it provide a structured means for
representing classifier semantics beyond the ab-
stract hierarchies which we employed. Semantic
chaining (Ramiro et al., 2018; Xu and Xu, 2021) is
a promising candidate approach. Our population-
level acquisition-driven approach provides a base
upon which to develop fully featured diachronic
models of classifier systems.

5.2 Conclusion

Erbaugh (2006) remarked that within noun catego-
rization broadly, classifier systems exist somewhere
in-between unmarked common nouns and gram-
matical systems like gender. They therefore bal-
ance semantic specificity with variance that tends
toward arbitrary. We believe, and have sought to
show in this paper, this follows from a view of lan-
guage change that is primarily driven by children

acquiring their native languages with additional
changes led by adults. This dual perspective pro-
vides a place for both grammar learning and so-
ciolinguistic discourse factors as mechanisms for
change. Classifier systems are a natural juncture
for these two types of change since they are both
deeply embedded in the grammar and show heavy
optionality, variability, and discourse sensitivity.
Existing “somewhere in-between” then plausibly
stems from the diffusion of innovation in learning
and discourse, clarifying that child-driven change
to classifier systems is neutral with respect to func-
tion.
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Parameter Value Explanation
S 1000 No. simulation iterations
N 200 No. total individuals
K 40 No. children
V 1000 No. nouns in lexicon
C 25 No. classifiers in lexicon
F 50 No. features
G 4 Max no. noun features
H 3 Max no. classifier features at initialization
B 3 Max branching factor within a feature hierarchy
I 5 No. interactions by adults toward children
J 5 No. lexical items drawn per interaction
A 0.01 Prob. add classifier per iteration
D 0.01 Prob. drop classifier per iteration
PROD TP Method for productivity in acquisition
LEX_TYPE Zipf Distribution type of nouns in the lexicon
CLASS_INIT hierarchy, single Method for classifier initialization, including feature hierarchy
FEAT_INIT fixed Method for initializing a feature hierarchy, dependent on B
CLASS_DROP general Target for dropping classifiers

Table 2: A list of simulation parameters, their default values, and what they do. Non-numeric parameters are further
described in Table 3.

Parameter Value Explanation
PROD TP Tolerance Principle (Yang, 2016)

majority Simple majority
LEX_TYPE Zipf Lexical items follow a Zipfian distribution (Zipf, 1949; Lignos and Yang, 2018)

uniform Lexical items follow a uniform distribution
CLASS_INIT identity Classifiers are initialized through an identity matrix

random Classifiers are initialized randomly with H features
hierarchy, single Classifiers are initialized with 1 feature using a feature hierarchy
hierarchy, multiple Classifiers are initialized with 1 to H features using a feature hierarchy

FEAT_INIT fixed Each feature in the hierarchy has B children
variable Each feature in the hierarchy has 1 to B children

CLASS_DROP general The classifier with the least number of features is dropped
random A random classifier is dropped

Table 3: A list of possible arguments for each of the non-numeric parameters in our simulation. Explanations for
each of parameter’s purpose are found in Table 2 and in Section 4.1.

Figure no. Parameters
2 (used default)
3 (used default)
4 (used default)
5 FEAT_INIT = variable
6 S = 5000
7 A = 0.1, FEAT_INIT = variable
8 CLASS_INIT = hierarchy, multiple
9 CLASS_DROP = random

Table 4: The parameters that the simulation presented in each figure ran on, where they differ from the default
arguments listed in Table 2.
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Abstract

In this paper, we aim to introduce a Cognitive
Linguistics perspective into a computational
analysis of near-synonyms. We focus on a sin-
gle set of Dutch near-synonyms, vernielen and
vernietigen, roughly translated as ‘to destroy’,
replicating the analysis from Geeraerts (1997)
with distributional models. Our analysis, which
tracks the meaning of both words in a corpus of
16th-20th century prose data, shows that both
lexical items have undergone semantic change,
led by differences in their prototypical semantic
core.

1 Introduction

This paper aims to stimulate further convergence
between Cognitive Linguistics approaches to lan-
guage change and computational methods for se-
mantic change. Cognitive Linguistics is a contem-
porary linguistic paradigm that assumes that lin-
guistic knowledge is rooted in general cognitive ca-
pabilities, that language is shaped by usage and that
meaning entails conceptualization (Dabrowska and
Divjak, 2015). It pays particular attention to the in-
teraction between semasiological change, whereby
a word’s meaning changes over time, and onoma-
siological change, whereby the semantic configu-
ration of a set of (near-)synonyms is reorganized
over time. In this paper we focus on a single set of
Dutch near-synonyms, vernielen and vernietigen,
roughly translated as ‘to destroy’. We replicate the
analysis of these verbs from Geeraerts (1997) with
distributional models. The analysis, which tracks
the meaning of both words in a corpus of 16th-20th
century prose data, shows that both lexical items
have undergone semantic change led by differences
in their prototypical semantic core, as predicted by
Geeraerts’ work.

2 Semasiology and onomasiology in
Cognitive Linguistics

Following from “The cognitive commitment”,
which entails that the description of human lan-
guage should be congruent with what is known
about cognition within and outside of linguistics
(Lakoff, 1990), Cognitive Linguistics aims to be
a psychologically plausible model. Language is,
thus, primarily studied as a means to communicate
– a way to convey and process meaning. Further-
more, a maximalist, non-reductionist perspective
on linguistic knowledge is assumed. Language sys-
tems are considered to be “reflections of general
conceptual organization, categorization principles,
processing mechanisms, and experiential and en-
vironmental influences” (Geeraerts and Cuyckens,
2007, 3). The movement, therefore, places a large
emphasis on meaning.

Geeraerts et al. (1994) examine the structure of
lexical variation in the use of clothing terminology
in Dutch. Crucially, it is the first study to systemati-
cally emphasize the importance of two distinctions.
On the one hand, it shows that in order to obtain
a full picture of the structure of lexical variation,
semasiological research should be complemented
with an onomasiological approach. The semasio-
logical perspective examines the range of applica-
tions of a particular expression. Semasiology is,
for this reason, often defined as research into the
meaning of a particular item: given a particular
word or expression, what are the referents to which
the word applies? In the case of the Dutch word
monitor, for instance, a semasiological analysis
would reveal that it can refer both to a SUPERVI-
SOR, and to a COMPUTER SCREEN (see Heylen
et al., 2015). The onomasiological perspective in-
vestigates naming rather than meaning. An onoma-
siological approach, thus, starts from a particular
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(type of) referent or concept and determines which
names exist or can be used to refer to the referent.
For instance, an onomasiological analysis of the
concept COMPUTER SCREEN in Dutch would re-
veal that both monitor and computerscherm can be
used to express this concept.

On the other hand, Geeraerts et al. (1994) was
the first study to make the importance of the in-
teraction between four different types of lexical
variation for the structure of the lexicon explicit.
First, it examines semasiological variation, the situ-
ation where a single lexical item can refer to more
than one referent. For example, the lexical item
pants can both be used to refer to a TWO-LEGGED

TYPE OF OUTER GARMENT (IN GENERAL), but
also to a more specific referent, viz. MEN’S UN-
DERWEAR. The second and third types of lexical
variation that are distinguished concern two vari-
eties of onomasiological variation: conceptual ono-
masiological variation and formal onomasiological
variation. Conceptual onomasiological variation
concerns the situation where “a referent or type
of referent may be named by means of various
conceptually distinct lexical categories” (Geeraerts
et al., 1994, 3-4). For example, to refer to a pair
of BLUE JEANS, a language user can either choose
to select a lexical item belonging to the concept
BLUE JEANS and use a word like jeans or blue
jeans, or (s)he can conceptualize the referent as a
type of PANTS, a superordinate concept, and call
the denotatum trousers or pants. Formal onomasi-
ological variation occurs when a choice has to be
made between different synonymous expressions
for a referent. In the blue jeans example, this would
involve determining the relative frequency of the
terms jeans versus blue jeans versus trousers ver-
sus pants. Finally, it shows how contextual varia-
tion can be at play both at the semasiological and
onomasiological level. Contextual variation (also
called speaker and situation related variation) is
broadly defined: it includes both the relatively sta-
ble lectal properties of the interlocutors involved
(like their gender or their nationality), but also tran-
sient situation-related features, like the register of
the speech event (Geeraerts et al., 2010, 8). For the
(onomasiological) blue jeans example, for instance,
contextual variation may take the form of determin-
ing whether older people are more likely to refer to
the concept as blue jeans.

The program laid out in Geeraerts et al. (1994)
was applied to diachronic change in Geeraerts

(1997). An important finding of this work is that
semasiological and onomasiological variation and
change are not independent of each other: semasi-
ological changes also affect the onomasiological
structure of a language.

3 Destructive verbs in Dutch

A classical analysis of the verbs meaning ‘to de-
stroy’ in Dutch is presented in (Geeraerts, 1997,
1985, 1988). In these papers, Geeraerts analyzes
vernielen and vernietigen in 19th century data taken
from the citations corpus for largest historical dic-
tionary of Dutch, the Woordenboek der Nederland-
sche taal ‘Dictionary of the Dutch Language’. Et-
ymologically, the near-synonyms do not have the
same root. Vernielen is a verb formed with a ver-
balizing prefix ver-, and niel, an obsolete Dutch
adjective that roughly translates to ‘down to the
ground’. The literal meaning of the verb vernielen
is then ‘to throw down to the ground, to tear down’.
Vernietigen, in contrast, is based on a verbalizing
prefix ver-, with the adjective nietig (which itself
comes from niet ‘not, nothing’ + a suffix -ig). The
meaning of vernietigen is then ‘to annihilate, to
bring to naught’.

Despite these divergent sources, Geeraerts shows
that the near-synonyms can be used in similar con-
texts by the same author in the 19th century. For
instance, in examples 1 and 2 (adapted from Geer-
aerts, 1988, 30-31), vernielen and vernietigen oc-
cur in the context of a material artefact (a part of
a building) being destroyed. He discusses many
more examples that clearly show that the verbs are
interchangeable in 19th century Dutch.

1. Dat huis ... werd ... tot den grond toe vernield
(Veegens, Hist. Stud. 2, 282, 1869). [This
house was demolished down to the ground.]

2. De vrijheidsmannen [hebben] ... het wapen
des stichters in den voorgevel met ruwe hand
vernietigd (Veegens, Hist. Stud. 1, 125,
1864). [The freedom fighters demolished the
founder’s arms in the facade with their rough
hands.]

Overall, three semantic groups of uses for vernielen
and vernietigen can be distinguished in his data
(Table 1): concrete uses, abstract uses and personal
uses. In the group of personal uses there is also
a special case where an army is destroyed. This
use can be considered to hold a middle position
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With regard to concrete things
To demolish parts of buildings
To destroy other human artefacts
To destroy natural objects
With regard to concrete things
To annihilate existing situations, characteristics etc.
To prevent the execution of plans, intentions, etc.
With regard to persons
To kill someone
To undermine someone’s physical health
To undermine someone’s psychological well-being
To defeat groups of armed men or armies

Table 1: Uses of vernielen and vernietigen. Adapted
from Geeraerts (1997, 191-192)

between the abstract (collective army) and personal
(an individual soldier) contexts.

While the verbs are found in similar contexts, a
crucial point of Geeraerts’ work is that the proto-
typical cores of the verbs differ. More specifically,
vernielen prototypically occurs with concrete uses,
such as destroying parts of buildings. Vernietigen
prototypically occurs in abstract contexts such as
the complete annihilation of existing situations or
plans. Geeraerts also notes that, while both verbs
can occur with instances of partial or complete de-
struction, vernielen is prototypically used in the
partial destruction sense (e.g. when a building is
destroyed by a fire, parts of the structure and ashes
from the fire remain), whereas vernietigen often
implies complete annihilation to naught (e.g. when
a plan is destroyed, nothing remains). In addition,
the difference between the concrete and abstract
uses is also visible in the context of the ‘destruction’
of people: while vernielen occurs more with the
more concrete sense of to kill someone, vernietigen
is more often found in the more abstract contexts
where someone’s physical or mental health is af-
fected.

In Montes et al. (2021), the near-synonyms
were analyzed in synchronic contemporary news-
paper data with distributional models. The analysis
showed that, since the 19th century, the prototypi-
cal cores of vernielen and vernietigen have become
even stronger and the verbs are no longer easily
interchangeable in every context. A highly pro-
totypical context for vernielen in the 21st century
data is the destruction of (parts of) buildings by
fire and vernietigen no longer occurs in this con-
text. In contrast, for vernietigen, the cancellation of
decisions or ideas by a governmental body makes

up a large portion of the tokens in the corpus and
vernielen is no longer possible there. Both vari-
ants seem to have retreated to their prototypical
core. In the periphery of the semantics of the verbs,
some new uses have come into existence (e.g. to
destroy livestock, probably as a result of the indus-
trialization of the food industry and the regulations
installed by government to keep the industry safe
for consumption).

The aim of this paper is to track the diachronic
change in the nearly synonymous pair vernielen
and vernietigen throughout time in Dutch using
distributional models. Based on the results in Geer-
aerts (1997, 1985, 1988) for 19th century dictionary
attestations, and Montes et al. (2021) for 21st cen-
tury corpus data, we expect to find in our study of
continuous diachronic corpus data from the 16th to
20th century, that the overlap or interchangeability
between the verbs reduces over time and that the
verbs will retreat to their prototypical cores more
and more over time. This finding would confirm
that semasiological and onomasiological change
interact and that these types of changes can be re-
trieved automatically from diachronic corpus data.
Methodologically, we investigate the usefulness of
distributional models for diachronic changes in a
pair of near-synonyms.

4 Data and methods

In the analysis, we use a corpus of prose texts from
DBNL, the Digitale Bibliotheek voor de Neder-
landse Letteren ‘digital library for Dutch languages
and literature’. Some information about the cor-
pus can be found in Depuydt and Brugman (2019),
though the corpus is not publicly available at this
time. We specifically extracted all corpus texts
tagged as prose in the metadata from the 16th, 17th,
18th, 19th and 20th century. Due to data sparseness,
we combine the subcorpora for the 16th and 17th
century in the analysis.

As no high-quality lemmatizers or PoS-taggers
are as of yet available for historical Dutch, the
only preprocessing we applied to the corpus was
to transform the entire corpus to lower case and to
automatically indicate sentence boundaries using
the pretrained nltk sentence tokenizer (Bird and
Loper, 2004).

Next, we extracted all tokens for vernielen and
vernietigen (including inflected forms and spelling
variants) from the four subcorpora and took a ran-
dom sample of N = 400 tokens for each subcorpus.
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Then, we constructed a single vector space model
for the tokens in each subcorpus. The models that
we built are based on the procedure outlined in
Schütze (1998). More specifically, we construct
a vector representation for each token in the cor-
pus, using the words in the context of the tokens to
construct the vectors (first order vectors). We sup-
plement this information by also constructing a vec-
tor for each of the relevant context words (second
order vectors). An association strength measure
is used rather than raw co-occurrence frequencies,
namely positive pointwise mutual information or
PPMI (Church and Hanks, 1989; Bullinaria and
Levy, 2007; Kiela and Clark, 2014). This proce-
dure has the advantage that both the context words
for a token, as well as their semantic similarity
with other context words, is taken into account (see
De Pascale, 2019 and Montes, 2021). This method
represents an example of a context-counting dis-
tributional model, which we opt for here (rather
than for a context-predicting method) because we
want to keep the results as comparable as possible
to the results obtained in Montes et al. (2021) on
contemporary data. One line of future research
is to replicate the results obtained here with di-
achronic contextualized word embeddings when
they become available for Dutch.

The parameters that we used are largely based on
the best model found in Montes et al. (2021) for the
analysis of vernielen and vernietigen in 21st cen-
tury newspaper data. However, since the diachronic
corpus that we use is not lemmatized or PoS-tagged,
the vectors represent word forms rather than lem-
mas and we do not use part-of-speech filters. Ad-
ditionally, we decided to decrease the window size
from 15 to 10 words to the left and right of the tar-
get token for the first-order context words because
preliminary analyses revealed that in models with a
broader window, too many irrelevant or noisy con-
text features were included in the analysis (also due
to the fact that PoS filters cannot be applied). The
parameters settings that we used are the following:

• Bag-of-words model with a window size of
10 words to the left and right of each token.

• First-order context words: all wordforms [w+]
with a frequency of at least 10 in the sub-
corpus. First-order contextwords are subse-
quently filtered by their PPMI value with the
target token: only words with PPMI > 2 are
considered.

• Second order context words: 5000 most fre-
quent wordforms [w+] in the subcorpus, ex-
cluding the first 100 wordforms, as these are
usually function words rather than content
words and therefore do not contribute a lot
of semantic information.

The models were constructed with the nephosem
Python library (QLVL, 2021). The result of this
procedure is a token-by-context matrix with 5000
dimensions, where the dimensions represent sec-
ond order context vectors, i.e. the vectors of the
context words around each token. Since for some
tokens no relevant context words are found with
our parameter settings, these tokens are excluded
from the remainder of the analysis. For clustering
and visualization, we transformed this matrix into
a square distance matrix by computing the cosine
vector of each pair of token-level vectors, with-
out further dimensionality reduction beforehand.
Thus, this final matrix describes the dissimilarity
between the vector of each token and all other to-
ken vectors in the subcorpus. As a next step, we
submitted each model to a clustering procedure in
R (R Core Team, 2020). We used hierarchical clus-
tering (Ward method), distinguishing four clusters,
following the procedure in Montes et al. (2021) for
maximal comparability.

Finally, we analyzed each cluster per subcorpus
basing ourselves on a procedure outlined in Montes
(2021) that is available in the Python library sema-
sioFlow (Montes, 2022). The procedure consists
of a number of steps. First, the relevant context
words, on which the token vectors are based, are
extracted from the model data. Then, after each to-
ken is assigned to a cluster, we calculate how often
a specific context word occurs within a particular
cluster and outside of the cluster. Using this infor-
mation, we can calculate which context words have
an exceptionally high frequency in each cluster and
therefore represent the semantics of each cluster
well. In the analysis, we will only consider context
words for which at least 50% of their occurrences
are within the cluster of interest.

5 Results

Figure 1 (see Appendix A) shows the visualisa-
tions of the models, with one panel per subcorpus.
Plot symbols show the variants (vernielen versus
vernietigen) and colours indicate the clusters. The
figure shows that over time, vernielen and vernieti-
gen are distinguished more clearly by the models.
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While in the 16th/17th century, there is still quite
some overlap between the variants, indicating that
they are still interchangeable, in the 18th century
vernielen mostly occurs at the bottom left of the
plot and vernietigen at the top right. In the 19th cen-
tury, vernielen is found in the left side of the plot
and vernietigen mostly in the bottom right. By the
20th century, the variant vernielen had decreased
dramatically in frequency and vernietigen takes up
most of the figure. Only one cluster remains where
vernielen is dominant: cluster 4 at the bottom right.

Tables 2-5 show an overview of the most im-
portant context words per period and per cluster,
obtained with the procedure outlined above. Only
context words with a frequency of more than 2 are
shown, to avoid that infrequent words get too much
weight in the interpretation. The first column also
shows an interpretation of each cluster. The final
columns indicate the relative and absolute propor-
tion of each variant in the cluster.

In the first subcorpus (16th-17th century, Ta-
ble 2), there are three clusters where vernielen
clearly is the major variant (clusters 2, 3 and 4).
It occurs in contexts related to killing persons, a
small cluster with natural objects (no context words
with frequency > 2) and concrete objects like ships
and cities. The first and largest cluster (N = 182
tokens) is still quite diverse and both vernielen and
vernietigen are possible. Thus, in the 16th and 17th
century, vernielen and vernietigen are still mostly
interchangeable, although there are already a few
contexts where vernielen is preferred.

In the 18th century subcorpus (Table 3), the vari-
ants start receding to their prototypical core more.
There are two clusters where vernielen is more
frequent and two clusters where vernietigen takes
over. Following the hypotheses outlined above,
vernielen mostly occurs with concrete objects like
buildings (cluster 4, consisting of tokens related to
fires destroying parts of buildings). In addition, it
seems to occur in passive tokens (with werden ‘be-
came, was’) where persons are destroyed: cluster
2 contains some war-related lexemes like vijand
‘enemy’, troepen ‘troups’, leger ‘army’ and some
lexemes related to people, such as hunne ‘their’ and
elkaar ‘each other’. In contrast, vernietigen occurs
in tokens with abstract objects (cluster 3) and it is
also the most frequent variant in the first cluster,
which does not show a clear semantic picture. In
most clusters, except for 4, both variants are still
possible. The context words in cluster 4 show that

vernielen has by now become the most preferred
variant for the destruction of (parts of) buildings
(often by fire).

In the 19th century (Table 4), which coincides
with the data analyzed in Geeraerts (1997, 1985,
1988), there are three clusters where one variant
takes over, but also one cluster where the variants
are interchangeable. More specifically, vernielen
remains the most frequent variant in contexts of
the destruction of (parts of) buildings (by fire, clus-
ter 1). In contrast with the 18th century subcor-
pus, vernietigen has by now taken over contexts
related to the destruction of persons, including
armies (cluster 2). In this cluster zichzelf ‘his-
self/herself/themselves’ is the most frequent con-
text word. This frequent use of the reflexive pro-
noun may indicate that the patient role for vernieti-
gen in the 19th century is often the subject itself, or
that it at least plays a major role. Finally, vernieti-
gen also still occurs the most with abstract lexemes
such as vrijheid ‘freedom’ (cluster 4). Cluster 3
only has one important context word, waan ‘delu-
sion’, and both variants are possible in this cluster.
The interpretation is not as clear as for the other
clusters.

Finally, in the subcorpus for the 20th century
(Table 5), vernietigen is much more frequent than
vernielen. Only 108 tokens for vernielen occur in
the complete 20th century subcorpus, but 446 are
available for vernietigen. This may indicate that
vernielen is on its way out, or that it is retreating to
very specific contexts. The cluster analysis shows
that there are still some clear contexts in which
vernietigen is the preferred variant, but that in the
20th century data, not all clusters represent clear
semantic differences. This may be partly related
to the fact that vernielen has become very infre-
quent: most of the tokens that are modelled are
for vernietigen and it is possible that the model
distinguishes syntactic constructions rather than
semantic contexts in which vernietigen can occur.

First, vernietigen is the most frequent variant in
cluster 1, which is a diverse cluster, with the most
frequent context word related to complete destruc-
tion (geheel ‘completely’), but also consisting of
other types of lexical items such as abstract con-
cepts. In cluster 2, vernietigen is the most frequent
variant as well. This is a semantic cluster with
many war-related lexical items, although it also
contains other concrete objects. The context words
in cluster 3, where vernietigen is also the most
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frequent variant, are mostly function words, such
as adverbs and reflexive pronouns. This cluster is
not determined by semantic similarity between the
tokens, but rather by the type of construction the
tokens occur in. The context words in cluster 4,
where both vernielen and vernietigen are possible,
are mostly related to (parts of) buildings. This is a
clear change compared to the earlier data, where the
destruction of parts of building correlated strongly
with the use of vernielen. However, the context
words in this cluster have quite a low frequency so
likely not all tokens are related to the destruction of
(parts of) buildings: perhaps vernielen has become
so infrequent that even this prototypical use is not
frequent enough anymore to be distinguished by
the model and clustering procedure.

6 Discussion

The models for the four subcorpora show how the
relationship between the near-synonyms vernielen
and vernietigen has changed over time. Semasi-
ologically, vernielen was the major variant in the
16th and 17th century, occurring in tokens related
to the death of persons and concrete, natural objects.
Over the course of the 18th century, it developed its
prototypical meaning related to the destruction of
(parts of) buildings, often by fire, and this meaning
remained its core usage in the 19th century. By the
20th century, the verb had decreased in frequency
and its prototypical core was no longer distinguish-
able from the data. Vernietigen, in contrast, was
the less frequent variant in the 16th and 17th cen-
tury and at that time, there were no clear contexts
yet where the verb occurred. It was mostly found
in a semantically diverse cluster where its near-
synonym vernielen was possible as well. From the
18th century onwards, the verb started to increase
in frequency and it developed its prototypical sense
of being used with abstract objects. In the 19th
century, it also started to invade contexts where
vernielen was preferred before (specifically related
to the death of persons and to war). In the 20th
century data, we also found a syntactic cluster, con-
sisting of function words that often occur in the
context of vernietigen.

Onomasiologically, the analysis showcased how
the nuances in the concept ‘to destroy’ evolve over
time and have become more outspoken. For in-
stance, the clusters related to the destruction of
parts of buildings are not yet visible in the oldest
data but they are important clusters in the more

recent datasets. Similarly, the cluster with abstract
objects is not yet distinguished by the analysis for
the 16th and 17th century, but these objects form
a cluster on their own in the 18th and 19th cen-
tury data. Moreover, the analysis also showed how
these particular nuances of meaning are typically
expressed by a particular verb. In the visualiza-
tion, for instance, there is clearly less overlap (or
interchangeability) between the verbs in the later
periods (except in the 20th century data, where
vernielen is infrequent).

Thus, this case-study showcases an example of
how formal onomasiological variation and concep-
tual onomasiological variation can interact. On the
one hand, vernielen and vernietigen serve as formal
alternatives in the largest cluster from the 16th and
17th century data. However, from the 18th cen-
tury onwards, each verb increasingly retreats to its
prototypical core. Arguably, they should therefore
be considered conceptually distinct, prototypically
referring to different nuances of meaning, even
though they remain nearly synonymous.

Methodologically, our usage of distributional
models combined with a cluster analysis and the
method, developed in Montes (2021), to analyze
the context words that are good representatives for
the clusters, allowed us to show how both verbs
changed semantically over time. The procedure
employed was quite straightforward, using a sin-
gle set of parameter settings to model tokens from
four diachronic subcorpora. With this procedure,
we extended the analyses in Montes et al. (2021)
and Geeraerts (1997) to a much longer time span.
Despite the fact that we used a completely different
dataset (a continuous diachronic corpus rather than
dictionary citations from the 19th century only) and
analysis method (an automatic procedure rather
than a manual linguistic analysis), the hypothe-
ses outlined in Geeraerts (1997) were mostly con-
firmed. Further, this method allowed us to track
semasiological change and to investigate how this
interacts with onomasiological variation over time.

One shortcoming of the approach is that the ideal
settings for the parameters need not be the same
for other near-synonyms or for a comparable lin-
guistic alternation in other languages. In fact, this
is one of the major findings of Montes (2021), who
showed that there is no direct link between a choice
of parameters and the linguistic phenomena that are
revealed by a model constructed with the method
proposed by Schütze (1998). Therefore, while in
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Table 2: 16th & 17th century

Cluster Context words Variants

1 (diverse)

7: alles ’everything’, geheel ‘completely’; 4: natuur ’nature’, geluk
‘luck’, duizend ‘thousand’, veranderingen ‘changes’, zonder ‘with-
out’, werden ‘became (pl.)’, schulden ‘debts’, werd ‘became (sg.)’;
3: gramschap ‘wrath’, beeld ‘statue, picture’, vorsten ‘monarchs’,
oogenblik ‘moment’, kunt ‘can’, word ‘become (sg.)’, plantag-
iën ‘plantations’, nieuwe ‘new’, compagnie ‘company’, dezelve
‘itself’

vernielen:
0.44 (80),
vernietigen:
0.56 (102)

2 (TO KILL

PERSONS)

10: dese ‘this’; 5: doot ‘death’; 4: desen ‘this’, t ‘it’; 3: wet ‘law’,
sulcke ‘this’, selve ‘self’, vyanden ‘enemies’, Christi ‘(of) Christ’,
dooden ‘to kill’, omme ‘in order to’, macht ‘power’, verlaten ‘to
leave’, sonde ‘sin’

vernielen:
0.84 (69),
vernietigen:
0.16 (13)

3 (NATURAL

OBJECTS)
/

vernielen:
0.90 (18),
vernietigen:
0.10 (2)

4 (CON-
CRETE

OBJECTS)

5: schepen ‘ships’; 4: vernielen ‘to destroy’, steden ‘cities’, vloot
‘fleet’; 3: zwaert ‘sword’, bergen ‘mountains’

vernielen:
0.83 (45),
vernietigen:
0.17 (9)

Table 3: 18th century

Cluster Context words Variants

1 (diverse)
5: daardoor ‘because of’; 3: worde ‘become (pl.)’, gansch ‘com-
pletely’, hoop ‘hope’

vernielen:
0.31 (12),
vernietigen:
0.69 (27)

2 (TO KILL

PERSONS +
WAR)

12: werden ‘become (pl.)’; 4: hunne ‘their’; 3: elkaâr ‘each other’,
vijand ‘enemy’, troepen ‘troups’, leger ‘army’, gebroken ‘broken’,
slag ‘battle’, vloot ‘fleet’, oogst ‘harvest’

vernielen:
0.61 (60),
vernietigen:
0.39 (39)

3 (AB-
STRACT

OBJECTS)

5: invloed ‘influence’; 4: zedelijk ‘virtuous’, kracht ‘strength’,
macht ‘power’, revolutie ‘revolution’, bestaan ‘existence, to exist’,
vrijheid ‘freedom’

vernielen:
0.20 (14),
vernietigen:
0.80 (56)

4 ((PARTS

OF) BUILD-
INGS

(FIRE))

6: brand ‘fire’; 4: stad ‘city’; 3: kerken ‘churches’, huizen
‘houses’, steden ‘cities’

vernielen:
0.97 (35),
vernietigen:
0.03 (1)
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Table 4: 19th century

Cluster Context words Variants

1 ((parts of)
buildings
(fire))

5: huis ‘house’; 4: brand ‘fire’; 3: grond ‘ground’, boel ‘things’,
vlammen ‘flames’

vernielen:
0.84 (38),
vernietigen:
0.16 (7)

2 (TO KILL

PERSONS +
WAR)

6: zichzelf ‘hisself/herself/themselves’, volkomen ‘completely’,
steden ‘cities’; 5: werden ‘became (pl.)’, leger ‘army’, vloot ‘fleet’,
schepen ‘ships’; 3: zorgvuldig ‘carefully’, gedeeltelijk ‘partly’,
volledig ‘completely’, willen ‘to want’, brieven ‘letters’

vernielen:
0.36 (35),
vernietigen:
0.64 (63)

3 (AB-
STRACT

OBJECTS?)
3: waan ‘delusion’

vernielen:
0.56 (15),
vernietigen:
0.44 (12)

4 (AB-
STRACT

OBJECTS)
53: vrijheid ‘freedom’

vernielen:
0.08 (3),
vernietigen:
0.92 (37)

Table 5: 20th century

Cluster Context words Variants

1 (diverse)

5: geheel ‘completely’; 4: bestaan ‘existence, to exist’; 3:
daardoor ‘because of’, groepen ‘groups’, rede ‘reason’, zulke
‘such’, schoonheid ‘beauty’, natuur ‘nature’, waarde ‘value’, dreigt
‘threatens’

vernielen:
0.18 (19),
vernietigen:
0.82 (87)

2 (PERSONS

+ WAR)

8: oorlog ‘war’; 5: werden ‘became (pl.)’, nadat ‘after’, hele
‘whole’, gehele ‘whole’, oplage ‘edition’; 4: documenten ‘doc-
uments’, moesten ‘had to’, volk ‘people’; 3: recht ‘right’, kaart
‘map’, zouden ‘would’, joodse ‘jewish’, steden ‘cities’, exem-
plaren ‘samples’, geworden ‘become (participle)’, goden ‘gods’,
zestig ‘sixty’, wereldoorlog ‘world war’, europese ‘european’

vernielen:
0.16 (19),
vernietigen:
0.84 (97)

3 (FUNC-
TION

WORDS)

14: alles ‘everything’; 10: zelfs ‘even’; 9: zichzelf ‘his-
self/herself/itself’; 7: niets ‘nothing’; 6: uiteindelijk ‘eventually’;
4: mens ‘human’; 3: waarna ‘after which’, god ‘god’, erbij ‘near
it’, erop ‘on it’, definitief ‘definitive’, jezelf ‘yourself’, onmogeli-
ijk ‘impossible’

vernielen:
0.18 (19),
vernietigen:
0.82 (88)

4 ((PARTS

OF) BUILD-
INGS)

4: huis ‘house’, aarde ‘earth’; 3: muren ‘walls’, stenen ‘stones’

vernielen:
0.52 (17),
vernietigen:
0.48 (16)
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this contribution we focus on a single set of pa-
rameters settings that were shown to be useful in
analyses of the same linguistic example in another
century, an alternative approach, that has been suc-
cessfully employed in Montes (2021), is to consider
a broader number of parameter settings to analyze
linguistic phenomena.
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Abstract

Contextual word embedding techniques for se-
mantic shift detection are receiving more and
more attention. In this paper, we present What
is Done is Done (WiDiD), an incremental ap-
proach to semantic shift detection based on
incremental clustering techniques and contex-
tual embedding methods to capture the changes
over the meanings of a target word along a di-
achronic corpus. In WiDiD, the word contexts
observed in the past are consolidated as a set
of clusters that constitute the “memory” of the
word meanings observed so far. Such a mem-
ory is exploited as a basis for subsequent word
observations, so that the meanings observed in
the present are stratified over the past ones.

1 Introduction

The use of contextual embedding techniques is re-
ceiving more and more attention in the field of
semantic shift detection. In particular, pre-trained
models like BERT (Hu et al., 2019; Martinc et al.,
2020a), ELMo (Kutuzov and Giulianelli, 2020;
Rodina et al., 2020), and XLM-R (Cuba Gyllen-
sten et al., 2020; Rother et al., 2020), are being
proposed as promising solutions to capture the
different meanings of a target word according to
the different contexts in which the word appears
throughout a considered diachronic corpus. Such
solutions generally employ clustering techniques
to aggregate embeddings of a specific word into
clusters (Martinc et al., 2020a; Karnysheva and
Schwarz, 2020). The idea is that each cluster de-
notes a specific word meaning that can be recog-
nized in the considered documents. In this way,
it is possible to analyze the shift of a word mean-
ing/sense by exploiting the evolution of a cluster
over time. For instance, an increasing number of
elements in a cluster denotes that the associated
word meaning is getting frequently adopted. On
the opposite, a cluster with a decreasing number of
elements over time refers to a word meaning that

is getting obsolete. Usually, the corpus is static,
meaning that all the documents of the considered
time periods are available as one whole, and a sin-
gle clustering activity is performed over the en-
tire corpus, generating clusters of word meaning
with documents of different time periods (Kutuzov
et al., 2018; Tahmasebi et al., 2018, 2021). As
a result, the time period in which a document is
added to the corpus is not taken into account for
cluster composition, and this is not completely sat-
isfactory for an appropriate recognition of meaning
changes over time. When a dynamic corpus is
considered, namely time periods and documents
can be progressively added, scalability issues also
arise, since the clusters of word meanings need to
be re-calculated or updated. As a possible solu-
tion, some recent works propose to perform clus-
tering separately for each time period. In this case,
the resulting clusters need to be aligned in order
to recognize similar word meanings in different,
consecutive time periods (Kanjirangat et al., 2020;
Montariol et al., 2021). However, solutions based
on clustering alignment are not satisfactory as well,
since they do not capture the possible evolution
pattern of a meaning across different time peri-
ods. A recent work proposes an average-based
approach to track semantic shift via continuously
evolving embeddings (Horn, 2021) computed as
a weighted running average (Finch, 2009) of em-
beddings generated by a contextual model. This
method is suitable to be applied on stream data and
it is far more scalable than typically cluster-based
methods. Nevertheless, it does not allow to analyse
which meanings are actually changed.

In this paper, we present What is Done is Done
(WiDiD), an incremental approach to semantic shift
detection based on incremental clustering tech-
niques and contextual embeddings to capture the
changes over the meanings of a target word along a
diachronic corpus. In WiDiD, we work under the as-
sumption that the documents of the corpus become
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available as a stream and they are segmented in a
sequence of time periods. The word contexts ob-
served in past time periods are consolidated as a set
of clusters that constitute the “memory” of the word
meanings observed so far. Such a memory is then
exploited as a basis for subsequent word observa-
tions in the current time period. The idea of WiDiD
is that the clusters of word meanings previously
created cannot be changed (what is done is done),
and the word meanings that are observed in the
present must be stratified/integrated over the past
ones. To enforce scalability, incremental clustering
techniques are employed in WiDiD, so that the word
embeddings extracted from the documents of the
current time period are compared and assimilated
into the set of consolidated clusters coming from
the past time periods. A comparative evaluation of
the proposed WiDiD approach against a reference
benchmark is discussed in the paper according to
multiple configurations characterized by different
clustering algorithms and embedding methods. In
particular, we present experiments based on a pre-
trained BERT model as well as results obtained
from a trained Doc2Vec model, which has been
adapted to provide pseudo-contextual word embed-
dings to extend the conventional static word repre-
sentations of context-free embedding techniques.
As a further contribution of WiDiD, different metrics
for semantic shift evaluation of word meanings are
defined in the paper and experimental results are
provided to discuss their effectiveness.

The paper is organized as follows. In Section 2,
the relevant literature is discussed. In Section 3, we
present the WiDiD approach. Incremental clustering
techniques and semantic shift measures of WiDiD
are illustrated in Sections 4 and 5, respectively.
Experimental results are discussed in Section 6.
Section 7 finally provides our concluding remarks.

2 Related work

Works related to WiDiD are about the use of
word embeddings for semantic shift detection
by leveraging the idea that semantically-related
words are close to each other in the embedding
space (Mikolov et al., 2013). In approaches rely-
ing on context-free embeddings, independent word
vectors defined over different “temporal” vector
spaces can be compared after applying an align-
ment mechanism (Hamilton et al., 2016) such as
the Procrustes (Schönemann, 1966). Moreover, re-
cent contextualised architectures are proposed, like

ELMo (Peters et al., 2018), BERT (Devlin et al.,
2019), and XLM-R (Conneau et al., 2020), which
generate dynamic word embeddings according to
the use of the words in the input sequences, thus
enabling the recognition of different meanings by
comparing the context in which words are used
throughout the text. The solution proposed in Hu
et al. (2019) is one of the first examples based on
BERT embeddings to track changes in word mean-
ings and it requires lexicographic supervision, like
the use of a reference dictionary (e.g., the Oxford
dictionary for the English language) to list the pos-
sible word meanings beforehand, thus it is hardly
applicable to low-resource languages.

A number of unsupervised approaches based on
contextual embeddings are proposed to sidestep
the need of lexicographic resources (Schlechtweg
et al., 2020; Tahmasebi et al., 2021). In gen-
eral, these kinds of approaches follow a three-step
scheme: i) extraction of embeddings for each oc-
currence of a target word from a contextual model
such as BERT (Hu et al., 2019; Martinc et al.,
2020a), ELMo (Kutuzov and Giulianelli, 2020; Ro-
dina et al., 2020), or XLM-R (Cuba Gyllensten
et al., 2020; Rother et al., 2020); ii) aggregation
of the embeddings with a clustering algorithm like
K-Means (Giulianelli et al., 2020; Cuba Gyllen-
sten et al., 2020), Affinity Propagation (Martinc
et al., 2020a; Kutuzov and Giulianelli, 2020), or
DBSCAN (Rother et al., 2020; Karnysheva and
Schwarz, 2020); iii) comparison of the vector dis-
tribution over clusters according to time by using
a semantic distance measure, like Jensen-Shannon
divergence (Martinc et al., 2020a), Entropy Dif-
ference (Giulianelli et al., 2020), or Wasserstein
Distance (Montariol et al., 2021). The main limita-
tion of applying clustering to word embeddings is
the scalability issues about memory consumption
and time. As a recent contribution, in Montariol
et al. (2021), a scalable and interpretable method is
proposed based on merging of similar embeddings
to reduce the number of representations to consider
for a given word and time slice. Further solutions to
overcome scalability issues are provided by Rodina
et al. (2020) and Laicher et al. (2021). In particular,
they propose to limit the number of embeddings
by randomly sampling sentences from each period.
The intrinsic time-complexity issues of applying
clustering algorithms to embeddings are also ad-
dressed in Rother et al. (2020) by reducing the em-
bedding dimensionality. In Martinc et al. (2019),
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the contextual embeddings of a word are averaged
to generate a single word representation for each
time period. In Giulianelli et al. (2020), the average
pairwise distance between embeddings of different
time periods is calculated. Even if these solutions
are more efficient and scalable than clustering, they
provide uninterpretable results since multiple word
occurrences are collapsed into a single representa-
tion, like in context-free embeddings. Most of the
cluster- and average-based approaches estimate the
magnitude of semantic shifts ignoring the uncer-
tainty of their estimations. As a result, estimations
can be erroneously inflated since the irregularities
of word frequencies over time can negatively affect
the stability of word embeddings (Zhou et al., 2021;
Wendlandt et al., 2018). In this respect, Liu et al.
(2021) propose a solution based on the combina-
tion of BERT embeddings with permutation-based
statistical test and term-frequency thresholding.

Original contribution of WiDiD. With respect
to the above solutions, the WiDiD approach is based
on incremental clustering techniques applied to
contextual word embeddings. In WiDiD, the “mem-
ory” of word meanings observed in the past is con-
solidated in a set of clusters that is not re-calculated
in subsequent time periods. As a result, only the
word embeddings of the current time period are
analyzed with the aim to measure the change with
respect to the clusters of past word meanings. This
way, it is possible to compare specific word mean-
ings also from a qualitative point of view (i.e., inter-
pretable results) without requiring any alignment
mechanisim across time periods. In other words,
the stratified layers of clusters over time allow to
reconstruct not only the quantity of semantic shift
but also the evolution of a word meaning.

3 The WiDiD approach

Consider a diachronic document corpus C = C1 ∪
C2 where C2 denotes a set of documents of the
time t and C1 denotes a set of documents cumu-
latively collected in the t − n time periods prior
to t. Given a target word w, the goal of semantic
shift detection is to measure how much the mean-
ing(s) of w is changed from C1 to C2. The WiDiD
approach relies on a contextual embedding model
to represent each occurrence of the target word w
in a corpus Cj (either C1 or C2). We keep track of
the word embedding representations collected for
w over time by relying on the embedding model E1

that contains the word vectors computed over C1.

Given this input, we process the new documents in
C2 as follows (see Figure 1).

Document selection. In this step, we select the
subset of documents Cw,2 ⊆ C2 that are relevant
for the word w. Cw,2 is composed by the docu-
ments containing the word w. As an alternative,
any information retrieval technique suitable for
finding relevant documents for a given target can
be exploited for the composition of Cw,2.

Fine tuning. In this step, the model E1 used to
generate the word vectors over C1 can be optionally
updated/fine-tuned into a new model E2 to take
into account the new documents in C2 (Kim et al.,
2014; Giulianelli, 2019). When the observed time
t is the initial one, the model E1 is trained on C2

or a pre-trained model is used. The WiDiD approach
is compatible with any technique for contextual
word embedding, that is any method that produces
a vector embedding the meaning of a word in a
specific document.

Embedding extraction. In this step, we isolate
the embedding vectors representing the contextual
meaning of the word w. The contextualised embed-
ded representation of the word w in the k-th doc-
ument of a corpus Cw,j is denoted by ejw,k. Then,
the representation of the word w in the corpus Cj

is defined as:

Φj
w = {ejw,1, . . . , e

j
w,m},

with m being the number of documents in Cw,j .
As the final output of this step, we have two sets
of embedding vectors: Φ1

w that is produced in the
previous iterations of the WiDiD approach over the
corpus Cw,1 and Φ2

w, produced at the current time
t for the corpus Cw,2.

Clustering. In this step, vectors in Φ1
w ∪ Φ2

w are
clustered in order to group vectors representing
similar meanings. The set of clusters produced in
this step is denoted K2 and the i-th cluster in K2 is
denoted ϕw,i. A distinguishing feature of WiDiD is
to perform also the clustering step in an incremen-
tal fashion, by updating the clusters K1 computed
in the previous iterations of WiDiD. A more detailed
description of the incremental clustering techniques
used in WiDiD is given in Section 4. The clusters of
K2 can be classified in three types (see Figure 2).
Cluster types (A) and (C) contain vectors that de-
rive from a single corpus, either the past (i.e., C1)
or the current one (i.e., C2). The cluster type (B) is
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Figure 1: The WiDiD approach
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Figure 2: Types of clusters in K2

a mixture of vectors from the past (corpus C1) and
vectors from the present time (corpus C2). For each
cluster, we compute also the mean µi of the vectors
that are associated with the same time period (i.e.,
the same corpus).

Cluster refinement. The cluster set K2 may con-
tain poorly-informative clusters, such as clusters
containing a single vector, or aged information,
namely clusters that contain only vectors represent-
ing a word meaning observed a long time ago. In
order to get rid of poor or aged information, in Wi-
DiD, it is (optionally) possible to perform a cluster
refinement step to drop the undesired clusters. We
note that this step is also useful to reduce the infor-
mation available about the past in view of a subse-
quent execution of WiDiD for the next time period
t+ 1. With regard to poorly-informative clusters,
we enforce standard cluster pruning techniques that
are typically based on a threshold over the cluster
size or the average distance of vectors from the
cluster centroid (Raskutti and Leckie, 1999). For
aged information, the idea of WiDiD is that each
cluster is associated with an aging index that mea-
sures how recently the cluster has been updated
during the incremental clustering process. This

index is updated each time a cluster in the cluster
set K1 is upgraded by adding vectors of Φ2

w (i.e.,
vectors deriving from the corpus C2). A threshold
over the aging index is then used to decide when
an aged cluster should be pruned from K2. As a
result, this is a mechanism to regulate how much
memory the WiDiD will keep about the past. The
final pruned cluster set is denoted K

′
2 and will be

the basis of the clustering step in the next iteration
of WiDiD.

Semantic shift measuring. To evaluate whether
a word w exhibits a semantic change between the
two corpora C1 and C2, we measure the distance
between the sets Φ1

w and Φ2
w using the clusters in

K
′
2. Further details on how to measure semantic

shift are provided in Section 5.

4 Incremental clustering

In WiDiD, we rely on incremental clustering to ag-
gregate contextual embedding vectors that repre-
sent similar word meanings into the same cluster.
We propose an incremental extension of Affinity
Propagation (AP) (Frey and Dueck, 2007), called
Affinity Propagation a Posteriori (APP) (see Algo-
rithm 1). Let’s call X and X1, and L and L1 the
embeddings and the cluster labels at time t and t−1,
respectively. At time t = 1 the standard AP clus-
tering is performed. At each time t > 1, for each
existing cluster computed at time t − 1, the data
points xi ∈ X1 are packed into a single average rep-
resentation, i.e. the centroid µ of each cluster. The
set of the centroids for X1 is denoted µX1. Then,
the standard AP algorithm is executed on µX1∪X ,
with the aim to obtain a new set of temporary la-
bels L2, i.e., the new assignment of data points to
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Algorithm 1 The APP algorithm
Input
t: time step
X: data at time step t
X1: data at time step t− 1
L1: labels at time step t− 1
γ: trim factor

Output
L,X: at time step t

1: if t == 1 then
2: L← AP (X)
3: L, X← Trim(L, X, γ)
4: yield L, X
5:
6: else if t > 1 then
7: µX1← Pack(L1, X1)
8: L2← AP ( µX1 ∪ X )
9: µL1, L← Split(L2)

10: L1← UnpackAndUpdate(µL1, µX1, L1, X1)
11: L, X← Trim( L1 ∪ L, X1 ∪ X, γ)
12: yield L, X
13: end if

clusters. Such labels are then split in two subsets,
µL1 and L, which contain labels for each average
representation in µX1 and for each data point in
X , respectively. Given µL1, µX1, L1, X1, we un-
pack the centroids of µL1 into the corresponding
data points X1 mapping the previous labels L1 into
the new labels of their respective centroids µL1.
Intuitively, clusters from time step t − 1 can’t be
changed, in the sense that each point from t − 1
remain in the same cluster after running AP at time
step t. However, each cluster from t − 1 can be
updated with points from t, and new clusters can
be created at time step t containing no points from
t − 1. Finally, APP returns L1 ∪ L, which is the
union of the unpacked and updated L1 and L. APP
includes the notion of aging index to use for cluster
refinement, implemented through a trim factor γ.
In our current implementation the idea of γ is that
clusters containing less than γ percent of the whole
set of embeddings Φ1

w ∪ Φ2
w at time t are assumed

to be poorly-informative and thus they are dropped.

5 Semantic shift measuring

Clustering contextual word embeddings for a word
w at time t results in a set of k clusters K2 =
ϕw,1, ..., ϕw,k where ϕw,i ⊆ Φ1

w ∪ Φ2
w. In particu-

lar, we denote as ϕ1
w,i, ϕ

2
w,i the set of embeddings

from Φ1
w, and Φ2

w respectively, enclosed in the i−th
cluster; formally we define ϕ1

w,i = ϕw,i ∩ Φ1
w and

ϕ2
w,i = ϕw,i ∩ Φ2

w. According to this, in WiDiD,
we propose three different aggregation measures

to estimate semantic change. Borrowing from Giu-
lianelli (2019), we employ the Jensen-Shannon
divergence to measure semantic change leverag-
ing cluster distributions. In addition, we adapt
the methods of Martinc et al. (2019) and Kutu-
zov (2020) for scenarios where embeddings are
clustered.

Jensen-Shannon divergence (JSD). The Jensen-
Shannon divergence quantify the similarity be-
tween two probability distributions using a sym-
metrization of the Kullback-Leibler divergence.

JSD(p1w, p
2
w) = H

(
1

2

(
p1w + p2w

))

−1

2

(
H(p1w)−H(p2w)

) (1)

To quantify changes between word senses we create
two time-specific cluster distributions p1w, p

2
w as the

relative number of cluster members for t− n, and
t, respectively (Hu et al., 2019). Intuitively, we
compute the value related to the i−th cluster as:

pjw,i =
|ϕj

w,i|
|Φj

w|
(2)

where j ∈ {1, 2}.

Distance between prototype embeddings (PDIS).
Recent work used the term word prototype to in-
dicate a ‘prototypical’ representation of the word
computed by averaging all its embeddings in a spe-
cific temporal sub-corpus (Rodina et al., 2020; Ku-
tuzov, 2020; Martinc et al., 2019). In contrast to
this definition, we compute (i) sense prototypes
µ1
w,i, µ

2
w,i as the average embedding for each clus-

ter partition ϕ1
w,i, ϕ

2
w,i, respectively; and (ii) word

prototypes M1
w,M

2
w as the average embedding of

all sense prototypes µ1
w,i, and µ2

w,i respectively.
The idea is that computing the average of a smaller
set of more significant embeddings, i.e., the sense
prototypes, can be beneficial to reduce noise in
clusters.

The average-based method by Martinc et al.
(2019) consists in computing the cosine similar-
ity between the global average embeddings of all
embeddings from t− n and t, respectively. We ex-
tend this method by computing the cosine distance
between M1

w and M2
w.

PDIS(M1,M2) = 1− M1 ·M2

∥M1∥ × ∥M2∥ (3)
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Difference between prototype embedding diver-
sities (PDIV). The method proposed by Kutuzov
(2020) relies on the notion of “embedding diversity”
for word prototypes (DIV). We extend this method
considering sense prototypes. In particular, we esti-
mate the degree of ambiguity for w in C1, C2 as the
mean cosine distance d between sense prototypes
µj
w,i and the relative word prototype M j

w. The final
result is the absolute difference between the rela-
tive coefficients. For the sake of simplicity, let’s
denote as Ψ1

w and Ψ2
w the set of sense prototypes

of µ1
w,i, and µ2

w,i respectively.

PDIV (Ψ1
w,Ψ

2
w) =

∣∣∣∣∣

∑
µ1
w,k∈Ψ1

w
d(µ1

w,k,M
1
w)

|Ψ1
w|

−
∑

µ2
w,k∈Ψ2

w
d(µ2

w,k,M
2
w)

|Ψ2
w|

∣∣∣∣∣
(4)

6 Evaluation of WiDiD

For evaluation of WiDiD, we rely on the Task 1
framework of SemEval-2020. SemEval is a se-
ries of international NLP workshops based on a
collection of shared tasks in which computational
semantic analysis systems designed by different
teams are presented and compared. In particular,
we focus on SemEval-2020 Subtask 2 where the
goal is to consider texts from two distinct time pe-
riods and to evaluate the degree of semantic shift
of a set of target words (Schlechtweg et al., 2020).
In SemEval-2020, the semantic shift degree is mea-
sured by the Spearman’s rank-order correlation be-
tween the semantic shift index (i.e., the ground
truth) and the semantic shift assessment computed
by a model for each target word in the evaluation
set. Our evaluation is performed over the English
and Latin corpora of SemEval-2020. A summary
view of the considered corpora is provided in Ta-
ble 1. As proposed in Montariol et al. (2021), in the
English corpus, we removed POS tags from both
the corpus and the evaluation set.

Period Tokens Corpus Target
Words

SemEval
English

C1 1810 – 1860 6.5M
CCOHA 37

C2 1960 – 2010 6.7M
SemEval

Latin
C1 -200 – 0 65k

LatinISE 40
C2 0 – 2000 253k

Table 1: Period, size, and number of target words for
English and Latin corpora of SemEval-2020

6.1 Experimental setup

In the evaluation, the following configurations of
WiDiD have been adopted.

Word representations. Pre-trained BERT and
trained Doc2Vec models are exploited as embed-
ding models. We use the Transformers library
by HuggingFace to extract contextual word em-
beddings from pre-trained BERT models with-
out performing any fine-tuning stage (Wolf et al.,
2020). We use a specific model for each language,
namely bert-base-uncased1 for English and bert-
base-multilingual-uncased2 for Latin. The models
are base versions of BERT with 12 attention layers
and a hidden layer of size 768. The only model
available for Latin is a multilingual BERT model
trained on 104 languages, including Latin.

The acquisition of contextual embeddings is
done by feeding the models with text sequences
from the corpora in which the target words oc-
cur. Sequence embeddings are generated one se-
quence at a time by summing the last 4 encoder
output layers according to Devlin et al. (2019). Fi-
nally, given a sequence of size sequence length×
embeddings size, we cut it into pieces to get a
separate contextual embedding for each token in
the sequence. In this way, we extract token em-
beddings for each occurrence of a target word in a
corpus. Due to the byte-pair input encoding scheme
employed by BERT models, some tokens may not
correspond to words but rather to word pieces (Sen-
nrich et al., 2016; Wu et al., 2016). Therefore, if a
word is split into more than one token, we build a
single word embedding by concatenating them.

Pseudo-Word Representations. While BERT-
like models generate dynamic embeddings for a
word according to their belonging sequences (i.e.,
documents), Doc2Vec (Le and Mikolov, 2014) pro-
duces a static lookup table of word and sequence
embeddings only for words and sequences seen
during training. We exploit Doc2Vec by computing
pseudo-contextual word embeddings under the as-
sumption that word occurrences belonging to simi-
lar sequences have the same meaning. This means
that, given a target word w in the corpus Cj we
consider as Φj

w the set of sequence embeddings
related to sequences where w occurs. For training

1https://huggingface.co/
bert-base-uncased

2https://huggingface.co/
bert-base-multilingual-uncased
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Doc2Vec models, we use the Gensim library (Re-
hurek and Sojka, 2011). In particular, we trained
word and sequence embeddings of size 100 for 15
epochs, with a window size of 10.

Clustering of embeddings. For the evaluation of
WiDiD, we exploit the APP clustering algorithm de-
scribed in Section 4. Since APP is an extension of
the Affinity Propagation (AP) clustering algorithm,
we compared the results of APP against the results
of AP in the clustering step of the WiDiD approach.
In addition, we tested a further incremental exten-
sion of AP called IAPNA. IAPNA is an incremental
version of AP that has been proposed by Sun and
Guo (2014) and it is based on the idea of computing
a reasonable assignment for all the data points at
the same status. Then, when new points are avail-
able, the relationships between the new points and
the other points are assigned referring to their near-
est neighbors and by updating the responsibility
and availability indexes for those points. In particu-
lar, we use the scikit-learn (Pedregosa et al., 2011)
implementation for standard AP, that we extended
for implementing both IAPNA and APP.

Experiments. The following experiments have
been executed. We apply the semantic shift mea-
sures illustrated in Section 5 (i.e., JSD, PDIS,
PDIV) to the clusters of contextual embeddings
obtained by using AP, IAPNA, and APP, respec-
tively. Since PDIS and PDIV are extensions of
the CD (Cosine Distance over Word Prototypes)
and DIV (Difference between Token Embedding
Diversities) measures proposed by Martinc et al.
(2019) and Kutuzov (2020), we also consider them
as baselines.

6.2 Experimental results
The results of our evaluation are shown in Table 23.

Surprisingly, Doc2Vec proved to be a suitable
model for semantic shift detection, in both incre-
mental and non-incremental clustering contexts. It
performs well, while being smaller and faster than
contextual models. In particular, Doc2Vec-based
methods achieve the highest result in our experi-
ments on both Latin and English, with correlation
coefficient of 0.512 and 0.514, respectively. APP
provides top results on both Latin and English, al-
though AP has a slightly higher performance on
English.

3The source code of our experiments
is available under the MIT license at
https://github.com/umilISLab/LChange22

On average, both incremental clustering algo-
rithms IAPNA and APP perform well in semantic
shift detection compared to the conventional AP
clustering. We note that IAPNA and APP have op-
posite behavior on Latin and English: IAPNA has
higher results with BERT embeddings on Latin and
Doc2Vec embeddings on English, while APP has
higher results with Doc2Vec embeddings on Latin
and BERT embeddings on English, respectively.
The fact that IAPNA and APP perform differently
on different languages is consistent with the litera-
ture results (Kutuzov and Giulianelli, 2020).

As a further remark, we note that APP produces
a smaller and more reasonable number of clusters
compared to both AP and IAPNA. For instance,
we observed situations where both AP and IAPNA
produce more than 100 clusters, that is rather unre-
alistic if we assume that a cluster represents a word
meaning. On the opposite, in our experiments, the
number of APP clusters generally varies between
0 and 30. We also note that APP is sensitive to the
aging index. In Table 2, we present the top results
obtained with two different values of the aging in-
dex (i.e., 0 and 5). Removing clusters containing
less than 5% of the embeddings has a positive im-
pact just in some experiments with English, but
not with Latin. We plan to further investigate the
effects of the aging index in our future work.

About our proposed measures for semantic shift
detection (i.e., JSD, PDIS, PDIV), we note that
they always perform better than the baselines CD
and DIV. We also note that the CD baseline does
not work well on Doc2Vec embeddings, while DIV
does not work well in all our experiments. On
Latin, the highest results are achieved by JSD on
both Doc2Vec and BERT embeddings. On En-
glish, the top JSD and PDIS results are on Doc2Vec
and BERT embeddings, respectively. More ex-
periments are required on PDIV since it performs
very differently in the various experiments we per-
formed, and it achieves statistical significance only
in four out of twelve experiments (six on Latin, six
on English).

Finally, Table 3 provides the best results ob-
tained by other literature approaches for seman-
tic shift detection based on contextual word em-
beddings over the English and Latin corpora of
SemEval-2020. We note that both IAPNA and
APP are competitive when compared to the con-
sidered literature approaches. The WiDiD scores
are above average and slightly below the maxi-
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Latin (Spearman’s coefficients) English (Spearman’s coefficients)
Clustering Training Model JSD PDIS PDIV JSD PDIS PDIV

trained Doc2Vec 0.485* 0.229 -0.023 0.514* 0.139 0.134
AP

pre-trained BERT 0.394* 0.347* 0.236 0.356* 0.326* 0.406*
trained Doc2Vec 0.462* 0.354* -0.005 0.199 0.322* 0.336*

IAPNA
pre-trained BERT 0.411* 0.356* -0.148 0.336* 0.499* 0.213

trained Doc2Vec 0.5120* 0.3370* 0.3280* 0.3330* 0.0770 -0.0780APP
pre-trained BERT 0.3610* 0.2100 0.0360 0.3020° 0.5125* 0.3705*

CD DIV CD DIV
trained Doc2Vec 0.258° 0.138 - 0.092 0.010 -

pre-trained BERT 0.306* -0.017 - 0.486* 0.168 -

Table 2: Spearman’s correlation coefficients over different setups with Latin and English corpora. The asterisks
denote statistically significant correlations (p ≤ 0.05), while degree symbols denote low-level correlations with
(0.05 ≤ p ≤ 0.1). The subscript index indicates the value adopted for the aging index. We report in bold the highest
scores for each clustering-based method considering BERT and Doc2Vec.

Clustering Training Model Latin (Spearman’s coeff.) English (Spearman’s coeff.)
Beck, 2020 - pre-trained BERT 0.343 0.293

Karnysheva and Schwarz, 2020
K-means (English)
DBSCAN (Latin)

pre-trained ELMo 0.177 -0.155

Cuba Gyllensten et al., 2020 K-Means pre-trained XLM-R 0.399 0.209

Rother et al., 2020
HDBSCAN (English)

GMMs (Latin)
pre-trained BERT 0.321 0.512

Kanjirangat et al., 2020 K-means pre-trained BERT 0.333 0.159
Laicher et al., 2021 - pre-trained BERT N/D 0.571
Arefyev and Zhikov, 2020 - fine-tuned XLM-R -0.134 0.299

Kutuzov and Giulianelli, 2020 - fine-tuned ELMo (English)
BERT (Latin)

0.561 0.605

Montariol et al., 2021 AP fine-tuned BERT 0.496 0.456
Pömsl and Lyapin, 2020 - fine-tuned BERT 0.464 0.246

Rosin et al., 2021 - fine-tuned
TinyBERT (English)
LatinBERT (Latin)

0.512 0.467

Martinc et al., 2020b AP fine-tuned BERT 0.496 0.436
Liu et al., 2021 - fine-tuned BERT 0.304 0.341

Table 3: Spearman’s correlation coefficients obtained by different experiments with English and Latin corpora. We
report in bold the best scores for pre-trained and fine-tuned models. The hyphens indicate approaches that do not
cluster contextual embeddings. N/D indicates that experimental results are not available.

mum scores (in bold). We stress that we obtained
these results without fine-tuning, confirming that
the idea of using incremental clustering is promis-
ing. Compared to other literature approaches based
on pre-trained models without fine-tuning, we note
that incremental clustering algorithms achieve the
highest scores on Latin (0.512 with APP and 0.411
with IAPNA for Doc2Vec and BERT, respectively).
Our results on the English corpus come second
in the pre-trained ranking (0.512 with APP and
0.499 with IAPNA for Doc2Vec and BERT, respec-
tively) after Laicher et al. (2021). All in all, exclud-
ing Laicher et al. (2021) and Kutuzov (2020), our
results are the highest of all the considered litera-
ture works of Table 3, both on Latin and English.

7 Concluding remarks

In this paper, we presented the WiDiD approach
characterized by incremental clustering techniques

and contextual word embedding methods. Ongo-
ing work is about the fine-tuning of adopted em-
bedding models to further improve the quality of
results. Moreover, we are working on defining clus-
ter analysis techniques. The idea is to exploit the
results of semantic shift measures to interpret pos-
sible trend patterns over clusters along the time,
such as a broad meaning that forks into narrower
ones, or a meaning that increases its popularity and
vice versa. Further work is about the specification
of aging policies to manage the memory of aged
embeddings in the cluster evolution.
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Abstract
Language change has often been conceived
as a competition between linguistic variants.
However, language units may be complex or-
ganizations in themselves, e.g. in the case of
schematic constructions, featuring a free slot.
Such a slot is filled by words forming a set
or ’paradigm’ and engaging in inter-related
dynamics within this constructional environ-
ment. To tackle this complexity, a simple
computational method is offered to automat-
ically characterize their interactions, and vi-
sualize them through networks of cooperation
and competition. Applying this method to the
French paradigm of quantifiers, I show that this
method efficiently captures phenomena regard-
ing the evolving organization of constructional
paradigms, in particular the constitution of com-
peting clusters of fillers that promote different
semantic strategies overall.

1 Introduction

Language change is often depicted as a competition
between an entrenched variant, and an innovative,
rising competitor; e.g. the replacement of of course
by obviously (Tagliamonte and Smith, 2021) in
Present Day Canadian English, of werðan by be-
cuman in Middle English (Petré and Cuyckens,
2008), of moult by beaucoup and très in Middle
French (Marchello-Nizia, 2000), of en par dans as
the chief locative preposition in Modern French
(Fagard and Combettes, 2013), or of the former
syntactic patterns for negation and interrogation by
the periphrastic do pattern (Kroch, 1989).

Such a competition, however, is difficult to evi-
dence. For instance, what can the way construction
(Israel, 1996; Perek, 2018) (e.g. ’the Black Prince
plundered his way eastward to Narbonne and back’)
possibly replace? Moreover, in the case of a clear
replacement, the replacement is seldom total. For
instance, the periphrastic do did not replace aux-
iliaries, and some verbs like need are still found
with the older pattern; moult was replaced by two

different words, but they both show uses that moult
had not, and they do not cover the whole functional
range that was carried by moult. The French en
was replaced by dans in most locative contexts, but
it remains more frequent than its newer counterpart
(Eckart and Quasthoff, 2013; Corpus and language
statistics for corpora of the Leipzig Corpora Col-
lection, 2021). Similarly, while be going to can
be seen as a competitor for will, both auxiliaries
differ semantically; furthermore, it has been argued
that they both feature semantic retention pertain-
ing to their respective origins (Nicolle, 1998). The
same phenomenon has been observed for discourse
markers based on prepositional adverbs in French
(Fagard and Charolles, 2018).

In the meanwhile, it has been posited that fre-
quency rise evidenced by lexical items or construc-
tions is a sign of semantic expansion (Feltgen et al.,
2017). This hypothesis would provide a conve-
nient account of the phenomena mentioned above:
language change is, first and foremost, a semantic
shift; if this semantic shift spills over the semantic
domain of an existing form, competition arises over
this overlap; if this semantic shift leads to meanings
and functions that were not formerly expressed in
the language, no competition occurs and there is
no competitor. In this sense, lexical competitions
are a sign of a semantic shift, and help identify
ongoing language changes; yet language change
may happen without any obvious competition.

In this paper, another perspective on the interplay
between semantic change and competition is of-
fered. Indeed, competition may arise within a given
linguistic form dominion, especially in the case of
schematic constructions, that is, constructions that
feature an open slot that can be filled by different
arguments (e.g. the way too + {ADJ/ADV} intensi-
fier construction). These arguments can compete
against one another, within the construction. More-
over, this competition needs not be one-to-one:
since a large number of arguments are involved,
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the competition may unfold between different clus-
ters of arguments. Therefore, we can detect such
paradigmatic competitions by looking at the corre-
lations and anti-correlations between the frequency
dynamics of the different fillers.

To give a somehow hypothetical example of this
semantic shift at the paradigm level, we may con-
sider the paradigm of classifiers (e.g. in Thai or
in Korean), which categorizes nouns according to
a set of principles. This categorization can, for
instance, be driven by considerations of shape, or
by considerations of function (Carpenter, 1992).
These two broad principles may in principle both
co-exist and compete over time, and individual
classifiers typically fall into one or the other broad
group of function-based classifiers and shape-based
classifiers (things being more blurry in practice).

In this regard, we can conceive of three levels of
semantic change, that are not mutually exclusive.
The first is the constructional level, which corre-
sponds to a significant change in the broad scope
of the nouns to which the construction applies, for
instance through the recruitment of new classifiers
to operate on nouns that were previously beyond
the scope of the construction, e.g. the emergence
of a new classifier for the class of machines. The
second level is that of the individual classifiers; e.g.
the reanalysis of Thai /khan/ from a shape-based
classifier to a function-based one. The third level is
what I refer to as the ’paradigmatic level’. This hap-
pens when one group takes over the nouns that were
classified by the other group. Nouns become then
re-classified according to a new set of principles.
In this case, the individual classifiers do not have
to undergo semantic change; and the broad ’classi-
fiers’ construction still applies to the same nouns.
Yet, these nouns are now preferentially categorized
in a new way (e.g. function over shape); therefore,
the properties that are made salient by the choice
of a specific classifier are now different. This kind
of paradigmatic reorganization is for instance il-
lustrated by the different yet overlapping semantic
roles of verb classifiers in the related Nyulnyul and
Warrwa languages (McGregor, 2018).

This kind of semantic change only reveals itself
at the scale of a system of linguistic units, such as
constructional paradigms. As a result, traditional
tools, such as word embeddings that rely on col-
locations (Mikolov et al., 2013), cannot be readily
expected to account for it. In this paper, I offer a
simple method to detect such a paradigmatic reor-

ganization. I illustrate it on the French quantifier
construction un N de (e.g. une profusion de), which
exactly mirrors the English quantifier construction
a N of (e.g. a lot of ), whose historical development
has already been studied (Traugott and Trousdale,
2013). Besides the entrenchment of the construc-
tion in Middle French, I evidence, by looking at
the network of correlation between the fillers fre-
quencies, a major paradigmatic shift occurring in
Modern French. A qualitative analysis of the com-
peting clusters is also offered.

2 Corpus and frequency profiles

2.1 The French quantifier construction

The French quantifier construction, un Q(N) de N
(’a Q(N) of N’), is a construction in which a nomi-
nal quantifier, Q(N), is used to introduce a noun, N,
by giving an estimate of its overall count. Its struc-
ture is closely similar to a more general genitive
construction NP de NP (similar to the English NP
of NP from which the English quantifier construc-
tion also originates), so that automatically (and
even manually) sorting the relevant occurrences
from the spurious ones poses a serious challenge.
To cope with this difficulty, I decided to be con-
servative and select only the arguments which are
clear quantifiers. One useful test in this regard is
that the verb may agree with the quantified noun
(plural) instead of agreeing with the quantifier noun
(singular), which is incompatible with a genitive
reading. For one early example of it (1330): "Tan-
tost une foule de gent firent cesser leur parlement"
("A crowd of people interrupted their discussions.")

I have retained 36 quantifier nouns for the Q(N)
slot of the construction. Partitive constructions,
which behave very similarly, have been excluded
(e.g. un morceau de, ’a bit of’), as well as plu-
ral quantifiers, such as des litres de vin (’liters of
wine’), which don’t seem to warrant the same con-
structional reading.

2.2 Frantext corpus

This construction has been investigated on the Fran-
text database (ATILF, 1998), restricted to the 1321-
2020 period. This is the longest period such that
every decade is covered in the corpus with at least
one text (with a minimum of 5 for the 1321-1330
decade). The selected corpus encompasses close to
300 M words. In total, I found 50k occurrences of
the quantifier construction.
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2.3 Frequency profile

For each decade, frequency is based on the number
of tokens of the quantifier construction found in
the corpus. To obtain such a count, I performed
individual queries for all identified fillers, cleaned
the results manually when necessary (e.g. remov-
ing from un tas de occurrences such as ’un tas de
sable’, ’a sandpile’), and then aggregated all fillers
to get a count for the construction as a whole. Next,
this number of tokens is divided by the corpus size
- in number of words - associated with the decade.
Finally, frequency is smoothed using a moving av-
erage over the five previous data points (e.g. the
data point for the decade 1801-1810 is actually an
average over the whole period 1761-1810).

The frequency profile of the quantifier construc-
tion (Figure 1) first features a pattern of latency
(low frequency, slowly increasing), followed by an
S-curve covering the whole sixteenth century. This
pattern is commonly associated with the entrench-
ment of a linguistic unit (Croft, 2000; Aitchison,
2001; Blythe and Croft, 2012; Feltgen et al., 2017).
That the frequency immediately decreases instead
of stabilizing is a known phenomenon (Van de
Velde and De Smet, 2021), but has not been as-
sociated with any semantic account so far. The sub-
sequent and massive frequency rise does not follow
a clear pattern, and is mostly due to the individual
rise of three leading fillers: nombre (’number’),
foule (’crowd’), and infinité (’infinity’).

This observation is, in itself, interesting: first,
during an entrenchment phase, the frequency rise
of the construction is cohesive at the construction
level, showing a well-formed S-curve. During this
time, the functional scope of the free slot increases,
but no individual filler drives the frequency profile
of the construction. Next, the frequency profile
of the post-S-curve period is dominated by indi-
vidual fillers which become increasingly dominant
over the paradigm. This clearly indicates that fre-
quency of the construction alone, besides the well-
established S-curve pattern, is not a reliable indi-
cator of the functional changes undergone by the
construction. More likely, after an early period
of entrenchment, the frequency profile of the con-
struction as a whole is mostly a by-product of the
dynamics of the individual fillers. Therefore, to
detect relevant changes at the constructional level,
we must turn towards other quantitative measures.

3 Network of interactions

In this section, I present indicators of a major shift
within the paradigmatic organization of the quanti-
fier construction, based on the dynamical interac-
tions between the paradigm members.

3.1 Building the network

3.1.1 Correlation matrices
The frequency profiles of the quantifiers are first
extracted and computed individually. Next, we can
measure the correlations between the different time
series. However, it is pointless to compute the cor-
relation over the series as a whole, since the corpus
spans too long a time period: the correlation needs
to be more local in time. Therefore, I decided to
use a time window of 10 decades, which strikes a
convenient balance between computing the corre-
lation over a sufficiently long time series for the
correlation to be meaningful, and over a sufficiently
focused window to efficiently capture change phe-
nomena. It also corresponds to the mean time of
entrenchment of a form (Feltgen et al., 2017).

By computing such correlations, we can build
matrices A(t) for the time period t (e.g. 1451-
1550), whose elements Aij(t) are the Pearson cor-
relation coefficients between the frequencies of
forms i and j over the corresponding time period.

Additionally, time series can show spurious cor-
relations if they are driven by a common process,
e.g. both individual forms could be driven by the
frequency profile of the construction as a whole
(Koplenig, 2018). Therefore, we complement this
measure with a second correlation matrix, this time
between the derivatives of the individual frequen-
cies. For each time period, a matrix B(t) is built
for the correlations between the time series of the
derivatives in the same way as A(t) had been built.
For a different method to compute correlation be-
tween the time series of word frequencies, the
reader may refer to Koplenig (2017).

3.1.2 Filtering the matrices
At this point, the matrices need filtering, to only
capture the interactions that are significant enough.
Therefore, a matrix C(t) is introduced, whose
elements are 0 everywhere, except when both
Aij(t) > θ and Bij(t) > θ , in which case
Cij(t) is set to 1, or when both Aij(t) < −θ and
Bij(t) < −θ , in which case Cij(t) is set to - 1.
The threshold θ is set to 0.45. The rationale be-
hind this choice is the following. We might want
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Figure 1: Smoothed frequency, per million words, of the quantifiers construction in the Frantext database.

to choose the threshold θ so that the p-value of
observing such a value for the Pearson correlation
coefficient is 0.05. However, if A and B are as-
sumed to be independent, then the probability of
a false positive for the joint observation of a cor-
relation above the threshold for both quantities is
0.052 = 0.0025, which is a much stricter threshold.
Therefore, to set a p-value significance threshold
at 0.05 for the joint observation, we must choose a
Pearson correlation coefficient threshold over sin-
gle quantities corresponding to a p-value of

√
0.05.

For a Pearson correlation coefficient computed over
10 data points (our moving window covers this
many points), this threshold is approximately 0.45.

From the C(t) matrix, the network can be drawn
by drawing two kind of links, correlation ones
when Cij(t) = 1 and anti-correlation ones when
Cij(t) = −1. In Figure 2, the latter are depicted
with a thick extremity pointing towards the form
whose derivative is the smaller on average over the
time period considered. This way, a network of
interactions between the fillers of the construction
can be drawn for each time period. Note that the
construction as a whole has been included among
the inventory of forms, to track which cluster drives
its frequency evolution; on the networks of Fig-
ure 2, the associated node is labeled ’paradigm’.

3.2 Results

The networks of earlier periods (from 1601-1610
onward) are very sparse and provide little insight
into the paradigmatic dynamics. That the frequency
increase over the seventeenth and eighteenth cen-
turies is associated with the frequency rise of a few

fillers that behave independently is corroborated by
the sparsity of the interactions.

However, from 1791, two competing clusters are
clearly emerging. On the one side, the entrenched
quantifiers, with foule (’crowd’), multitude (’mul-
titude’) and infinité (’infinity’); on the other side,
the innovative forms, with specific quantities such
as dizaine (’dozen’), millier (’thousand’), etc. The
cluster of entrenched quantifiers still drives the fre-
quency profile of the construction, as evidenced by
its correlation with the ’paradigm’ node.

For the 1831-1930 and 1851-1950 windows, nu-
merous anti-correlations are found between the
members of the two major clusters, hinting at a
competition. Since the anti-competition links point
toward the members of the entrenched forms clus-
ter, it shows that these forms are in decline relative
to the forms belonging to the newly emerging clus-
ter. The absence of anti-correlation links for the
1811-1910 network is however intriguing.

3.3 Further quantitative evidence of the
cluster competition

The automated quantitative characterization of the
fillers’ interactions has evidenced two clusters com-
peting against one another. However, one might
argue that the identification of these two clusters
only reveals that we have conflated within the same
alleged quantifier construction, two separate con-
structions that are quite disparate in their scope and
use. Therefore, we provide additional empirical
evidence for the ongoing competition to stress the
high level of interaction between the two groups.

Comparing the frequency profiles of the fillers
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(a) (b)

(c) (d)

Figure 2: Network of interactions within the quantifiers construction paradigm, for four time periods: (a) 1791-1800;
(b) 1811-1910; (c) 1831-1930; (d) 1851-1950. Simple edges (in blue) show correlation between nodes, edges with a
wider end (in red) show an anti-correlation, and point towards the declining form.

Figure 3: Rescaled frequencies of the fillers belonging to the two clusters identified through the network analysis
(diamonds: entrenched members; circles: innovative members).
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Figure 4: Frequencies, per million words, of the two
clusters identified through the network analysis (dia-
monds: entrenched cluster; circles: innovative cluster).

is not straightforward, because different fillers can
show very different magnitudes of frequency, due
to the Zipfian structure of a paradigm organization
(Ellis and Ogden, 2017). Therefore, we rescale
each frequency profile by the mean frequency of
the form for the time period under consideration
(here 1791-1950, where the competition occurs).
The rescaled frequencies shown in Figure 3 are
clearly consistent with the competition picture.

If we furthermore plot the aggregated frequen-
cies for each filler (Figure 4), it becomes apparent
that the decline of the former cluster and the rise
of the newer cluster are concomitant, even though
the frequency gain of the innovative cluster does
not compensate for the frequency loss of the en-
trenched one, which is reflected in the frequency
decline of the construction as a whole. Interest-
ingly, the outcome of this competition is a coexis-
tence rather than an eviction of the former cluster,
which remains dominant in terms of frequency.

4 Linguistic interpretation

Now that we have evidenced an ongoing competi-
tion between two different clusters of the quanti-
fiers construction, it is worthwhile to shed light on
the extent to which these clusters provide conflict-
ing perspectives on the quantification of things. In
order to better understand the functional range of
each cluster, we can consider the arguments that
are associated with each quantifier - that is to say,
the individual paradigms of nouns attached to the
single members of the construction.

Quantitative techniques based on word embed-
dings have been developed to automatically assess
how the semantic organization of a constructional
paradigm evolves diachronically Hilpert and Perek
(2015); Perek (2016, 2018). An even more relevant

quantitative tool to capture the semantic shift of
the quantifiers is the cluster characterization based
on collexeme analysis (Gries and Stefanowitsch,
2010). Since a range of methods already exist, and
their application to this case study would constitute
a contribution in itself, yet without any original
methodology to offer, I shall remain here at a qual-
itative level. The more modest goal of this section
is therefore to briefly illustrate how the dynamics-
based methods outlined above evidence phenomena
that make sense from a linguistic point of view. In
what follows, I discuss the functional roles of each
different fillers by simply looking at their ten most
frequent collocates.

4.1 Entrenched cluster semantics

The ten most frequent arguments of the main five
quantifiers of the entrenched cluster are listed on
Table 1. First, generic arguments, such as gens
(’people’), hommes (’men’) and choses (’things’),
are associated with most quantifiers. Next, assem-
blée (’gathering’) and quantité (’quantity’) imme-
diately stand out from the other three quantifiers.
Indeed, the former is almost exclusively used to
quantify people, in agreement with its immediate
lexical root, while the latter is often associated with
uncountable things, like eau (’water’) and argent
(’money’), although its representation may be bi-
ased by its strong association with scientific texts
(quantité de chaleur is the French name for heat
energy in thermodynamics). In contrast to this,
nombre is mostly associated with countable argu-
ments, such as cas (’cases’), fois (’times’), jours
(’days’), exemplaires (’copies’). It is also reveal-
ing that quantité is associated with gens (’people’),
while nombre is associated with individuals (’indi-
viduals’): both refers to groups of persons, yet one
underlines their indistinction and uncountability,
while the other conceives them as separate entities.

The quantifier foule is often associated with ab-
stract things, e.g. idées (’ideas’), détails (’details’),
questions (’questions’), while multitude shows a
surprising specialization into generic categories, as
with oiseaux (’birds’), insectes (’insects’), plantes
(’plants’), êtres (’beings’). After un nombre de,
which remains the most frequent quantifier through-
out the studied period, une foule de and une multi-
tude de are respectively the second and third most
frequent quantifiers of the entrenched cluster.

To summarize, the different roles of the quanti-
fiers of this cluster are distinguished by ontological
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nombre (number) multitude foule (crowd) quantité (quantity) assemblée (gathering)
hommes (men) hommes (men) choses (things) chaleur (heat) hommes (men)
heures (hours) êtres (beings) hommes (men) choses (things) femmes (women)
années (years) faits (facts) gens (people) eau (water) notables
exemplaires (copies) choses (things) idées (ideas) gens (people) gens (people)
fois (times) idées (ideas) détails mots (words) législateurs (lawmakers)
jours (days) oiseaux (birds) questions lettres (letters) médecins (doctors)
cas (cases) objets (objects) objets (objects) acide (acid) créanciers (creditors)
coups (blows) plantes (plants) faits (facts) produits (products) députés (deputies)
députés (deputies) gens (people) cas (cases) argent (money) évêques (bishops)
individus (individuals) insectes (insects) mots (words) hommes (men) poètes (poets)

Table 1: List of the ten most frequent quantified nouns for each of the five most prominent quantifiers of the
entrenched cluster. I did not gloss words that are the same as their English counterparts.

considerations; they are sensitive to what is quanti-
fied. Furthermore, they are all impressively vague
regarding the actual quantity of what they quan-
tify: quantité (’quantity’) and nombre (’number’)
could not be more generic, while foule (’crowd’)
and multitude only hints at a ’big’ quantity.

4.2 Innovative cluster semantics

The arguments of the innovative cluster of quanti-
fiers are displayed on Table 2. First of all, a lot of
quantifiers become available to express the quan-
tity in a pretty precise way: dizaine, douzaine,
vingtaine, centaine, millier, etc. Comparing the
arguments for dizaine and centaine shows that they
follow very similar semantic distributions. Their ar-
guments are items that typically need to be counted
and quantified. As such, there is a significant over-
lap with the semantic profile of un nombre de.

The quantifier nuée (’cloud’) draws on
metaphoric expansion: une nuée d’oiseaux (’a
cloud of birds’), une nuée de flèches (’a cloud
of arrows’), are transparent, while une nuée de
solliciteurs (’a cloud of petitioners’) goes one step
further on the metaphorical expansion path, and
leans more towards a pure quantifier meaning.
Interestingly, the arguments of nuée are widely
different from those of the other members, while
the semantic profiles of the fillers belonging to
the entrenched cluster all had a more extensive
overlap. This observation also applies in the case
of profusion, whose arguments, with the exception
of détails, are not commonly associated with the
other quantifiers. Most of the arguments here
indicate that profusion emphasizes the excess of
futile or superfluous items.

Finally, un tas de (’a heap of’) seems to take on
the semantic role of une foule de, but its arguments
are more disparate. It is remarkable that un tas de
doubles up on the expression of indetermination;

not only, as a quantifier, it expresses an uncertain
quantity, but it also preferentially associates with
undetermined arguments such as choses and trucs.
Importantly, un tas de is by far the most frequent
of the fillers of the innovative cluster, and as an
outcome of the competition, it becomes also more
frequent than une foule de, becoming thus the sec-
ond most frequent quantifier after un nombre de.

The semantic pattern of quantification expressed
by this innovative cluster is less clear than that of
the entrenched cluster. On the one hand, a large
family of quantifiers allows for an accurate assess-
ment of the quantity in which the quantifiee is
found; on the other hand, very specific quantifiers
also appear, that no longer highlight which sort of
things are quantified, but how the plurality comes
to constitute a quantity: a lot of small things that
coalesce into a whole (nuée), a profligate plethora
of frivolities or luxury items (profusion), a disor-
ganized collection of assorted stuff (tas). In that
sense, the pragmatic coloring of these quantifiers
is stronger than that of the former cluster.

Crucially, the two clusters offer two very dif-
ferent strategies to delineate the semantic space
associated with the quantification: the first cluster
focuses on the nature of what is quantified, while
the second cluster focuses on how the set of items
manifests itself as a quantity, leading to more het-
erogeneous semantic distributions that may span
an arbitrary number of ontological categories.

5 Conclusion

Language change, as it unfolds over several, inter-
related levels of the linguistic organization, is in-
herently complex. To understand the diachronic
processes that a form or a construction participates
in, tracking its frequency soon faces drastic limita-
tions: besides the S-curve pattern of entrenchment,
frequency is volatile and extremely variable, for no
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profusion (multitude) tas (heap) dizaine (dozen) centaine (hundred) nuée (cloud)
fleurs (flowers) choses (things) années (years) mètres (meters) oiseaux (birds)
détails gens (people) jours (days) francs sauterelles (locusts)
colonnes (columns) histoires (stories) mètres (meters) pas (steps) moucherons (swats)
chevaux (horses) bêtises (faults) minutes années (years) solliciteurs (petitioners)
mosaïques (mosaics) livres (books) hommes (men) hommes (men) moineaux (sparrows)
ornements (ornaments) monde (people) pas (steps) personnes (people) étincelles (sparks)
couleurs (colors) trucs (things) personnes (people) pieds (plants) pierres (stones)
dentelles (laceworks) idées (ideas) kilomètres (kms) millions flèches (arrows)
mets (dishes) questions fois (times) pages hannetons (cockchafers)
roses raisons (reasons) pages écus (crowns) copeaux (shavings)

Table 2: List of the ten most frequent quantified nouns for each of the five most prominent quantifiers of the
innovative cluster.

evident reason. Here, I have argued that we can
achieve a fine-grained understanding of the process
by looking at the interactions between the members
of a constructional schema. I have offered a com-
putational method to track and visualize such inter-
actions, a method that can be perfected and further
automatized, e.g. with the use of clustering algo-
rithms. The picture that emerges remains highly
complex, but the large cluster-to-cluster competi-
tions that the method can evidence may lead to a
fascinating linguistic insight into the fine-grained
processes of language change.

When considering schematic constructions, that
is, constructions that can host a variety of fillers,
similarly to an ecological niche, change can oc-
cur on three levels: 1) on the level of the indi-
vidual fillers (whenever they undergo functional
change); 2) on the level of the construction, typi-
cally through the recruitment or loss of new fillers,
that is, through changes in its syntactic productiv-
ity (Sánchez-Marco and Evert, 2011); and finally
3) in the way the fillers are organized within the
construction, that is, on the paradigm level, lead-
ing to a new way to categorize the semantic space
on which the construction applies. Although all
three changes are expected to occur to an extent
in a given process, such a process can be better
characterized by one or the other of these changes.

All these changes are instances of semantic
shifts; while it is clear that the first two changes af-
fect meaning (that of the individual filler in 1, that
of the construction as a whole in 2), the third kind
of change is less obvious. Yet, as it redefines the
categories in which the arguments of the construc-
tion are partitioned, it evidences different features
of these arguments. This kind of semantic shift is
especially prevalent when considering tight cate-
gories applying to a broad class of words, such as
determiners, classifiers, or auxiliaries. Examples

of this shift are the emergence of French demon-
stratives (Marchello-Nizia, 2006) or the change in
the auxiliaries in Old Spanish (Mateu, 2009).

In our example of the French paradigm of quan-
tifiers, we have shown that the construction un-
derwent a significant paradigmatic change in the
1801-1950 period. This paradigmatic change can
be related, at least on a qualitative level, to seman-
tic considerations regarding the logic underlying
the different partitioning of nouns by the two com-
peting clusters. Individual change does not seem
to play a large role in this picture, even though un
nombre de is more versatile than the other quan-
tifiers and is likely to have undergone a semantic
shift. Constructional change does occur to some
extent (the nouns covered by the innovative cluster
do not all overlap with the nouns covered by the
entrenched cluster). Among the innovative quan-
tifiers, those tied to a precise quantity such as une
douzaine de (’a dozen’) are the more likely to be
associated with new nouns, indicative of a seman-
tic opening of the quantifier construction towards a
’measure’ meaning, while it was more closely as-
sociated to a ’count’ one (Unterbeck, 1994). This
latter change may also be due to an increasing pro-
portion of scientific texts in the corpus. Yet, the re-
markable cluster competition that unfolds through-
out the nineteenth century is testimony enough that
the paradigm level is the most suited to understand
the change phenomenon in this period.

This study is a first step, an invitation to con-
sider more systematically language change from a
systemic perspective, especially with the help of
automated tools, that are most needed to deal with
the intrinsic complexity of these systems. Although
the analysis presented here could be refined with
the use of a wider range of methods, I hope that
the results are intriguing enough to foster further
interest in changes unfolding on the paradigm level.
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Abstract

Morphological and syntactic changes in word
usage—as captured, e.g., by grammatical
profiles—have been shown to be good predic-
tors of a word’s meaning change. In this work,
we explore whether large pre-trained contex-
tualised language models, a common tool for
lexical semantic change detection, are sensitive
to such morphosyntactic changes. To this end,
we first compare the performance of grammati-
cal profiles against that of a multilingual neural
language model (XLM-R) on 10 datasets, cov-
ering 7 languages, and then combine the two
approaches in ensembles to assess their com-
plementarity. Our results show that ensembling
grammatical profiles with XLM-R improves se-
mantic change detection performance for most
datasets and languages. This indicates that
language models do not fully cover the fine-
grained morphological and syntactic signals
that are explicitly represented in grammatical
profiles.

An interesting exception are the test sets where
the time spans under analysis are much longer
than the time gap between them (for exam-
ple, century-long spans with a one-year gap be-
tween them). Morphosyntactic change is slow
so grammatical profiles do not detect in such
cases. In contrast, language models, thanks to
their access to lexical information, are able to
detect fast topical changes.

1 Introduction

Human language is in continuous evolution. New
word senses arise, and existing senses can change
or disappear over time as a result of social and cul-
tural dynamics or technological advances. NLP
practitioners have become increasingly interested
in this diachronic perspective of semantics. Some
works focus on constructing, testing and improv-
ing psycholinguistic and sociolinguistic theories of
meaning change (Xu and Kemp, 2015; Hamilton

∗Equal contribution, the authors are listed alphabetically.

et al., 2016; Goel et al., 2016; Noble et al., 2021);
others are concerned with surveying how the mean-
ing of words has evolved historically (Garg et al.,
2018; Kozlowski et al., 2019) or how it is currently
transforming in public discourse (Azarbonyad et al.,
2017; Del Tredici et al., 2019). Recently, we also
see increased interest in more application-oriented
work, with efforts to develop adaptive learning sys-
tems that can remain up-to-date with humans’ con-
tinuously evolving language use (temporal gener-
alization; Lazaridou et al., 2021).

An increasingly popular way to determine
whether and to what degree the meaning of words
has changed over time is to use ‘contextualised’
(or ‘token-based’) word embeddings extracted
from large pre-trained language models (Giulianelli
et al., 2020; Montariol et al., 2021) as they encode
rich, context-sensitive semantic information. How-
ever, it has also been shown recently that changes
in the frequency distribution of morphological and
syntactic features of words, as captured by gram-
matical profiles, can also be employed for lexi-
cal semantic change detection (Giulianelli et al.,
2021), with competitive performance. These are,
to some extent, two opposing approaches: while
language models (LMs) are largely based on word
co-occurrence statistics, grammatical profiles are
de-lexicalised and rely on explicit linguistic infor-
mation.

Although they are superficially unaware of mor-
phology and syntax, LMs have been shown to cap-
ture approximations of grammatical information in
their deep representations (Warstadt et al., 2020).
Yet are these sufficient to detect meaning shifts
that are accompanied by morphosyntactic changes
in word usage? We hypothesise that this is not
the case, and to test this hypothesis, we combine
LM-based methods and grammatical profiles into
ensemble models of lexical semantic change detec-
tion.1 If adding grammatical profiles to LMs re-

1Throughout the paper, we refer to the systems that com-
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Figure 1: Performance of an XLM-R based method
(PRT) and an ensemble method (PRT-MORPHSYNT)
on the ranking task; see Section 3 for method descrip-
tions. The scores for the three Russian datasets are
averaged as they exhibit similar trends.

sults in a boost in performance, then this means that
LMs do not capture morphosyntactic change as ac-
curately as explicit morphological tagging and syn-
tactic parsing (or at the very least that it is difficult
to extract this type of information from the mod-
els). If we do not observe any boost, this suggests
that LMs already represent all the necessary gram-
matical information and explicit linguistic annota-
tion is not required. We conduct our experiments
with 10 datasets, covering 7 languages. For com-
parability, we use the same model for all the lan-
guages. We choose XLM-R (Conneau et al., 2020),
a multilingual Transformer-based masked language
model which has already been successfully applied
to the semantic change detection task (Arefyev and
Zhikov, 2020; Arefyev et al., 2021). Although it
covers the full linguistic diversity of our data, we
additionally fine-tune XLM-R on monolingual di-
achronic corpora.

Our quantitative and qualitative evaluation of
the resulting ensembles on the graded and binary
semantic change detection tasks largely confirm
our hypothesis. Ensembling XLM-R and gram-
matical profiles improves the results for 4 out of 6
languages in graded change detection (as well as
for 1 of the 2 Norwegian datasets) and for 5 out of
6 languages in binary change detection. Figure 1
illustrates these improvements. The reasons why

bine LMs with grammatical profiles as ‘ensembles’. These
are not statistical methods of ensemble learning but systems
that combine the predictions of different models.

ensembles do not outperform the XLM-R baseline
on some datasets are linked to the size of the gaps
between the historical time periods represented in
the diachronic corpora; we analyse and discuss
these reasons in Section 4.3. Overall, we show
that providing large language models with explicit
morphosyntactic information helps them quantify
semantic change.

2 Tasks and Data

The goal of lexical semantic change detection is
to determine whether and to what extent a word’s
meaning has changed over a certain period of time.
The performance of automatic systems that ad-
dress this problem is typically assessed in two
tasks (Schlechtweg et al., 2020). Task 1 is a bi-
nary classification task: given a diachronic corpus
and a set of target words, a system must deter-
mine whether the words lost or gained any senses
between two time periods. We refer to it as the clas-
sification task and use accuracy as an evaluation
metric. Task 2 is a ranking task: a system must
rank the target words according to the degree of
their semantic change. We refer to it as the ranking
task and use the Spearman rank-correlation with
the gold rankings as an evaluation metric.

We rely on a collection of diachronic corpora
and annotated target word lists covering seven lan-
guages from three Indo-European language fami-
lies. Target words are annotated with binary and
graded scores of semantic change, corresponding
respectively to Task 1 and 2 (Schlechtweg et al.,
2018). English (EN), German (DE), Latin (LA),
and Swedish (SW) data are available from the Sem-
Eval 2020 Unsupervised Lexical Semantic Change
Detection shared task (Schlechtweg et al., 2020).
For Italian (IT), we use the data released for the
EvaLita competition (Basile et al., 2020). For Nor-
wegian (NO), we use the NorDiaChange dataset
recently released by Kutuzov et al. (2022), consist-
ing of two subsets with different target word lists
and time spans. Finally, for Russian (RU), we draw
from the RuShiftEval shared task (Kutuzov and
Pivovarova, 2021), consisting of three subsets with
different time spans and a shared target word list.
Table 1 summarises the most important properties
of the datasets and indicates what types of anno-
tations are available for each language. Note that
the subset splitting in Norwegian and Russian is
not introduced by us, but is provided by the corre-
sponding dataset creators.
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EN DE IT LA NO-1 NO-2 RU-1 RU-2 RU-3 SW
Period 1 1810-1860 1800-1899 1945-1970 -200-0 1929-1965 1980-1990 1700-1916 1918-1990 1700-1916 1790-1830
Period 2 1960-2010 1946-1990 1990-2014 0-2000 1970-2013 2012-2019 1918-1990 1992-2016 1992-2016 1895-1903
Tokens (mln) 7+7 70+72 52+197 2+9 57+175 43+649 93+122 122+107 93+107 71+110
Targets 37 48 18 40 80 80 99 99 99 32
Ranking ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Classification ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓

Table 1: Statistics for our collection of diachronic corpora and of the corresponding semantic change annotations.

3 Methods

3.1 Grammatical Profiles

Grammatical profiling is a corpus linguistic tech-
nique which allows to distinguish subtle semantic
differences by measuring the distance between dis-
tributions of grammatical parameters (Gries and
Divjak, 2009; Janda and Lyashevskaya, 2011). It
has been shown recently that diachronic changes
in grammatical profiles can serve as a strong indi-
cation of semantic change (Giulianelli et al., 2021).
For our experiments we adopt this method in its
best performing configuration.

First, the diachronic corpus of interest is tagged
and parsed using UDPipe (Straka and Straková,
2017). We then find all occurrences of a target
word in the corpus and create a count vector for
each detected morphological feature. For example,
a morphological profile for an English verb could
look as follows:

Tense : {Past 42, Pres 51}

VerbForm : {Part 68, Fin 25, Inf 9}

Mood : {Ind 25}

Voice : {Pass : 17}

In this way, count vectors are constructed for each
target word in each time period of the corpus; these
are a word’s grammatical profiles. The cosine dis-
tance between count vectors is computed separately
for every morphological category, and the degree
of semantic change between periods is measured
as the maximum among the computed cosine dis-
tances. We refer to this type of grammatical profile
as MORPH.

In addition to morphological features, a sepa-
rate vector of syntactic features is created, which
contains counts of dependency arc labels from a
target word to its syntactic head. We refer to these
grammatical profiles as SYNT. Semantic change is
measured as the cosine distance between two syn-
tactic vectors. Morphological and syntactic profiles
can also be combined. We do this by concatenat-
ing syntactic features to the array of morphological
features, and then using the maximum cosine dis-

tance as our third profile-based measure of seman-
tic change, MORPHSYNT.

3.2 Static Embeddings
Static embeddings (e.g., Mikolov et al., 2013) are
known to perform very well at detecting lexical
semantic change (Schlechtweg et al., 2020). There-
fore, although they are not directly relevant to our
research question, we include them in our experi-
ments as a point of comparison, following the com-
mon approach proposed by Hamilton et al. (2016).
Further details can be found in Appendix B.

3.3 Contextualised Embeddings
Many have argued that static representations are not
theoretically appropriate as a model of word mean-
ing because they conflate all the usages of a word
into a single context-independent embedding, and
that contextualised representations should be used
instead (e.g., Schütze, 1998; Erk and Padó, 2008;
Pilehvar and Collier, 2016). This has motivated
the development of semantic change detection al-
gorithms that rely on context-dependent representa-
tions, where every usage of a word corresponds to
a unique token embedding (Giulianelli et al., 2020;
Martinc et al., 2020a). Language models produce
very competitive results across languages (Kutu-
zov and Giulianelli, 2020), and they lead to more
interpretable systems (Montariol et al., 2021).

We choose XLM-R (Conneau et al., 2020)
as our pre-trained language model, since it was
shown to perform well in semantic change shared
tasks (Schlechtweg et al., 2020; Kutuzov and Pivo-
varova, 2021) and because, being multilingual, it
can be applied to all languages under analysis, mak-
ing evaluation more consistent. First, we finetune
XLM-R on the monolingual diachronic corpora of
interest. Then, we deploy it to produce token em-
beddings for the target words in the diachronic cor-
pus (in both time periods, T1 and T2). Further de-
tails on these two steps can be found in Appendix A.
We compute graded semantic change scores based
on the extracted XLM-R embeddings and we use
the scores to compile an ordered list of target words
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for the ranking task. Change scores are computed
in four ways: 1) measuring the average pairwise
cosine distance (APD) between embeddings col-
lected in T1 and those in T2 (Giulianelli et al.,
2020); 2) measuring the cosine distance between
prototype embeddings (PRT)—i.e., the average
contextualised word embeddings of T1 and T2 (Ku-
tuzov and Giulianelli, 2020); 3) clustering the em-
beddings and then calculating the Jensen-Shannon
Divergence (JSD) between the putative sense dis-
tributions of T1 and T2 (Martinc et al., 2020b; Giu-
lianelli et al., 2020); 4) by taking a simple average
(APD-PRT) of the predictions made by PRT and
APD. The mathematical definitions of the metrics
are given in Appendix A.4.

3.4 Change Point Detection

To solve the classification task, we transform the
continuous scores produced by our three metrics
into binary semantic change predictions. Follow-
ing Giulianelli et al. (2021), we rank target words
according to their continuous scores and classify
the top n words in the ranking as ‘changed’ (1) and
the rest of the list as ’stable’ (0). To determine the
change point n, we apply an offline change point
detection algorithm (Truong et al., 2020) with the
default settings.2

3.5 Ensembling

To find out whether grammatical profiles can im-
prove the performance of embedding-based detec-
tion methods, we test all possible combinations of
grammatical profile types and embedding-based
metrics. Grammatical profiles come in three vari-
ants: MORPH, SYNT, and MORPHSYNT. Our
embedding-based measures include APD, PRT,
APD-PRT, and JSD. We compute the geometric
mean √

cgce between the change score cg obtained
using grammatical profiles and the score ce output
by an embedding-based metric, and use the result-
ing value as the ensemble semantic change score
(e.g., PRT-MORPHSYNT).

4 Results

We assess the performance of all methods presented
in Section 3 on both semantic change detection
tasks using our multilingual collection of semantic
change datasets (see Section 2).

2https://pypi.org/project/ruptures/

4.1 Ranking Task
For all methods, the Spearman rank-correlation
between predicted scores and human annotations
varies across languages and test sets; no method
is a silver bullet for the ranking task (see Table 2).
XLM-R obtains higher correlation scores in En-
glish, Swedish, Norwegian-1, and Russian (1, 2,
and 3); whereas grammatical profiles outperform it
in German, Latin, Swedish, and Norwegian-2. To
better understand the strengths of all methods, we
now first present the results of each of them individ-
ually; then we report the performance of ensembles,
where each method is combined with every other
to generate semantic change predictions.

Grammatical Profiles Whether morphological
features, syntactic features, or a combination of
both are the most effective depends on the dataset;
this also varies across test sets of the same language,
as can be seen in the first three rows of Table 2.
The performance of the different features diverges
mostly for English and Norwegian-1, where SYNT
is the best approach, as well as for Norwegian-2
and Russian, where MORPH works best. Com-
bining morphological and syntactic features helps
creating better rankings for German, Latin, and
Swedish.

Contextualised Embeddings The correlation
scores of average pairwise distance (APD) and pro-
totype distance (PRT) differ substantially for all
datasets, with the exception of Norwegian-1 (see
rows 4-7 of Table 2). APD outperforms PRT on
English, Swedish, Norwegian, and Russian; PRT
is better on German and Latin. Combining the
two metrics in an ensemble (APD-PRT) marginally
improves correlation scores for Norwegian-1 and
Russian-1. Clustering contextualised embeddings
(JSD) yields unstable results across datasets; it is
the best contextualised method only for German.

Ensembles Whenever grammatical profiles pro-
duce better rankings than XLM-R, i.e., for German,
Latin, Swedish, and Norwegian-2, combining the
predictions of the two methods yields higher corre-
lation scores than either method in isolation. The
most effective contextualised method in combina-
tion with grammatical profiles is PRT, regardless of
the profile type. The PRT-MORPHSYNT combina-
tion produces the overall best ranking for German
and Latin, two languages with rich syntax and mor-
phology. Which type of grammatical profile is
the most complementary to XLM-R varies across
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datasets and it mostly corresponds to the profile
type that obtains the best performance in isolation.
Ensembles with JSD are outperformed by other
methods, so we do not report them in Tables 2 and
3.

Static embeddings, despite their good perfor-
mance in isolation, do not combine well with gram-
matical profiles: this type of ensemble improves
correlation scores only for Latin (Table 4). As
a final note, ensembles of grammatical profiles
and XLM-R achieve the new best performance
on the Latin ranking task of SemEval 2020 (PRT-
MORPHSYNT), and establish a new SOTA for
the recently released Norwegian-2 dataset (APD-
MORPH).

4.2 Classification Task
Although our binary predictions for the classifica-
tion task are dependent on the rankings discussed
in the previous section, the overall trends of classi-
fication accuracy partly differ from the correlation
trends of the ranking task. The classification results
are shown in Table 3. Compared to the ranking
task, ensemble methods more often produce a per-
formance improvement with respect to grammati-
cal profiles and contextualised embeddings used in
isolation. They do so for English, German, Latin,
and both Norwegian datasets. It is also more often
the case that the best standalone profile and con-
textualised approach yield the best ensemble when
combined. Another notable difference is that, when
used in isolation, profiles outperform XLM-R; the
opposite is true in the ranking task.

Following the structure of Section 4.1, we first
present the results of each approach individually
and then we report the performance of ensembles.

Grammatical Profiles At least one of the three
profile types is substantially above chance perfor-
mance for each language; as in the ranking task,
different profile types fit different datasets. Never-
theless, SYNT is the best profile type for 4 out of
7 datasets: German, Swedish, Norwegian-1, and
Italian. For the first two, it achieves the best over-
all scores (see Table 3). Combining morphology
and syntax helps only in the case of Latin, where
profiles obtain the best overall accuracy.

Contextualised Embeddings The accuracy of
APD and PRT is relatively similar across test sets,
with the exception of Italian, where APD has the
best overall accuracy and PRT is slightly below
chance. Combining APD and PRT improves results

for English, German, and Norwegian. The accuracy
of clustering-based JSD is either close to or below
chance level for all languages.

Ensembles Ensembles of grammatical profiles
and contextualised embeddings are the best per-
forming method for Norwegian. For German and
Latin they are on par with pure profiles, and for
English on par with pure XLM-R. The comple-
mentarity of different profile types and contextu-
alised metrics varies across datasets yet it is over-
all stronger than that between profiles and static
embeddings (combining the latter two improves
performance only for Latin and for Norwegian-2,
see Appendix B). A more fine-grained analysis of
the classification results of the ensembles reveals
that 1) ensemble predictions are virtually always
correct when the two standalone predictions also
are, 2) ensembling tends to have positive effects
on precision with respect to both standalone meth-
ods, and 3) it tends to improve the precision of
contextualised methods.

4.3 Why ensembles fail

Tables 2 and 3 show that grammatical profiles are
consistently worse than XLM-R on all Russian
datasets, Norwegian-1 and English. This naturally
extends to their ensembles, so for all these datasets,
contextualised embeddings in isolation are the best
approach. The explanation may seem simple for
English: its poor morphology does not provide
enough signal for semantic change detection. Yet
this does not hold for Russian (a synthetic language
with rich morphology) and, arguably, for Nor-
wegian. Moreover, ensembles with morphology-
based grammatical profiles outperform pure XLM-
R on Norwegian-2, but not on Norwegian-1. Thus,
the explanation is likely not language-specific.

We believe that the different nature of the di-
achronic corpora can be a better explaining factor.
SemEval-2020 datasets feature time periods sepa-
rated by at least several decades, and the same is
true for Norwegian-2 (more than 20 years gap). In
contrast, the gaps are much shorter for Norwegian-
1 (5 years gap), Russian-1 and Russian-2 (2 years
gap). We observe that when two time periods with
a very short gap between them are compared, the
distributions of morphosyntactic features largely
overlap, negatively affecting the performance of
grammatical profiles. In these cases, LM-based
methods can still detect semantic change as they
have access to lexical information: changes at the
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Method EN DE LA SW NO-1 NO-2 RU-1 RU-2 RU-3 AVG

PROFILES

MORPH 0.218 0.120 0.519 0.303 0.106 0.409 0.028 0.241 0.293 0.248
SYNT 0.331 0.146 0.265 0.184 0.179 0.006 0.056 0.111 0.279 0.173
MORPHSYNT 0.320 0.298 0.525 0.334 0.064 0.265 0.000 0.149 0.242 0.244

CONTEXTUALISED (XLM-R)

APD 0.514 0.073 0.162 0.310 0.389 0.387 0.372 0.480 0.457 0.349
PRT 0.320 0.210 0.394 0.212 0.378 0.270 0.294 0.313 0.313 0.300
APD-PRT 0.457 0.202 0.370 0.220 0.394 0.325 0.376 0.374 0.384 0.345
Clustering/JSD 0.127 0.287 0.318 -0.108 0.160 -0.137 0.247 0.267 0.362 0.169

ENSEMBLES

APD-MORPH 0.262 0.140 0.506 0.350 0.151 0.503 0.062 0.288 0.340 0.289
APD-SYNT 0.384 0.159 0.264 0.255 0.262 0.119 0.093 0.181 0.354 0.230
APD-MORPHSYNT 0.390 0.290 0.513 0.397 0.180 0.364 0.036 0.216 0.299 0.298
PRT-MORPH 0.278 0.204 0.528 0.305 0.236 0.478 0.112 0.309 0.336 0.309
PRT-SYNT 0.448 0.213 0.401 0.280 0.351 0.146 0.186 0.246 0.351 0.291
PRT-MORPHSYNT 0.451 0.354 0.572 0.356 0.273 0.360 0.117 0.269 0.326 0.342
APD-PRT-MORPH 0.277 0.188 0.518 0.338 0.189 0.497 0.092 0.310 0.340 0.305
APD-PRT-SYNT 0.405 0.189 0.376 0.295 0.330 0.121 0.147 0.235 0.367 0.274
APD-PRT-MORPHSYNT 0.418 0.337 0.554 0.377 0.236 0.359 0.092 0.255 0.328 0.328

Table 2: Spearman rank-correlation scores in the ranking task (‘Task 2’). Bold indicates the best method overall (for
each language); italic indicates the best results for a group of methods.

Method EN DE LA SW NO-1 NO-2 IT AVG

PROFILES

MORPH 0.622 0.479 0.625 0.581 0.486 0.703 0.500 0.571
SYNT 0.514 0.625 0.514 0.677 0.622 0.514 0.611 0.582
MORPHSYNT 0.541 0.521 0.675 0.581 0.486 0.432 0.444 0.526

CONTEXTUALISED (XLM-R)

APD 0.568 0.500 0.500 0.613 0.486 0.595 0.667 0.561
PRT 0.595 0.500 0.550 0.548 0.541 0.541 0.444 0.531
APD-PRT 0.676 0.542 0.550 0.613 0.568 0.459 0.500 0.558
Clustering/JSD 0.459 0.521 0.500 0.516 0.541 0.486 0.389 0.487

ENSEMBLES

APD-MORPH 0.622 0.500 0.575 0.613 0.541 0.730 0.500 0.583
APD-SYNT 0.568 0.479 0.550 0.581 0.622 0.622 0.611 0.576
APD-MORPHSYNT 0.622 0.625 0.600 0.613 0.514 0.703 0.611 0.613
PRT-MORPH 0.676 0.458 0.525 0.581 0.541 0.486 0.500 0.538
PRT-SYNT 0.541 0.521 0.575 0.613 0.703 0.568 0.500 0.574
PRT-MORPHSYNT 0.541 0.479 0.525 0.581 0.676 0.486 0.444 0.533
APD-PRT-MORPH 0.649 0.458 0.650 0.581 0.541 0.676 0.611 0.595
APD-PRT-SYNT 0.514 0.542 0.550 0.548 0.676 0.595 0.500 0.561
PRT-MORPHSYNT 0.541 0.479 0.525 0.581 0.676 0.486 0.444 0.533

Table 3: Binary accuracy scores in the classification task (‘Task 1’). Bold indicates the best method overall (for
each language); italic indicates the best results for a group of methods.
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referential and topical level can happen much faster
(consider, e.g., the words ‘computer’ or ‘mouse’ in
English). On the other hand, when the gap between
time periods is more substantial, changes in mor-
phological and syntactic behavior of words also
emerge. In these cases grammatical profiles help
detect semantic shifts which LMs overlook. It is
possible that adding the length of the time gap as
a feature in our ensemble systems can make them
less sensitive to the nature of the datasets .

Exceptions to this pattern are Latin (no gap be-
tween the time periods, but great performance of
grammatical profiles) and Russian-3 (80 years gap,
but profiles still lag behind XLM-R). For Latin, its
extremely rich morphology can compensate for the
small gap between time periods. Moreover, the
second time period spans two millennia, making
the short gap less problematic. Rich morphology
does not help surpass XLM-R for Russian-3, but
profiles do work much better for this dataset than
for Russian-1 and Russian-2, where the gaps are
only two years long.

5 Analysis

In this section, we analyse the predictions of all
methods beyond task performance. We quantita-
tively evaluate their complementarity (Section 5.1),
and investigate whether and how predictions made
with grammatical profiles improve the performance
of embedding-based metrics (Section 5.2).

5.1 Correlations between methods

To investigate whether various methods use differ-
ent types of linguistic information, we compute
Spearman rank-correlations between the predic-
tions of standalone methods. The correlations, aver-
aged over all datasets, are presented in Figure 2 (we
show averaged correlations since they are highly
consistent across corpora). We include the corre-
lations of static embeddings as well (SGNS-raw
and SGNS-lemma). More details about their im-
plementations and performance can be found in
Appendix B.

The two methods with the highest correlation are
SGNS-raw and SGNS-lemma. This is expected, as
the two methods differ only in the lemmatisation of
target words. Profile-based methods (MORPH and
SYNT) do not correlate with each other. Slight sig-
nificant correlations are only observed for Russian-
2 (0.32) and Russian-3 (0.45). Interestingly, for
Russian, SYNT significantly correlates with static

Figure 2: Averaged Spearman correlations between
model predictions.

embeddings: the correlation with SGNS-raw is
0.48 for Russian-1, 0.52 for Russian-2 and 0.49
for Russian-3. Significant correlations between
MORPH and static embeddings are observed for
Latin (0.46) and Russian-3 (0.38).

Contextualised methods correlate weakly with
grammatical profiles. Although we once again
observe exceptional behaviour for the Russian
datasets, the correlation between profiles and con-
textualized embeddings is on average weaker than
between profiles and static embeddings, which
might explain why combining contextualized em-
beddings with profiles yields notable performance
improvements.

5.2 Qualitative analysis

In this section, we inspect the error patterns of our
methods to find out when grammatical profiles help
correct the predictions of embedding-based metrics.
We frame this analysis in terms of false positives
and false negatives. The definition of false positives
and negatives is straightforward in the classification
task. For the ranking task, we look at the signed
distance between gold and predicted rankings of
each word, considering a word as a false positive
when the positive distance is in the highest 20% bin
of the distance distribution (i.e., when the predicted
rank is much higher than the true rank), and as
a false negative if the negative distance is in the
lowest 20% bin (i.e., when the predicted rank is
much lower than the true rank). For each language,
we focus on the best grammatical profile, the best
contextualised method, and the best ensemble of
these two.

In the English ranking task, we observe that four
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of APD’s five false positives are corrected by the en-
semble: for example, the ranking of ‘tree’ improves
by 20 positions, that of ‘part’ by 19, and that of
‘bag’ by 17. As a result, ‘tree’ and ‘bag’ are only 1
position away from their respective gold ranks. For
both words, the distribution of morphological fea-
tures hardly vary between time period (e.g., 43.73%
of the usages of ‘tree’ are singular, 56.27% plural
in the first time period; and in the second time pe-
riod the percentages become 43.67% and 56.33%).
Syntactic features vary only slightly; the most dras-
tic change among these three words is the increase
of direct object usages of ‘bag’ from 33.16% to
41.40%, with all the other features remaining rela-
tively stable—overall, a negligible change. Among
APD’s five false negatives, four are corrected in the
best ensemble (PRT-MORPHSYNT): the strongest
ranking improvements concern ‘graft’ and ‘plane’,
whose rankings improve respectively by 18 and 15
positions. The syntactic profiles of these words
vary substantially across time periods, with mul-
tiple syntactic categories increasing or decreasing
their frequency of usage (e.g., usages of ‘plane’ in
subject and object position increase from 12.85%
to 24.13% and from 13.25% to 19.67% respec-
tively; while usages as a noun modifier decrease
from 35.34% to 20.36%). The two targets that do
not benefit from the ensemble are ‘gas’ and ‘risk’:
both are false negatives for the best grammatical
profile (SYNT) and they remain for the ensemble.

In the Norwegian ranking task, the best ensemble
(APD-MORPH) helps pure APD mostly by fixing
extreme false positives and false negatives. As an
example of a fixed false positive, APD ranked ‘test’
(‘TEST’) very high, although in fact it did not expe-
rience any semantic change at all (change score of
0). APD-MORPH decreased the change score as-
signed to ‘test’ from 0.216 down to 0.013, returning
it to its proper place at the bottom of the ranking.
On the other hand, ‘stryk’ changed its dominant
meaning sharply in the 21st century from ‘RIVER

RAPIDS’ to ‘FAILURE’, but APD failed to capture it.
APD-MORPH fixed this false negative by moving
‘stryk’ significantly upwards in the ranking, only 8
position away from its gold rank.

In the Latin predicted rankings, it is somewhat
likely for a word to be a false positive — e.g., ‘itero’
(‘TO REPEAT’), ‘jus’ (a ‘RIGHT’, the ‘LAW’) ‘an-
cilla’ (‘HANDMAID’) — or a false negative — ‘vir-
tus’ (‘STRENGTH’; ‘COURAGE’; ‘MANLINESS’),
‘humanitas’ (‘HUMAN NATURE’; ‘KINDNESS’;

‘CIVISILATION’), ‘pontifex’ (‘BISHOP’; but also,
the ‘POPE’) — for both contextualised embed-
dings (PRT) and profiles (MORPHSYNT). As
in the case of English, the ranking of these
words does not improve with ensembling (PRT-
MORPHSYNT). Overall, 7 out of 10 false nega-
tives and 2 out of 7 false positives are corrected by
the ensemble.

For German, too, ensembling (PRT-
MORPHSYNT) is most effective for false
negatives, 5 out of 8 are corrected. The words
with the greatest improvements are ‘abdecken’
(‘TO UNCOVER’; but also, in financial jargon,
‘TO COVER’, as in Risiko abdecken, to cover a
risk), gaining 16 positions, and ‘Eintagsfliege’
(‘MAYFLY’, the insect; but also, metaphorically,
‘FLEETING STAR’) gaining 17 positions and
thereby obtaining the exact gold rank. Never-
theless, out of 8 false positives, 4 are corrected;
with, e.g., ‘aufrechterhalten’ (‘TO SUSTAIN’)
losing 31 rankings and ‘Festspiel’ (‘FESTIVAL’)
losing 18. As we observed for English and Latin,
some words are simply difficult to rank for both
methods (here, JSD and PRT-MORPHSYNT):
for example, the degree of semantic change
of ‘Truppenteil’ (‘TROOP UNIT’) and ‘Lyzeum’
(‘LYCEUM’) is overestimated whereas the change
of ‘packen’ (‘TO PACK’; to seize) and ‘vorliegen’
(‘TO BE AVAILABLE’; ‘TO BE EXISTENT’); is
underestimated.

For Italian, we analyse the classification task.
Among APD’s 4 false positives, 2 are cor-
rected in the ensemble’s ranking (APD-SYNT),
‘processare’ (‘PROCESS’; ‘TAKE TO TRIAL’)
and ‘unico’ (‘UNIQUE’); two nouns, ‘brama’
(‘YEARNING’) and ‘cappuccio’ (‘HOOD’), re-
main misclassified. APD’s false negatives are
‘pilotato’ (‘DRIVEN’; but also, metaphorically,
‘PREMEDITATED’) and ‘rampante’ (‘UNBRIDLED’;
metaphorically, ‘EXUBERANT’); ‘pilotato’ is cor-
rectly classified by the ensemble while ‘rampante’
remains undetected by all methods. Overall, the
contribution of SYNT is not always helpful: it also
leads to one changing word being labelled as stable,
and three stable words being classified as changing.

6 Conclusion

We showed that providing large pre-trained lan-
guage models with explicit morphosyntactic infor-
mation can in many cases help detect and quantify
lexical semantic change. Such ‘ensemble’ predic-
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tions are produced in a very straightforward way—
i.e., by computing the geometric mean between
semantic change scores predicted by grammatical
profiles and by language models (via their contextu-
alized embeddings). In the majority of the datasets
under analysis (treating the three Russian datasets
as one), the ensemble predictions outperformed
single grammatical profiles or contextualised em-
beddings in the task of ranking words by the degree
of their semantic change. The datasets where this
was not true are characterized by specific proper-
ties: either languages with poor morphology or
long time spans separated by narrow gaps.

We believe this means that although
Transformer-based language models (like
XLM-R, which we used here) are able to track
morphological and syntactic properties to some
extent (Warstadt et al., 2020), their encoding of
grammatical features is only approximate and can
therefore be improved by explicit linguistic pre-
processing (morphological tagging and syntactic
parsing). At any rate, we showed that this is true
for the semantic change detection task, when a
model has to take into account diachronic changes
in morphosyntactic properties of words. The signal
provided by these changes is complementary to
the changes in typical lexical contexts more easily
captured by distributional language models. Thus,
it is still too early to fire the linguist, even if the
‘linguist’ is in fact an automated tagger.

As has already been said, an important limitation
of grammatical profiles is their low performance
when measuring semantic change across long time
periods separated by very narrow gaps. This makes
sense from a linguistic point of view: grammar
changes slowly and gradually, sharp bursts are
rare. In contrast, lexical contexts can change very
quickly: for example, due to social and political
events or technical progress, which is why language
models excel with these datasets. The main practi-
cal take-away is therefore that diachronic grammat-
ical profiles should be used in combination with
language models especially when the gap between
the compared time periods is large enough for sig-
nificant grammatical changes to occur.

In the future, we plan to experiment with more
sophisticated ensembling methods that go beyond
simple averaging (including the usage of the in-
formation about gaps between time spans), and to
perform a deeper analysis of ensemble predictions,
especially in relation to distinct word senses. Fi-

nally, we also plan to evaluate ensembles formed
with monolingual language models, instead of the
multilingual XLM-R, as they have the potential
to better capture the idiosyncrasies of specific lan-
guages.
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Appendix

A Contextualised embeddings

Given two time periods t1, t2 , two corpora C1, C2,
and a set of target words, we use a neural language
model to obtain token embeddings of each occur-
rence of the target words in C1 and C2 and use
them to compute a continuous change score. This
score indicates the degree of semantic change un-
dergone by a word between t1 and t2. As a lan-
guage model, we choose XLM-R (Conneau et al.,
2020), pre-trained multilingual transformer, in the
Huggingface implementation (Wolf et al., 2020).

A.1 Target Lemmas and Word Forms

The lists of target words that we rely on contain
annotations for lemmas. However, only extracting
embeddings for exact matches of the lemmas would
result in discarding a large number of word usages,
those where the target lemma takes another form
(e.g., as a result of grammatical inflection). To take
all of a lemma’s possible word forms into account,
we parse the corpora using UDPipe (Straka and
Straková, 2017) and collect a set of word forms for
each target word from the UDPipe output. Further-
more, because some word forms are not present
in the vocabulary of XLM-R, we add them to the
vocabulary before fine-tuning.3

A.2 Finetuning the Language Model

As a first step, to adapt the model to the charac-
teristics of the diachronic corpora, we finetune it,
separately, on each language-specific corpus. We
limit the maximum sequence length of the trans-
former to 256 and train the model with a batch size
of 16 for an amount of epochs dependent on the
corpus size: 5 epochs for English and Latin, 3 for
German and Swedish, 2 for Russian, Italian and
Norwegian.

A.3 Extracting contextualised embeddings

Given a target word w and its sentential context
s = (v1, ..., vi, ..., vm) with w = vi, we extract the
activations of the language model’s hidden layers
for sentence position i. We then average over the
layers (12 for XLM-R) and obtain a single vectorial

3Even after adding the word forms to the vocabulary, the
Huggingface tokenizer still fails to recognise about a dozen
of the target word forms and splits them into sub-tokens. For
these exceptional cases, we extract the average contextualised
embedding over the sub-tokens.

representation (for XLM-R, the vector dimension-
ality is 768). In our experiments, the maximum
context length m is set to 256 and sentences are
processed in batches of size 32. The Nw contex-
tualised embeddings collected for w can be repre-
sented as the usage matrix Uw = (w1, . . . ,wNw).
The time-specific usage matrices U1

w,U2
w for time

periods t1 and t2 are used as input to a metric of
semantic change.

A.4 Metrics of Semantic Change
As explained in Section 3.3, semantic change
scores are computed using three metrics: 1) av-
erage pairwise distance or APD (Giulianelli et al.,
2020), 2) prototype distance or PRT (Kutuzov and
Giulianelli, 2020), and 3) Jensen-Shannon Diver-
gence between embedding cluster distributions or
JSD (Martinc et al., 2020b; Giulianelli et al., 2020):

APD Given two usage matrices Ut1
w ,Ut2

w , the de-
gree of change of w is calculated as the average
cosine distance between any two embeddings from
different time periods:

APD
(
Ut1
w ,Ut2

w

)
= 1

N
t1
w ·Nt2

w

∑
xi∈Ut1

w , xj∈Ut2
w
cos (xi, xj)

(1)

where N t1
w and N t2

w are the number of occurrences
of w in time periods t1 and t2.

PRT Here, the degree of change of w is measured
as the cosine distance between the average token
embeddings (‘prototypes’) of all occurrences of w
in the two time periods:

PRT
(
Ut1
w ,Ut2

w

)
= 1− cos

(∑
xi∈Ut1

w
xi

N
t1
w

,

∑
xj∈Ut2

w
xj

N
t2
w

)

(2)

JSD To compute this measure, we form a single
usage matrix [Ut1

w ;Ut2
w ] with occurrences from two

corpora. We standardise it and then clustered its
entries using Affinity Propagation (Frey and Dueck,
2007), a clustering algorithm which automatically
selects a number of clusters for each word.4 Finally,
we define probability distributions ut1

w ,ut2
w based

on the normalised counts of word embeddings in
each cluster and compute a the Jensen-Shannon
Divergence (Lin, 1991) between the distributions:

JSD(ut1
w ,ut2

w ) = H
(
1
2

(
ut1
w + ut2

w

))
− 1

2

(
H
(
ut1
w

)
−H

(
ut2
w

))

(3)
4We use the scikit-learn implementation of Affinity Propa-

gation with default hyperparameters.
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B Static Embeddings

We follow the common approach proposed
by Hamilton et al. (2016), SGNS+OP, to train
skip-gram negative sampling embeddings (SGNS;
Mikolov et al., 2013) from scratch for each time pe-
riod of the diachronic corpus, and then to align the
separate vector spaces using the Orthogonal Pro-
crustes method (OP). Semantic change is measured
as the cosine distance between the embeddings of a
target word in the aligned spaces (for more details,
see Schlechtweg et al., 2019).

We decided not to lemmatize our corpora for
these experiments to preserve as much grammat-
ical information as it is possible but we use two
preprocessing strategies for target words. In the
first strategy (SGNS-raw) we use a raw, unlemma-
tized, corpus and learn embeddings for target words
only in their dictionary form. All other inflected
forms of the target words are ignored. In the sec-
ond strategy (SGNS-lemma), we lemmatize target
word occurrences (but not other words) and thus
use all target word forms to train their embeddings.

In the ranking task, SGNS+OP confirms itself as
a very competitive approach, achieving the best cor-
relation scores on German, Swedish, and Russian
3 (see Table 4). Our results show that lemmatizing
target word forms, so that they all contribute to
the same static embedding, brings substantial per-
formance improvements as well as more stability
across test sets.

Our classification results again confirm the
strength of static embeddings, which outperform
other approaches for German, Norwegian-1, and
Italian (for English and Swedish, they perform on
par with the profile-contextualised ensembles). Tar-
get word form lemmatization is important but less
decisive than in the ranking task (see Table 5).
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Method EN DE LA SW NO-1 NO-2 RU-1 RU-2 RU-3

STATIC

Raw text (SNGS-raw) 0.378 0.226 0.250 -0.036 0.320 0.181 0.101 0.148 0.255
Target words lemmatized (SGNS-lemma) 0.498 0.369 0.106 0.494 0.238 0.392 0.256 0.292 0.538

ENSEMBLES

SGNS-raw-MORPH 0.253 0.105 0.436 0.204 0.116 0.368 0.020 0.222 0.275
SGNS-raw-SYNT 0.341 0.159 0.234 0.158 0.250 0.024 0.019 0.113 0.248
SGNS-raw-MORPHSYNT 0.354 0.258 0.454 0.297 0.142 0.218 0.013 0.148 0.229
SGNS-lemma-MORPH 0.255 0.157 0.409 0.386 0.106 0.440 0.057 0.259 0.332
SGNS-lemma-SYNT 0.364 0.173 0.224 0.242 0.212 0.156 0.071 0.129 0.315
SGNS-lemma-MORPHSYNT 0.367 0.269 0.415 0.461 0.128 0.341 0.023 0.163 0.286

Table 4: Spearman correlation scores in the ranking task (‘Task 2’) with type-based static embeddings (SGNS-OP).
Bold values are cases when SGNS-OP outperforms all other methods (XLM-R and grammatical profiles).

Method EN DE LA SW NO-1 NO-2 IT

Raw (SGNS-raw) 0.514 0.542 0.400 0.548 0.757 0.649 0.722
Target words lemmatized (SGNS-lemma) 0.676 0.646 0.375 0.742 0.676 0.676 0.778

ENSEMBLES

SGNS-raw-MORPH 0.622 0.562 0.600 0.484 0.486 0.622 0.500
SGNS-raw-SYNT 0.541 0.583 0.550 0.581 0.649 0.486 0.500
SGNS-raw-MORPHSYNT 0.649 0.625 0.500 0.677 0.595 0.486 0.611
SGNS-lemma-MORPH 0.622 0.438 0.625 0.484 0.514 0.703 0.500
SGNS-lemma-SYNT 0.541 0.479 0.525 0.581 0.649 0.568 0.611
SGNS-lemma-MORPHSYNT 0.649 0.604 0.600 0.742 0.514 0.676 0.389

Table 5: Binary accuracy scores in the classification task (‘Task 1’) with type-based static embeddings (SGNS-OP).
Bold values are cases when SGNS-OP outperforms all other methods (XLM-R and grammatical profiles).
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Abstract

In this paper, we describe a BERT model
trained on the Eighteenth Century Collections
Online (ECCO) dataset of digitized documents.
The ECCO dataset poses unique modelling
challenges due to the presence of Optical Char-
acter Recognition (OCR) artifacts. We estab-
lish the performance of the BERT model on a
publication year prediction task against linear
baseline models and human judgement, finding
the BERT model to be superior to both and able
to date the works, on average, with less than
7 years absolute error. We also explore how
language change over time affects the model
by analyzing the features the model uses for
publication year predictions as given by the In-
tegrated Gradients model explanation method.

1 Introduction

Collections of historical language, such as ECCO
which comprises over 180,000 titles published in
the eighteenth century, are at the focus of a grow-
ing interest in the NLP community. The large
quantities of raw textual data in these collections,
which may cover whole centuries worth of pub-
lished works, are suitable for language modelling
research, a popular and highly relevant topic in
NLP. The historical language itself poses new and
interesting challenges, especially due to the fact
that the collections span over a time frame long
enough to be affected by natural language change
and evolution. Furthermore, artifacts relating to
the technical process – namely the OCR quality –
of the works pose a whole new set of challenges
rarely met in modern NLP which mostly deals with
born-digital texts, for the most part devoid of such
artifacts. These new developments in NLP are cru-
cial also for historians and other humanists apply-

ing them to new research questions and ways to
produce historical evidence.

The transformer model (Vaswani et al., 2017)
and especially the BERT (Devlin et al., 2019) bi-
directional encoder based on the transformer, form
the foundation of present-day practical NLP re-
search and are naturally also applied in the his-
torical language domain. BERT models have al-
ready been trained with various historical data sets
and languages, including at least English, German,
French, Latin and classical Chinese (Ehrmann et al.,
2021; Yu and Wang, 2020; Labusch et al., 2019;
Bamman and Burns, 2020). The range of tasks to
which it has been used in the domain is already
diverse, covering at least named entity recogni-
tion, construction of word embeddings, event detec-
tion, stance detection, word sense disambiguation
and the study of the animacy of target expressions
(Hamdi et al., 2021; Sims et al., 2019; Coll Ar-
danuy et al., 2020; Hosseini et al., 2021; Beelen
et al., 2021). Issues particular to the historical lan-
guage domain have also produced new challenges
for BERT appliers to adress, like the effect of OCR
quality (Jiang et al., 2021).

In this work, we will follow two directions.
Firstly, we set out to train from scratch and release
a dedicated BERT model specifically on and for the
ECCO dataset. Then, we establish whether such a
targeted BERT model provides an advantage over
other existing historical English BERT models, or
even the modern English BERT. To this end we pur-
sue a benchmark task whereby the model is trained
to predict the year of publication based on the text
itself. We find that the model performs much better
on this task than we intuitively expected, and there-
fore we carry out and report on a more extensive
analysis of the task including a comparison to hu-
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man performance, and provide aggregated feature
attributions to the BERT model predictions using
the Integrated Gradients model explanation method
of Sundararajan et al. (2017).

2 Data

ECCO, or Eighteenth Century Collections Online,
is a set of digitized documents claimed by its pub-
lisher Gale to "contain every significant English-
language and foreign-language title printed in the
United Kingdom between the years 1701 and 1800"
(Gale). In truth however, ECCO is a growing col-
lection. Currently comprising the initial ECCO1
set of around 135,000 documents published in 2003
and some 47,000 further titles added as ECCO2 in
2009, the collection has recently been evaluated
as containing about 54% of the works printed in
the United Kingdom in the eighteenth century, and
known to remain to us through time. Thus, while
not complete and at points biased, it is certainly an
impressive resource for eighteenth-century scholars
as well as, for example, historical linguists (Tolo-
nen et al., 2021).

For the purposes of this work, it is additionally
useful to know the following information about
ECCO. First, ECCO is temporally skewed toward
the end of the eighteenth century, with many more
works being published particularly in the final two
decades of the century than in earlier ones. Second,
while some non-English works are included in the
collection, 94% of the documents in it are in En-
glish (the other languages with more than 1% rep-
resentation are French, with 2.7% and Latin with
2.5%). Third, the print quality and thus OCR qual-
ity of the documents in ECCO correlates both with
their format (pamphlet vs. book) as well as publi-
cation date, with more recent publications having
a significantly better average OCR quality. Fur-
ther, OCR quality also differs between ECCO1 and
ECCO2, which were scanned and OCR’d using
different processes. Finally, there may often be
multiple editions of a single work within ECCO,
and while they have been printed in the eighteenth
century, they may well have originated from e.g.
antiquity. Further, when the year of publication
of a work has not been printed on its title page,
the year has often been estimated. On the level
of the whole ECCO data, this manifests itself as
frequency spikes on every round fifth, tenth and
fiftieth year. (Tolonen et al., 2021)

For the purposes of the year regression experi-

ments in this work, we have dealt with the last two
problems by limiting the subset of ECCO we are
experimenting on to only those where the year of
publication is certain, as well as only to the first
editions of works that first appear in the eighteenth
century. The size of this subset is approximately
40,000 documents.

3 Methods

In this section, we describe the models and methods
used in this work: the pre-trained BERT model, the
BERT-based year regression and feature attribution,
and finally the linear baseline.

3.1 BERT pre-training

BERT model pre-training on the ECCO dataset is
very similar to pre-training on any other dataset,
with the structure of the dataset and the OCR noise
present requiring some consideration. The sub-
word vocabulary of size 50,000 is induced in the
standard manner on a random sample of the dataset.
For the BERT training objective which includes the
next sentence prediction task, the training exam-
ples are constructed from pairs of text segments.
Here each text segment is a continuous piece of text
drawn from a single block of text in ECCO, where
each such block of text is delimited by an empty
line and corresponds to one page or one paragraph,
depending on the format of the underlying work.
We make an attempt to respect sentence bound-
aries when forming the training text segments using
a simple regular expression, while keeping each
segment between 128-384 tokens long, the pair
subsequently trimmed to the model’s maximum
sequence length of 512 input tokens (sub-words
and special tokens). Unlike for all other experi-
ments, the entire ECCO dataset is used for BERT
pre-training. The trained model is equal in size
to the BERT Base models of Devlin et al. (2019).
The final model was pre-trained for 1 million steps,
with an effective batch size of 768, and learning
rate 1× 10−4.

3.2 BERT-based year regression

As the regression model, we employ a simple lin-
ear regression layer on top of the pre-trained BERT
model, as illustrated in Figure 1. The model is
trained using the mean square error (MSE) objec-
tive. To ensure good model performance, the target
values are z-transformed, y′ = y−µ

σ where µ and
σ are the mean and standard deviation of the pub-
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lication years of the training set examples. The
z-transformed years are centered on zero with a
unit standard deviation. While this is a trivial lin-
ear transformation, it is crucial in model training:
the randomly initialized output regression layer
initially predicts values around 0 and a large num-
ber of training steps are needed to reach the target
range of 1701–1800. During these training steps,
the gradients are propagated also into the BERT
model, and the combined effect turns out to be
highly detrimental for the model.

The documents in our dataset, full books for
the most part, are naturally considerably longer
than the maximum sequence length of 512 sub-
words for the BERT model. We therefore split
each document into a number of chunks of up to
512 sub-words in length, and subsequently average
the predictions to obtain a single, document-level
prediction.

Even though the ECCO works (books and pam-
phlets) themselves are long relative to the maxi-
mum sequence length of the model, we originally
restricted the textual segments used as inputs to
within a single textual block (page/paragraph) of
the source document, so as to match the data on
which the model was pre-trained. Many of these
are relatively short, due both to the layout of the
works and OCR artifacts. Unsurprisingly, though,
we found during development that the prediction
performance is best on long textual segments near
the 512 sub-words limit. Therefore, we altered
the example generation strategy and concatenated
what would originally be several independent ex-
amples into a single long sequence separated by
the [SEP] BERT control tokens. This way the
model can be trained and evaluated exclusively on
512 sub-word long segments with the exception
of document-ending segments and the rare cases
where the entire document is shorter than 512 sub-
words.

3.3 Feature attributions

There are numerous methods for calculating feature
attributions, i.e. the assignment of importance to
input features with respect to the prediction made
by the model. In this work, we apply the Integrated
Gradients (IG) method of Sundararajan et al. (2017)
to obtain attributions for the BERT-based regressor
predictions. IG is a popular method specifically tar-
geting differentiable models, assigning attributions
to individual parameters of the model. In the con-

text of BERT, the attributions would typically be
calculated with respect to the input sub-word em-
beddings, in turn providing attributions on the level
of sub-words in the input sequence. In short, the IG
method defines the attribution as the integral of the
gradient of the model output w.r.t. the parameter of
interest, integrated on a path interpolating between
a “blank” reference input sequence and the actual
input sequence. This is in practice implemented
by evaluating the model in N steps (here we set
N = 50) between the reference and actual input.

In image processing, the reference input would
typically be e.g. an empty image, or a white noise
image. In the context of BERT, we can use the se-
quence [CLS] [PAD] [PAD] ... [PAD]
[SEP], where [CLS] and [SEP] are the special
separation tokens in BERT input, and [PAD] is the
padding token. This reference sequence has same
length as the actual input and the interpolation is
carried out on the input token embedding vectors.

The attribution value of each input sub-word is
the sum of the scalar attributions across the di-
mensions of the input embeddings. A positive
attribution value signals contribution towards the
prediction made by the model, while a negative
attribution value signals contribution against the
prediction made by the model. Since the BERT
model uses sub-word tokenization, splitting rare
words into sub-words, to obtain word-level attribu-
tions understandable to the human reader we set
the attribution of a word to be the attribution of
that of its sub-words which has the highest abso-
lute value. Thus, for instance, if an input word is
divided into three sub-words with attributions of
[−0.4, 0.1, 0.21], the overall attribution of the word
will be −0.4.

3.4 Aggregating attributions

The word attributions provided by the IG method
are assigned to individual predictions, i.e. predic-
tions on a maximum of 512 sub-words long text
segments. There are therefore two levels on which
the attributions may be aggregated. Firstly, relevant
features aggregated across all text segments of a
single long document such as a book explain the
prediction the model gave to that document. And
secondly, one might be interested in aggregating
relevant features across all books published in a
single period (e.g. one decade) so as to gain an
understanding of globally relevant features for that
period.
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Figure 1: The regression model for a single text segment of BERT maximum sequence length, with OCR errors.
Predictions across segments of a single document / book are averaged to give a final document-level prediction.

Model MAE MSD STD

ECCO-BERT 6.32 -1.30 8.84
dbmdz/bert-base-historic-english-cased 7.27 -1.44 10.18
bert-base-cased 7.65 -0.73 10.27
MacBERTh 8.21 -1.35 11.08
Linear regression 11.88 0.26 15.38
Linear classification 12.47 -0.35 20.22

Table 1: Results for fine-tuned BERT models and the linear baseline models. MAE is mean absolute error, MSD is
mean signed deviation, and STD is standard deviation, in terms of years.

There are many ways to approach this aggrega-
tion. In the simplest case, we can take the top
features based on the highest attribution values
across all text segments. However, this method
was found to be prone to noise when the number
of segments is large, such as when aggregating on
a decade-level. We therefore test two additional
methods. The first one counts the number of times
each feature appears as a top 10 feature of a seg-
ment. To reduce the prevalence of common words,
this number is further weighed with its IDF. The
other method takes the average attribution value for
each feature across all segments. Top features are
chosen as those that have the highest average attri-
bution value and appear in the segments more than
once. Using these methods, lists of top features for
each decade were qualitatively evaluated.

3.5 Linear baseline

We use a standard linear model as the baseline
method, as it also allows us to compare the fea-
ture attributions, which are simple to extract from a

trained linear model. As the first baseline to evalu-
ate the performance of a linear model using support
vector regression on the task of year prediction, we
used the solver implemented in the Liblinear pack-
age (Fan et al., 2008). As an alternative, we also
used a linear model for the direct multiclass pre-
diction (Crammer and Singer, 2001) instead of the
surrogate loss in the form of squared error.

4 Results

There are 39,429 ECCO works that have a verified
year of publication during the 18th century and that
constitute the earliest publication of the given work.
All results are reported on the same test set of 1971
randomly selected works, which contain a total of
about 225,000 text segments. A development set
of the same size was reserved for hyperparameter
selection, with the remaining 35,487 documents
being used for training.
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Figure 2: A histogram of the errors (a) as well as a comparison between the actual years and predicted years (b) by
the ECCO-BERT model.

4.1 Year regression

In addition to our pre-trained ECCO-BERT, we
used three other relevant BERT models pre-trained
on either historical or modern English: bert-base-
cased1, dbmdz/bert-base-historic-english-cased2,
and MacBERTh3. For each model, a grid search on
the development set was performed to find optimal
learning rate and number of training steps.

The overall results for the year regression task
with the BERT models as well as the linear base-
line models are summarized in Table 1. All BERT
models can be fine-tuned to perform reasonably
well, as the fine-tuning dataset is very large. BERT
pre-trained on the ECCO dataset performs slightly
better than the other models, possibly due to better
fitting the OCR noise unique to the dataset. Over-
all, the best result of mean absolute error of 6.32
years reflects a surprisingly good performance of
the BERT model on the task. To gain more insight
into the predictions, the histograms of prediction
errors relative to the publication year of the work
are presented in Figure 2. These show no strong
bias, beyond the natural fact that the publication
year of older works is more likely to be overesti-
mated and the publication year of newer works is
likely to be underestimated, as the model learned

1https://huggingface.co/
bert-base-cased

2https://huggingface.co/dbmdz/
bert-base-historic-english-cased

3https://huggingface.co/emanjavacas/
MacBERTh

the prediction range.
The impact of OCR quality on the results is

worth considering. (Jiang et al., 2021) showed that
pre-trained BERT on OCR’d historical books was
less robust when used in a domain classification
task than one trained on ‘clean’ text, though in that
study fine-tuning significantly improved resilience
to noise. Other studies on downstream NLP and
language modelling tasks show that OCR quality
can have a significant effect, though the extent is
heavily dependant on the specific task and extent
of the OCR error rate. (van Strien. et al., 2020;
Hill and Hengchen, 2019) Here, we found a mod-
erate performance difference between the ECCO1
and ECCO2 subsets of the test set, with ECCO-
BERT having a mean absolute error of 6.96 years
for ECCO2, but only 5.95 years for ECCO1. This
is most likely due to ECCO1 having a stronger rela-
tionship between OCR quality and publication year,
which could help model predictions. This suggests
that a more noise-aware variant of the model, for
instance a character-level version, would improve
results.

4.2 Linear baseline

Contrary to the BERT model, in which the input is
limited to 512 sub-words, in the linear models, the
TF-IDF representation can be built over the entire
corpus. For building a TF-IDF representation for
each document, we used the TfidfVectorizer
of sklearn. We ignored the terms that ap-

72



pear in more than tf-max = 30% or less than
tf-min = 1% of the training documents. As the
data contains a significant amount of noise, the
only preprocessing on token-level is removing the
stop words. Furthermore, to prevent information
leakage when the year of publication is explicitly
stated somewhere in the document, we removed all
the numbers from the documents including training
and test sets4. The hyper-parameters of the linear
models including C, tf-max, and tf-min are
chosen using a validation set drawn randomly from
5% of the training data.

The histograms of the errors using linear models
are depicted in Figure 3. While it seems that the
classification model is more accurate in predicting
the distribution of the years, having predictions
with large variances leads to worse performance
of this model compared to linear regression when
metrics such as standard deviation are taken into
account.

Overall, as can be expected, the linear baselines
performs substantially worse than any of the BERT
models, including modern English BERT.

4.3 Qualitative evaluation

Three approaches were used to analyse what infor-
mation carried by the text tokens the BERT model
might be utilising in its predictions. First, we quali-
tatively evaluated the predictor features of the linear
regression model used as the baseline. This evalua-
tion suggests that - even when the model is simple
and features easier to interpret - there are multiple
elements in the ECCO’s tokens that a year predict-
ing model can use. Some like baptizing (negative
predictor, i.e. signalling an old publication) might
relate to shifts in the composition of the ECCO
during eighteenth century, others like soveraign
and cloath might be related to temporal variation in
spelling. Further likely information sources include
language (tokens in Latin and French are prominent
among negative predictors) and varying heuristics
like the information that is part of the imprint 5.
For example, the term sixpence has high positive
effect, and sixpence is a very common price printed

4Although the numbers are removed from the documents
for the experiments with the linear models, we observed in
practice that having numbers in the documents may not affect
the results significantly, where the MSE metric for linear re-
gression is 232.18 when the numbers are present and 236.71
for the other case.

5The text, usually at the bottom of the title page, giving
the details of the book’s producers a well as information on
price and place of publication

to the imprint, but price information in ESTC is
temporally varying, and mostly missing from the
first years of the eighteenth century in contrast to
the rest of the century (Tiihonen et al., 2021). In
nearly all specific instances there is a high degree
of uncertainty about the reason why a given token
is or seems to be relevant for year prediction, but
put together, the evaluation of the baseline model
suggests that there is real information to be utilised
among the noise.

In the second approach, we tried to directly eval-
uate the predictors relevant for the ECCO-BERT
model’s predictions by going through a sample of
documents and interpreting three sets of predictor
tokens for each. Each of these token sets relates
to one of the methods of measuring the token’s
significance as a predictor (see section 3.4), and
the motivation was to use these sets of terms to
get insight into the way the model utilises informa-
tion from ECCO to predict the years. In addition
to the sources of variation already mentioned, the
model seems to capture some very context specific
terms relevant for prediction. A telling example is
a work6 on the French Revolution from 1797, that
the model predicted as being published in 1794.
Among the top predictor tokens for this document
were French, Revolution and Jacobins from the sec-
ond set of tokens, but also 1792, I792 and r792
from the third.7 In the third approach, the three
methods were used to produce three token sets of
potentially relevant predictors of the ECCO-BERT
model for each decade (the approach discussed in
section 3.4) of the eighteenth century. Some of the
temporal development of token sets two and three
might be related to significant conceptual develop-
ments that occurred during eighteenth century. For
example, the term publick is part of the token set
2 in 1750’s, and Public in 1790’s. The emergence
of the notion of a public sphere (for definition, see
for example (Barker, 2004)) and the term public(k)
during the eighteenth century are major questions
both in intellectual history and political theory. The
transformation from publick to public is an exam-
ple of known orthographic shift where the letter k
of words ending with ck drops out (Baron, 2011).
Both the appearance of the term as a potentially
relevant predictor for specific decades and the vari-

6ESTC citation number T64288.
7Note that as the works are split into a large number of text

segments, on average over 100 per work, whose predictions
are averaged, a single segment with the correct year picked up
by the model does not uniquely decide the result.
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Figure 3: A histogram of the errors for linear regression (a) linear classification (b).

ation in its spelling are interesting phenomenon
from the humanities perspective.

4.4 Manual annotation

As a point of comparison, a set of human-annotated
predictions was also produced. Four human anno-
tators were provided with a set of 512-token docu-
ments and asked to predict the year of publication.
In addition, they were invited to label the features
within each document which they determined had
been most useful in making a given decision. The
annotators all had some level of familiarity or ex-
pertise with early modern texts, nevertheless this is
still best considered as an initial exploratory study,
rather than a fully authoritative experiment. Most
importantly, the human annotators did not study
each work in its entirety, unlike the models.

In total 277 human predictions were gathered,
from 167 distinct document snippets. Human an-
notators fared much worse than the BERT model
predictions for the same set of documents, with a
mean absolute error of 30 (27.59 if the average for
multiple guesses for the same document is taken)
compared with 8.73 for the model (Figure 4a, Fig-
ure 4b). Human annotators tended to over-estimate
the publication year ( Figure 4a). The average er-
rors were higher for documents published towards
the end of the century, though this may be partially
explained by the fact, noted in section 2, that the
labelled data is also biased with more occurrences
towards the end (reflecting the distribution of the
full dataset).

When comparing the predictive features of the

model with those given by the human annotators,
categorical or thematic overlap was observed. In
many cases the human annotators found it difficult
to articulate reasons or pick out specific words to
describe how their decision was made, but where
they did, it was a mixture of recognition of spelling
variations (for example, the additional e in newes,
or k in publick), judgements on OCR quality –
which improves significantly for documents pub-
lished later in the century due to improvements
in print quality and subsequent digitisation – and
historical evidence, for example the mention of a
known historical figure or event making it possible
to give the earliest possible publication date with
certainty, at least. Historical clues ranged from
anything from mentions of specific events (such
as the resignation of Lord North which took place
in 1782) to less obvious historical clues such as
the mention in a document of ’hot-house grapes’, a
growing technique more likely to have been used
at the end of the century.

By most accounts, spelling variation in English
printed works had already levelled off by 1700
(Baron et al., 2009) meaning that in theory the
usefulness of orthographic change as a feature is
minimal. However some variation is still found,
particularly in the earlier part of the eighteenth
century, which may account for the fact that human
annotators were moderately better at predicting
earlier works than later. As expected, a key clue in
predicting earlier dates are OCR errors and long-s
words transliterated as f. This may also be part of
the reason why average errors were highest towards
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Figure 4: Comparison of human annotations (a) and model predictions (b) for the same set of 167 document
snippets.

the very end of the period: the use of the long s
declined rapidly by 1800 and so is a less useful
clue for dating a document.

The annotators reported that the task was diffi-
cult, particularly when judging a year of publica-
tion from what was usually a snippet from a much
larger text. While reprints in ECCO have been re-
moved as described in section 2, the partial re-use
of text is common, for example in miscellanies, an-
thologies, and collected works. One consequence
of this is that typical humanistic features of text
such as style of writing were not always helpful
in a decision about year of publication. To give
one example, an incorrectly-labelled (by a human)
annotation included part of a poem written by John
Sheffield, Duke of Buckingham who died in 1721,
but was actually in this case from a collected works
published in 1780 and thus labelled with the later
date in the task. Overall, spelling, OCR artifacts,
and typographical changes were more useful as
predictive features.

The annotation task, then, was valuable firstly
as a way to understand the differences between
the ways a machine model and human annotator
might use features to predict years. Secondly, it
shed some light on the way those with domain
expertise might judge the year of publication of a
particular work based on its text abstracted from
the material context in which it was found. From
a humanistic point of view, the task highlights the
fact that human judgement of publication dates is
very unreliable when dealing with extracts from
larger texts, and presumably relies to a great extent

on contextual information, for example font, paper,
and the condition of a particular book, rather than
its content.

5 Conclusions

The contributions of the paper are two-fold. Firstly,
we pre-trained and openly distribute a BERT model
specifically focusing on the historical English lan-
guage in the Eighteenth Century Collections Online
(ECCO) that is widely used in the humanities. To
benchmark the model and gain understanding of
its performance on historical English, we use the
task of publication year prediction, in other words
given the text, the task is to regress its publication
year.

Our findings and analysis of the model’s perfor-
mance on this task then form the second contribu-
tion of the paper. We establish that the accuracy
with which the model is able to predict the year of
publication is well above our baseline models on
full documents and also well above human perfor-
mance on text snippets.

We also carried out an initial qualitative analysis
of predictive features, both for our simple linear
baselines and for the BERT models. We observe a
degree of a useful signal among these features, in-
tuitively understandable to a human, demonstrating
the applicability of model explanation techniques
also to the complex BERT model. Nevertheless, it
is clear that numerous challenges still remain.

This initial study has several natural future
work directions. Firstly, a further, more de-
tailed analysis of the predictive features, and there-
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fore of the model’s predictions is clearly called
for. Secondly, a more detailed comparison be-
tween human and model decisions will be car-
ried out. And finally, as we have not specif-
ically taken into account the OCR noise when
pre-training the BERT models, more noise-aware
variants of the transformer model, e.g. character-
based models, will be tested on the ECCO data.
The ECCO-BERT model is freely available as
TurkuNLP/eccobert-base-cased-v1 in
the Hugging Face model repository.
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Abstract

The tree model is well known for express-
ing the historic evolution of languages. This
model has been considered as a method of
describing genetic relationships between lan-
guages. Nevertheless, some researchers ques-
tion the model’s ability to predict the prox-
imity between two languages, since it repre-
sents genetic relatedness rather than linguistic
resemblance. Defining other language proxim-
ity models has been an active research area
for many years. In this paper we explore a
part-of-speech model for defining proximity
between languages using a multilingual lan-
guage model that was fine-tuned on the task
of cross-lingual part-of-speech tagging. We
train the model on one language and evaluate it
on another; the measured performance is then
used to define the proximity between the two
languages. By further developing the model,
we show that it can reconstruct some parts of
the tree model.

1 Introduction

Language families are defined by the evolution of
languages over the history, providing indications
regarding the proximity between them. The tree
model, which was first introduced by Augustus
Schleicher (Schleicher, 1853) is considered as the
consensual language-family model. For example,
Figure 1 shows the Indo-European branch of the
tree model; a full version of the model is nicely
presented on Ethnologue1. In this paper, we refer
to this source as a reference for the classic family
tree model.

Concomitantly, there have been theories that
question the tree model as being an indicator for
language proximity, since it represents genetic relat-
edness rather than lexical resemblance. Loanwords,

∗∗Equal contribution.
1https://www.ethnologue.com/browse/families

as well as other lexical influences are usually not
expressed in the classic tree model. Representing
historical relatedness, the tree is agnostic to various
linguistic influences. Consequently, some claim
that language families should be defined by alter-
native models (Geisler and List, 2013).

The Universal Grammar, introduced by Noam
Chomsky, is usually defined as the “system of cate-
gories, mechanisms and constraints shared by all
human languages and considered to be innate” (Do-
brovolsky et al., 2016). In other words, a human
language is derived from a set of structural rules,
typically referred to as generative grammar, which
we are usually totally unaware of. We can intu-
itively distinguish between nouns and verbs; chil-
dren can phrase a sentence they have not heard
before by ordering parts of speech they are famil-
iar with in a valid grammatical order. A child can
identify a noun without knowing what a noun is,
or without even understanding the meaning of that
specific noun.

It may be assumed that rather than this aspect
of universal grammar being specific to language, it
is more generally a part of human cognition, and
there might be a common structure for different
languages. Still, the ability to classify words into
parts of speech requires some knowledge of the
structure of the specific language.

The hypothesis we examine in this paper relies
on the assumption that historically close languages,
like French and Spanish, share some information
that may help the classification of words into part-
of-speech (POS) tags. While identifying this type
of information is out of scope for this paper, we will
show that this information can be used by a neural
network for predicting POS tags of one language
only using examples from another language.

Our goal is to redefine the proximity between
languages to achieve a comparable model to the
classic tree model, by considering only POS tags.
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Figure 1: The Indo-European language branch; the graph was created by the igraph package for Python (Csardi
and Nepusz, 2006). The languages are represented using their equivalent two-letter ISO 639-1 code.

To enable transferability between languages, we
suggest using a multilingual pre-trained language
model (MPLM), fine-tuned for the POS tagging
task in a multilingual environment. Specifically, we
take a multilingual zero-shot training approach by
fine-tuning an MPLM to predict POS tags for texts
written in one language, the source language, and
evaluating it on texts written in another language,
the target language. The performance metrics are
then used to estimate the similarity between the
source and target languages. As a final step, we
generate a language-similarity graph, which we
describe as an approximation for the classic tree
model. We make two main contributions: (1) Re-
constructing part of the classic tree model using

POS-based similarity scores; and, (2) Providing
some insights into the cross-lingual generalization
of MPLMs.

We proceed as follows: In Section 2 we cite
some related studies, following by a detailed de-
scription of our method, provided in Section 3. We
end Section 3 with reporting on some results. We
discuss the results in Section 4 and make some
conclusions.

2 Related Work

There have been some prior studies on measur-
ing distance between languages. In their paper,
Chiswick and Miller (2005) presented some em-
pirical observations of how rapidly speakers of
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a given language gained proficiency in another
tongue. Specifically, they measured the speed
of English acquisition by immigrants of various
linguistic backgrounds in the United States and
Canada. Their first languages were ranked for the
distance from English, on a scale from 1.0 (very
different than English) to 3.0 (closest to English). It
has been found empirically that the greater the dis-
tance between an immigrant’s origin language and
English, the lower is the level of the immigrant’s
English language proficiency.

There have been many attempts to use compu-
tational tools to infer the relations between lan-
guages; the dominant approach is known as phy-
logenetic linguistics. Phylogenetic linguistics is
about establishing historical relationships among
languages, by considering the evolutionary nature
of human languages. In computational phylogenet-
ics, words and/or phonemes of what counts as the
same language over time, are analyzed and com-
pared among languages.

Specifically, Swadesh (1950) was first to in-
troduce a computational phylogenetic technique
called lexicostatistics for comparing between two
languages. In lexicostatistics, the similarity be-
tween two languages is calculated by a function of
the percentage of cognates found in a predefined
list of words of the two languages. Swadesh’s work
has been followed by a number of studies that use
lexicostatistics or a minor variation of it (Nakhleh
et al., 2005; Holman et al., 2008; Bakker et al.,
2009; Petroni and Serva, 2010; Barbançon et al.,
2013).

Instead of measuring the percentage of cognates,
Petroni and Serva (Petroni and Serva, 2008; Serva
and Petroni, 2008) proposed to calculate a normal-
ized Levenstein distance among words with the
same meaning and then to take the average over the
words contained in a cross-lingual list. Müller et al.
(2010) conducted a lexical comparison using the
Levenstein distance approach, between 4,350 lan-
guages of the ASJP database (Brown et al., 2008),
and created a full diagram of lexical proximity.
They showed that lexical resemblance is related to
genetic affiliation. However, some of the languages
that have been found as lexically similar, accord-
ing to their technique, are not closely genetically
associated.

Another computational approach for measur-
ing language similarity is based on corpus anal-
ysis. Gamallo et al. (2017) used the known per-

plexity score of a probabilistic n-gram language
model to measure the distance between European
languages. Asgari and Mofrad (2016) compared
50 languages from different families by training
a monolingual language model on each language
individually, using a parallel corpus of the Bible
(Christodouloupoulos and Steedman, 2015), and
apply them to calculate perplexity on all the other
languages. In some of the works that are men-
tioned above, the proximity between languages is
not perfectly aligned with the classic tree model.

While the main focus has always been on lex-
ical similarity, some attempts were made to com-
pare languages on the syntactic level. Longobardi
and Guardiano (2009) characterized 28 languages,
mostly Indo-European ones, using a set of 63 pre-
defined morpho-syntactic parameters. They calcu-
lated a normalized Hamming distance over those
parametric representations, with which they were
able to generate a language tree. They showed that
this tree is equivalent to a tree that was generated
based on a traditional lexicostatistics approach, sug-
gesting that syntactic characteristics are sufficiently
robust to reconstruct a plausible historical language
tree. The same method was re-used in (Longob-
ardi et al., 2013), which was concluded in a similar
way. In a recent work, Shu et al. (2021) applied a
different comparison technique on the same syntac-
tic characteristics, using Markov models. In all of
those works, the selection of the syntactic character-
istics to be used for comparison, plays an important
role in the creation of a language proximity model.

To the best of our knowledge, there have not
been attempts to compare languages using syntac-
tic information in a non-parametric way. In this
work, we take a corpus-based approach to automat-
ically extract part-of-speech tags from a given text
in order to generate a language-proximity model.
In that sense, we consider our approach as a non-
parametric estimation method, since we do not
need to manually define specific syntactic parame-
ters to consider for calculating similarity between
languages.

To transfer information across languages, we use
mBERT, a multilingual version of BERT (Devlin
et al., 2019), that was pre-trained on texts written
in over 100 languages based on a shared vocabu-
lary.2 During pre-training, the training documents
are given to mBERT without any indication on the
language that they have been written with. Like

2Similar to BERT, mBERT’s tokens are subwords.
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every other pre-trained language model (PLM), the
pre-trained mBERT model is typically fine-tuned
on a training set of a specific downstream task,
which could be either monolingual or multilingual.
This unique multilingual design allows mBERT
to handle multilingual tasks in a transfer-learning
way. In another study, Wu and Dredze (2019) re-
ported an impressive performance using mBERT in
a zero-shot cross-lingual transfer learning setting
on several NLP tasks, including POS tagging. They
claimed that mBERT may learn a cross-lingual rep-
resentation by generalizing and abstracting some
language-specific information. A similar observa-
tion was made by Gonen et al. (2020) who claimed
that mBERT learns information by two compo-
nents, one that encodes the language and another
that encodes some abstract information that can be
used in a cross-lingual way.

3 Methodology

3.1 Language Similarity Score

For every pair of languages, source language and
target language, we measure their similarity as the
performance of an mBERT-based POS tagger fine-
tuned on the source language, and evaluated on
the target language. For training and evaluation,
we use treebanks from Universal Dependencies
(UD).3 In particular, we use the Universal POS la-
bels4 assigned for every syntactic word in the text.
The Universal POS tagset contains the following
core part-of-speech categories that can be used for
any UD language: adjective, adposition, adverb,
auxiliary, coordinating conjunction, determiner, in-
terjection, noun, numeral, particle, pronoun, proper
noun, punctuation, subordinating conjunction, sym-
bol, verb and other. Each treebank is divided to
train and test sets. Therefore, we fine-tune mBERT
on the UPOS (universal POS) tagging task using
the source language’s training set, and evaluate it
on the target language’s testing set.

Our selected evaluation metric is the micro
average F1 score. Clearly, for every pair of
languages we calculate two F1 scores, one for
each direction. The two scores are not necessarily
equivalent.
In all our experiments, we use the com-
monly used pre-trained language model
bert-base-multilingual-cased,

3https://universaldependencies.org
4https://universaldependencies.org/u/

pos

provided by the Hugging Face transformers
library (Wolf et al., 2019). For every language
we fine-tune the model for the standard token
classification downstream task for three epochs,
using a learning rate value of 5e− 5.

We include 36 languages in our study, taken from
a diversity of language families and subfamilies.
The full list of languages is provided in Figure 2.
For each language we indicate its two-letter ISO
639-1 code, which we use throughout the paper.
All the 36 languages we process are covered by
mBERT.

Overall, we calculate the F1 score for every pair
of languages, resulting in 362 = 1296 scores. A
partial list of the scores is provided in Table 1,
while the full set of results is added as Appendix
A. Clearly, the model that is trained on English
performs better on Spanish than on Russian and
Hindi.

Src/Trgt EN ES RU HI
EN 0.97 0.84 0.80 0.64
ES 0.80 0.99 0.80 0.58
RU 0.74 0.81 0.98 0.64
HI 0.61 0.57 0.67 0.97

Table 1: F1 scores for some of the language pairs.
Rows represent source languages, while columns rep-
resent the target languages. For example, the first
row represents the F1 scores resulted from evaluating
mBERT on the UPOS tagged test sets in English, Span-
ish, Russian and Hindi, after previously fine-tuned on
the English UPOS tagged train set.

As mentioned before, the two F1 scores that
were calculated for each pair of different languages,
are not necessarily equal. In fact, they are very un-
likely to be equal, since the performance of the
tagger is affected not only by the difference be-
tween the languages, but also by the size and the
quality of the training sets, as well as the volume
and quality of the texts in each relevant language,
which were used for training mBERT.

The average of the absolute difference between
all language pairs is 0.0874 and the standard de-
viation is 0.074. While some pairs have relatively
similar scores in both directions, some other have
significantly different ones. However, as we show
later, we do not use the F1 scores directly as some
sort of a distance function between the languages.
Instead, we represent each language l by a vector
of F1 scores calculated by all other models during
evaluation on l’s testing set, and use a clustering
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Figure 2: The 36 languages we include in our study. We chose languages from different families and subfamilies.
The two-letter ISO 639-1 code is provided in parentheses next to each language name.

algorithm to organize these vectors into language
families.

Before we show how we do that, first, we argue
that our cross-lingual F1 score is an important
piece of information for reconstructing the
classic tree model. Our argument is based on the
correlation between our cross-lingual F1 score
and the proximity of language pairs in the classic
tree model. In order to measure the proximity
between two languages in the classic tree model,
we use the Wu-Palmer similarity (Wu and Palmer,
1994) metric, which was originally invented for
measuring relatedness of two synsets in a WordNet
taxonomy. For the context of using Wu-Palmer,
the tree model has the same characteristics as
WordNet; language family names are represented
by intermediate nodes, while language names
are represented by the leaves. Therefore, the
Wu-Palmer score for two languages L1, L2 is
calculated as follows:

2 · depth(lcs(L1, L2))

depth(L1) + depth(L2)

with lcs representing the least common subsumer,
that is, the first common ancestor of the two lan-
guages in the language-family tree. The score
ranges between 0 and 1, but it can never go to
zero since the depth of lcs(L1, L2) is never zero
(the model tree has a single root).

We denote the Wu-Palmer score as WP. As opposed
to our cross-lingual F1 score, WP is symmetric.

We calculate WP for every language pair, and
compare with our F1; the results are shown in Fig-
ure 3. Every data point in this chart represents a
single language pair out of the 362 pairs. Overall,
we learn that the F1 score increases along with WP,
except maybe on relatively small WP values, repre-
senting pairs of languages taken from significantly
different branches of the language-family tree.

Furthermore, we measure the correlation be-
tween the two metrics using Pearson (for linear
correlation) and Spearman (for monotonic corre-
lation) and realize that both are strongly corre-
lated with Pearson= 0.64 (at p < 0.001), and
Spearman= 0.59, (at p < 0.001).

Figure 4 visualizes the F1 scores of all language
pairs as a heatmap, with target languages provided
as rows and source languages as columns. For each
target language, all the 36 source languages are
sorted according to the F1 scores (from the highest
to the lowest). The color represents the proximity,
as calculated by the WP score; a lighter color is
equivalent to a higher proximity. For example in
the fifth row, the best performance on the Spanish
test set is observed by the Spanish model, followed
by other Romance languages, Catalan, Italian, Por-
tuguese and so on. The worst performance was
recorded by the Welsh model. Evidently, higher
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Figure 3: UPOS F1 scores compared with WP scores.

proximity values (light boxes on the left side of the
heatmap) derive higher performance on the cross-
lingual POS task, indicating that the closer two
languages are, the encoded information in their cor-
responding models tends to be more helpful for
POS tagging.

3.2 Reconstructing Language Families
In this section we show how we use the resulting
F1 scores, calculated for every language pair, to
reconstruct the language-family tree.

We represent every language l by a 36-
dimensional vector consisted of the F1 scores of
the models that have been trained on all other lan-
guages, evaluated on l. We generate exactly 36
vectors, one for each language. Conceptually, the
vector of language l represents the similarity of
l to all the other languages, by considering only
cross-lingual UPOS information, as captured by
mBERT.

To identify families and subfamilies of lan-
guages, we use k-means (Lloyd, 1982) to cluster
the 36 vectors. In addition to the collection of vec-
tors, k-means receives as input a parameter k that
denotes the number of clusters.

According to Figure 2, the tree model organizes
the 36 languages into 9 families; therefore, we run
k-means with value of k = 9. In Figure 5 we
visualize the resulting clusters. The color of the

circle next to the language name marks the cluster.
Note that while the k-means algorithm works with
36-dimensional vectors given as an input, we vi-
sualize the vectors on a 2-dimensional axis, which
we calculate using the principal component analy-
sis (PCA) algorithm for reducing dimensions. The
clusters are summarized in Table 2. We discuss the
results in the following section.

3.3 Results
The alternative partitioning for language families
that we get, partially align with the classic tree
model.

Cluster 1 contains only Romance languages. All
languages in cluster 2, except Romanian, are con-
sidered as Germanic in the classic tree model. Clus-
ter 3 contains all Slavic languages excluding the
Baltic languages. Cluster 4 includes the Baltic lan-
guages (Lithuanian and Latvian) as well as two
Uralic languages (Finnish and Estonian). Those
four languages are spoken in the geographically
close countries Lithuania, Latvia, Finland and Es-
tonia, respectively, suggesting that there might be
a geographical dimension in our POS-based lan-
guage proximity method. We plan to further inves-
tigate this discovery as one of our future directions.
Cluster 6 contains only Hindustani languages. The
two Semitic languages (Hebrew and Arabic) are
grouped together in cluster 7, which also includes
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Figure 4: A heatmap of the WP scores calculated for all language pairs, sorted according to F1 scores. For more
information about this arrangement see the text.

Cluster Languages Family
1 Spanish, Portuguese, French, Catalan, Italian, Galician Romance
2 English, German, Dutch, Afrikaans, Icelandic, Norwegian, Mostly Germanic

Danish, Swedish, Romanian
3 Russian, Ukrainian, Belarusian, Polish, Czech, Slovak, Bulgarian, Slavic

Croatian, Serbian
4 Lithuanian, Latvian, Finnish, Estonian Baltic and Uralic
5 Hungarian Uralic
6 Hindi, Urdu Hindustani
7 Persian, Hebrew, Arabic Iranian and Semitic
8 Irish Celtic
9 Welsh Celtic

Table 2: The clusters obtained by running k-means with k = 9. We provide some information about the language
families of each cluster in the third column.

Persian probably due to historical influences. Hun-
garian is the only language in cluster 5. Clusters 8
and 9 represents two languages of the Celtic family.
They should have probably been clustered together.

Overall although there are a few misplacements,
our clustering method was able to reconstruct parts
of the tree model. 31 out of 36 languages were
classified correctly according to the classic model.
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Figure 5: The 9 clusters resulted from k-means. The original 36-dimensional vectors are visualized using their first
two principle components.

4 Discussion and Conclusions

In this work we used a cross-lingual model trained
on UPOS for measuring the proximity between
languages. We showed that our new language-
proximity model can reconstruct families of ge-
netically related languages, suggesting that POS
information plays a major role in modelling simi-
larity between languages.

We believe that we have demonstrated the po-
tential of a fine-tuned mBERT model to capture
some cross-lingual information that is needed for
assigning UPOS tags to a text written in an unseen
language. On average, models of genetically re-
lated languages perform better on each other in this
task, even if they are not written in the same script.
For example, in Table 1 we show that a Spanish
(ES) model performs similarly on English (EN)
and Russian (RU), although both Spanish and En-
glish are written in the Latin script while Russian
is written in the Cyrillic script.

There are a few caveats to this research to note.

mBERT was pre-trained on the full collections of
Wikipedia articles in the relevant languages. There-
fore, the size of those collections varies proportion-
ally to the number of active speakers. To handle
that bias, the authors of mBERT had decided to up-
sample the Wikipedia collections of the less domi-
nant languages, in the main training loop. Wu and
Dredze (2020) have recently addressed that prob-
lem and showed that mBERT performs better on
cross-lingual zero-shot tasks on languages that have
large Wikipedia collections. In our work, we han-
dle that bias by designing each individual language
vector to have F1 scores from all other languages,
including both high-resource and low-resource lan-
guages. Therefore, every language is represented
by F1 scores achieved by models trained on exactly
the same language set.

Another caveat is the size and quality of the
treebanks we use for training and testing our mod-
els. As noted before, we believe that our approach
to represent a language using scores from mod-
els trained on all the 36 language included in this
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research, mitigates this risk.
We make a final practical observation. The re-

sults of our study suggest that for UPOS tagging,
mBERT may benefit from training on texts writ-
ten in languages that are genetically similar to the
target language, based on the classic tree model.
These results are aligned with what have been re-
ported by Wu and Dredze (2020).
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A Appendix: F1 Scores

Figure 6: F1 Scores for all language pairs.
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Abstract
Computational approaches in historical linguis-
tics have been increasingly applied during the
past decade and many new methods that im-
plement parts of the traditional comparative
method have been proposed. Despite these in-
creased efforts, there are not many easy-to-use
and fast approaches for the task of phonological
reconstruction. Here we present a new frame-
work that combines state-of-the-art techniques
for automated sequence comparison with novel
techniques for phonetic alignment analysis and
sound correspondence pattern detection to al-
low for the supervised reconstruction of word
forms in ancestral languages. We test the
method on a new dataset covering six groups
from three different language families. The re-
sults show that our method yields promising
results while at the same time being not only
fast but also easy to apply and expand.

1 Introduction

Phonological reconstruction is a technique by
which words in ancestral languages, which may
not even be reflected in any sources, are restored
through the systematic comparison of descendant
words (cognates) in descendant languages (Fox,
1995). Traditionally, scholars apply the technique
manually, but along with the recent quantitative
turn in historical linguistics, scholars have increas-
ingly tried to automate the procedure. Recent auto-
matic approaches for linguistic reconstruction, be
they supervised or unsupervised, show two major
problems. First, the underlying code is rarely made
publicly available, which means that they cannot
be further tested by applying them to new datasets.
Second, the methods have so far only been tested
on a small amount of data from a limited num-
ber of language families. Thus, Bouchard-Côté
et al. (2013) report remarkable results on the re-
construction of Oceanic languages, but the source
code has never been published, and the method
was never tested on additional datasets. Meloni

et al. (2021) report very promising results for the
automated reconstruction of Latin from Romance
languages, using a new test set derived from a
dataset originally provided by Dinu and Ciobanu
(2014), but they could only share part of the data,
due to restrictions underlying the data by Dinu and
Ciobanu (2014). Bodt and List (2022) experiment
with the prediction of so far unelicited words in
a small group of Sino-Tibetan languages, which
they registered prior to verification (Bodt and List,
2019), but they do not test the suitability of their
approach for the reconstruction of ancestral lan-
guages. Jäger (2019) presents a complete pipeline
by which words are clustered into cognate sets and
ancestral word forms are reconstructed, but the
method is only tested on a very small dataset of
Romance languages.

With increasing efforts to unify and standardize
lexical datasets from different sources (Forkel et al.,
2018), more and more datasets that could be used
to test methods for automated linguistic reconstruc-
tion have become available. Additionally, thanks
to the huge progress which techniques for auto-
mated sequence comparison have made in the past
decades (Kondrak, 2000; Steiner et al., 2011; List,
2014), it is much easier today to combine existing
methods into new frameworks that tackle individ-
ual tasks in computational historical linguistics.

In this study, we present a new framework for au-
tomated linguistic reconstruction which combines
state-of-the-art methods for automated sequence
comparison with fast machine-learning techniques
and test it on a newly compiled test set that covers
multiple language families.

2 Materials

The number of cross-linguistic datasets amenable
for automated processing has been constantly in-
creasing during the past years, as reflected specif-
ically also in the development of standards for
data representation that are increasingly used by
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Figure 1: Workflow for the new framework for word prediction and linguistic reconstruction based on gap-free
alignments and sound correspondence patterns.

Name Source Subgroup L C W
Bai Wang (2004) Bai 10 459 3866
*Burmish Gong and Hill (2020) Burmish 9 269 1711
*Karen Luangthongkum (2020) Karen 11 365 3231
Lalo Yang (2011) Lalo (Yi) 8 1251 7815
Purus Carvalho (2020) Purus 4 199 693
Romance Meloni et al. (2021) Romance 6 4147 18806

Table 1: Datasets used in this study (L=Languages,
C=Cognate Sets, W=Word Forms *=new data prepared
for this study).

scholars (see Forkel et al. 2018 as well as List
et al. 2021b for recent initiatives to make stan-
dardized cross-linguistic wordlists available in the
form of open repositories). Unfortunately, the
number of datasets in which proto-languages are
provided along with descendant languages is still
rather small. For the experiments reported here, a
new cross-linguistic collection of six datasets from
three language families (Sino-Tibetan, Purus, and
Indo-European) was created. Datasets were all
taken from published studies and then converted
to Cross-Linguistic Data Formats (CLDF) (Forkel
et al., 2018) using the CLDFBench Python pack-
age (Forkel and List, 2020) with the PyLexibank
plugin (Forkel et al., 2021).

CLDF allows for a consistent handling of data
when using software like Python or R. In addition,
CLDF offers several levels of standardization by
allowing to link the data to existing reference cata-
logs, such as Glottolog (Hammarström et al., 2021)
for languages, Concepticon for concepts (List et al.,
2021c), or Cross-Linguistic Transcription Systems
(Anderson et al., 2018; List et al., 2021a) for speech
sounds.

While three of the datasets (Bai, Lalo, and Pu-
rus) had been previously included into the Lex-
ibank collection, a repository of lexical datasets in
Cross-Linguistic Data Formats (List et al., 2021b),
we converted the open part of the Latin dataset
by Meloni et al. (2021) to CLDF. Additionally,

we converted a selection of a smaller part of the
data by Gong and Hill (2020) to CLDF and retro-
standardized the data by Luangthongkum (2019).
While all datasets provided forms for ancestral lan-
guages, not all datasets provided the direct links
between these proto-forms and the reflexes in the
descendant languages in the form of annotations
indicating cognacy. While these were added manu-
ally for the Karen data, using the EDICTOR tool
for etymological data curation (List, 2017, 2021),
we used the automated method for partial cognate
detection by List et al. (2016) to cluster proto-forms
and reflexes into cognate sets for the data on Bai,
Lalo, and Purus.

The datasets, along with their sources and some
basic information regarding the number of lan-
guages (L), cognate sets (C), and word forms (W)
are listed in Table 1. The collection offers a rather
diverse selection, in which the amount of data
varies both with respect to the number of word
forms, cognate sets, and languages.

3 Methods

3.1 Workflow

The new framework can be divided into a training
and a prediction stage. The training consists of four
steps. In step (1), the cognate sets in the training
data are aligned with a multiple phonetic alignment
algorithm. In step (2), the alignments are trimmed
by merging sounds in the ancestral language into
clusters which would leave no trace in the descen-
dant languages (§ 3.2). In step (3), the alignments
of the descendant languages are enriched by cod-
ing for context that might condition sound changes
(§ 3.3). In step (4) the enriched alignment sites are
assembled and fed to a classifier for training.

The prediction consists of three steps. Given a
cognate set as input, the word forms are aligned
with the help of the same algorithm for multiple
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1 2 3 4 5 6 7

Latin k - eː n aː r ɛ
↑ ↑ ↑ ↑ ↑ ↑ ↑

Romanian tʃ - i n a - -

Spanish θ - e n a ɾ -

Portuguese s j - - a ɹ -

Figure 2: Prediction problems when ancestral segments
in multiple alignments do not show reflexes in the de-
scendant languages.

alignment used in the training phase in step (1).
In step (2), the alignment is enriched using the
same method applied in the training phase and then
passed to the classifier to predict the word form in
the ancestral language in step (3).

Figure 1 illustrates the workflow, which is flex-
ible with respect to individual methods used for
individual steps. For phonetic alignment, we use
the Sound-Class-Based Phonetic Alignment (SCA)
algorithm (List, 2012), which is the current state-
of-the-art method, but any other method that yields
multiple alignments could be used. The same holds
for the trimming procedure, (see § 3.2), the enrich-
ment procedure, (see § 3.3), or the classifier (see
§ 3.4).

3.2 Trimming Alignments

Using multiple alignments to predict ancestral or
new words is nothing new and has essentially been
practised by classical historical linguists for a long
time (Grimm, 1822). That multiple alignments
can also be used in computational frameworks has
been demonstrated by List (2019a), who inferred
correspondence patterns from phonetic alignments
and later used these correspondence patterns to
predict words missing from the data. One problem
not considered in this approach, however, is that
correspondence patterns can only be inferred for
those cases in which descendant languages have a
reflex for a given sound in the ancestral language.
In those cases where the sound has been lost, a
prediction is not possible.

This problem is illustrated in Figure 2, where the
Latin ending [E] has no reflex sound in either of the
descendant languages in the sample, yielding an
alignment column that is completely filled with gap
symbols. Our solution to deal with this problem is
to post-process the multiple alignments in the train-
ing procedure by merging those columns which

show only gaps in the descendant languages with
the preceding alignment column. This is illustrated
in Figure 3, where the Latin ending is now repre-
sented as a single sound unit [r.E]. This trimming
procedure, which was introduced for by Ciobanu
and Dinu (2018) for pairwise alignments and is
here extended to multiple alignments, is justified
by the fact that correspondence patterns preceding
lost sounds usually convey enough information to
be distinguished from those patterns in which no
sound has been lost.

3.3 Coding Context

Previous alignment-based approaches to automated
word prediction have made exclusive use of the in-
formation provided by individual correspondence
patterns derived from phonetic alignments (List,
2019a). While this has shown to yield already sur-
prisingly good results, we know well that sound
change often happens in certain phonetic environ-
ments. For example, we know that the initial posi-
tion of a word is typically much stronger and less
prone to change than the final position (Geisler,
1992). Similarly, consonants in the syllable on-
set position (preceding a vowel) also tend to show
different types of sound change compared to con-
sonants in the syllable offset (List, 2014). Last
but not least, certain sound changes may be due
to “long-range dependencies”, or supra-segmental
features like tone, which is typically marked in
the end of a morpheme in the phonetic transcrip-
tion of South-East Asian languages. In order to
allow a classifier to make use of this information,
our framework allows to enrich the phonetic align-
ments further, by deriving contextual information
from individual phonetic alignments and adding it
to the correspondence patterns that are then used to
train the classifier. An example for this procedure

1 2 3 4 5 6

Latin k - eː n aː r.ɛ
↑ ↑ ↑ ↑ ↑ ↑

Romanian tʃ - i n a -
Spanish θ - e n a ɾ
Portuguese s j - - a ɹ

Figure 3: Trimming alignments by merging sounds in
the ancestral languages in those cases where an align-
ment column does not have sound reflexes in the descen-
dant languages.
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Ro Sp Pt P S Ini Lt

1 tʃ θ s 1 C ^ → k

2 - - j 2 C - → -

3 i e - 3 v - → eː

4 n n - 4 C - → n
5 a a a 5 v - → aː
6 - ɾ ɹ 6 c $ → r.ɛ

Figure 4: Enriching a phonetic alignment by coding
various forms of context.

is given in Figure 4, where the phonetic alignment
is given in transposed form (switching columns
and rows), with each row corresponding to one cor-
respondence pattern. While the information from
correspondence patterns alone would only account
for the first three columns of the matrix, three addi-
tional types of phonetic context have been added.
Thus, column P indicates the position of a pattern
in the form of an index. Column S provides in-
formation on the syllable structure following List
(2014), and column Ini indicates, whether a pat-
tern occurs in the beginning (^), the end ($) or the
middle (-) of a word form. Enriching alignments
should be done in a careful way, in order to avoid
over-fitting the classifier. In our experiments, we
contrast all eight possible combinations, ranging
from the full coding shown in Figure 4, up to a cod-
ing of the alignment without additional enrichment.

3.4 Classifiers

Our approach is very flexible with respect to the
choice of the classifier. In order to keep the ap-
proach fast, we decided to restrict our experiments
to the use of a Support Vector Machine (SVM)
with a linear kernel, since SVMs have been suc-
cessfully applied in recent approaches in compu-
tational historical linguistics dealing with differ-
ent classification tasks (Jäger et al., 2017; Cristea
et al., 2021). We compare this approach with the
graph-based method based on correspondence pat-
terns (henceford called CorPaR) presented by List
(2019a), which we modified slightly. While the
original method uses a greedy algorithm to identify
the largest cliques in the network, we now compute
all cliques and rank them by counting the num-
ber of nodes they cover. An alignment site in an
alignment is now compared against the consensus

patterns extracted from the cliques in the graph and
the prediction for the pattern with the largest num-
ber of reflexes is taken as the prediction. When no
compatible pattern can be found, a search for the
best candidates among patterns that are only par-
tially compatible with the alignment site is invoked.
This increases the chances too find a suitable recon-
struction in those cases where the correspondence
patterns are not fully regular.

3.5 Evaluation

Most scholars tend to report only the edit distance
– also called Levenshtein distance (Levenshtein,
1965) – between the predicted and the attested
string, both normalized by the length of the longer
string and in unnormalized form. However, report-
ing the edit distance alone has the disadvantage
that systematic differences between predicted and
attested forms may be penalized too high, which
is why we follow List (2019b) in computing the
B-Cubed F-scores (Amigó et al., 2009) of the align-
ments of source and target sequences. B-Cubed
F-Scores measure the difference between two clas-
sifications, ranging from 0 to 1, with 1 indicat-
ing complete similarity with respect to the struc-
ture of the classifications. Since the prediction of
words can be seen as a classification task in which
a certain number of sound slots should be clas-
sified by rendering them as identical or different
from each other, B-Cubed F-Scores do not measure
whether automated reconstructions are identical
with attested reconstructions in the gold standard,
but rather whether automated reconstructions ap-
proximate the structure of the reconstructions in the
gold standard. As a result, B-Cubed F-Scores can
show to which degree an automated reconstruction
comes structurally close to the gold standard, even
if individual reconstructed sounds differ. Given
that B-Cubed F-Scores measure consistency across
a set of reconstructed word forms, they should not
be applied to individual items.

3.6 Implementation

The new framework is implemented as part of the
LingRex Python package (List and Forkel, 2022)
and allows the use of classifiers from the Scikit-
Learn Python package (Pedregosa et al., 2011).

4 Results

In order to evaluate the framework, we tested two
classifiers, a Support Vector Machine, and the Cor-
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Figure 5: Comparing the results for selected coding techniques and classifiers on individual datasets.

PaR classifier (see § 3.4). Furthermore, we tested
three different forms of alignment enrichment by
coding individual positions (Pos), prosodic struc-
ture (Str), as well as whether a sound appears in
the beginning or the end (Ini). For each test, we
ran 100 trials in which 90% of the data were used
for training and 10% for evaluation.

Classifier Analysis ED NED BC
SVM PosStrIni 0.7491 0.1598 0.8110
SVM PosStr 0.7478 0.1594 0.8115
SVM PosIni 0.7701 0.1624 0.8077
SVM StrIni 0.7578 0.1601 0.8110
SVM Pos 0.7685 0.1618 0.8084
SVM Str 0.7681 0.1614 0.8086
SVM Ini 0.7895 0.1641 0.8061
SVM none 0.8059 0.1673 0.8006
CorPaR PosStrIni 0.8503 0.1816 0.7862
CorPaR PosStr 0.8655 0.1826 0.7854
CorPaR PosIni 0.8425 0.1802 0.7882
CorPaR StrIni 0.8402 0.1771 0.7924
CorPaR Pos 0.8836 0.1847 0.7840
CorPaR Str 0.9048 0.1851 0.7848
CorPaR Ini 0.8342 0.1763 0.7946
CorPaR none 0.9379 0.1898 0.7821

Table 2: Results for edit distance, normalized edit dis-
tance, and B-Cubed F-Scores on all datasets.

Table 2 shows the results for all eight combina-
tions between the three techniques for alignment
enrichment. As can be seen, the SVM classifier
outperforms the CorPaR method, although the dif-
ferences are not very large. While the impact of
the alignment enrichment techniques on the results
is not very large, we still find that they enhance
the results in all SVM trials, while the raw cod-
ing of the position (Pos) leads to lower scores for
the CorPaR classifier in our test set. For the SVM

classifier, coding for prosodic structure (Str) and
information on whether a segment occurs at the
beginning, in the middle, or the end of a sequence
(StrIni) yields the best results with respect to all
measures, while Ini coding outperforms the other
techniques for the CorPaR classifier. From these
results, we can see that alignment enrichment is
a promising technique that deserves further explo-
ration, but we do not think that the current codings
are the last word on the topic.

Figure 5 compares the results for four coding
techniques on individual datasets. As can be seem
from the figure, the impact of the coding techniques
varies quite drastically across datasets. This shows
that it would be premature to rule out any of the
techniques tested here directly, but rather calls for
a careful selection of alignment enrichment tech-
niques dependent on the language family one wants
to investigate.

5 Conclusion

In this study, we have presented a new framework
for supervised phonological reconstruction, which
is implemented in the form of a small Python pack-
age. The new framework has the advantage of
being easy to use, easy to extend, and fast to apply,
while at the same time yielding promising results
on a newly compiled collection of datasets from
three different languages families. Given that our
framework can be easily extended, by varying the
individual components of the worfklow, we hope
that it will provide a solid basis for future work
on phonological reconstruction, as well as the pre-
diction of words from cognate reflexes (Bodt and
List, 2022; Dekker and Zuidema, 2021; Beinborn
et al., 2013; Fourrier et al., 2021) in computational
historical linguistics.
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A Appendix

A.1 Source Code and Data
The new data collection along with the source code and the data needed to replicate the re-
sults reported in this study have been curated on GitHub at https://github.com/lingpy/
supervised-reconstruction-paper (Version 1.0) and archived with Zenodo (DOI: https:
//doi.org/10.5281/zenodo.6426074).

A.2 Table of Results for Individual Datasets
A.2.1 SVM

DATASET PosStrIni StrIni Str Ini none
Bai 0.7848 0.7870 0.7832 0.7846 0.7770
Burmish 0.8388 0.8418 0.8420 0.8405 0.8226
Karen 0.8696 0.8736 0.8734 0.8731 0.8723
Lalo 0.7232 0.7214 0.7204 0.7202 0.7191
Purus 0.9011 0.9021 0.9016 0.9013 0.9022
Romance 0.7487 0.7401 0.7310 0.7171 0.7103

A.2.2 CorPaR
DATASET PosStrIni StrIni Str Ini none
Bai 0.7485 0.7581 0.7560 0.7572 0.7560
Burmish 0.8319 0.8449 0.8422 0.8458 0.8331
Karen 0.8564 0.8581 0.8614 0.8604 0.8581
Lalo 0.6852 0.6874 0.6890 0.6893 0.6871
Purus 0.8688 0.8865 0.8730 0.8897 0.8880
Romance 0.7262 0.7192 0.6871 0.7253 0.6705
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Abstract

Cognates and borrowings carry different as-
pects of etymological evolution. In this work,
we study semantic change of such items us-
ing multilingual word embeddings, both static
and contextualised. We underline caveats iden-
tified while building and evaluating these em-
beddings. We release both said embeddings
and a newly-built historical words lexicon,
containing typed relations between words of
varied Romance languages.

1 Introduction

Languages are in constant evolution over time;
words appear, disappear, and their syntactic form
and semantic function evolve (Blank and Koch,
1999). However, languages evolutions can be
closely inter-related, following phenomena of inter-
actions and inheritance. Cognates and borrowings,
which are the targets of our study, are direct conse-
quences of these phenomena. Cognates are words
which descend from the same ancestor word (their
proto-form) belonging to a shared common direct
parent language. For example, the French word
chat ‘cat’ is cognate with Spanish gatto and Roma-
nian cătus, ă, as they all descend from Latin cattus
‘cat’, a direct ancestor of these three languages.
When a word is an evolution of a form which does
not come from a direct ancestor, it is called a bor-
rowing. English cat also comes from cattus,1 but
as Latin is not a direct ancestor of English, it is
therefore a borrowing of English to Latin. We con-
sider the relation between cat and chat to be of
‘borrowing’ type by extension. Borrowings mostly
occur to designate ‘realities that were unknown be-
fore the adopting speech community got in contact
with the "giving" culture and its language’ or to
replace already existing meanings by the word of
the related dominant culture (Krefeld, 2013). To

1Latin cattus is, that we know of, the most plausible origin
of the proto-Germanic reconstructed word *kattuz, ancestor
of English cat

study semantic variation, we look at our words’
glosses, which are expressions of their meaning,
here as their English translations or definitions. In
our previous example, while the French and Span-
ish cognates both retained the original sense ‘cat’,
the Romanian cognate went through a semantic
change and is translated as ‘handcuff’.

Semantic change studies historically relied on
specific word relations, cognates and ‘borrowings’
(Durkin, 2015), found through the comparative
method (formalised by Osthoff and Brugmann
(1878)). The last few years have seen the emer-
gence of new tools such as contextualised embed-
dings to study semantic variation (Martinc et al.,
2020), enabling the comparison of word senses
across domains, periods and languages. We join
both approaches and expand on the work of Uban
et al. (2021), who use ‘static’ (non-contextualised)
embeddings to study semantics of cognates and
borrowings in contemporary Romance languages
and English. In this work, we use static as well
as contextualised embedding to study the seman-
tic evolution of cognates and borrowings, for both
contemporary and older Romance languages, as
well as English. To this end, we first create a
dataset of cognates and borrowings from the widely
studied Romance family (contemporary: Spanish,
French, Italian, Portuguese, Romanian, old: Latin,
Old Spanish, Middle French), to which we add En-
glish.2 Then, we compare several methods to tackle
the issue of obtaining, for low-resource historical
languages, embeddings spaces aligned with the
ones of contemporary languages. Both dataset and
embeddings are released with the paper.3 Lastly,
we use these embeddings to study semantic shift for
both diachronic (between parent and child) and syn-
chronic (between children) cognates or borrowing

2The language codes are the following: Spanish (ES),
French (FR), Italian (IT), Portuguese (PT), Romanian (RO),
Latin (LA), Old Spanish (OSP), Middle French (FRM), En-
glish (EN).

3github.com/clefourrier/historical-semantic-change
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relations, and find that contextualised embeddings
allow us to reach more accurate conclusions. At
each step, we highlight the possible pitfalls.

2 Related works

Cognates and borrowings transcribe different as-
pects of their languages history, and are often stud-
ied through the lens of orthographic (Ciobanu and
Dinu, 2015, 2019) or phonetic combined with se-
mantic variation (Kondrak, 2001). Uban et al.
(2021), which we extend, study semantic variation
in modern Romance languages between cognates
and borrowings by considering their modern-day
embeddings as a ‘snapshot in time’ of their mean-
ing. As their dataset is not available, we can not
use as a benchmark; however, like several pub-
lic etymological databases, among which CogNet
(Batsuren et al., 2019), containing cognates and
borrowings without differentiating between both
relation types, and EtymDB2 (Fourrier and Sagot,
2020), too small for our needs but which differen-
tiate between both types, we build a dataset using
the Wiktionary4 as etymological source.

Semantic change across languages is actively
researched in the linguistic and sociology research
communities (Boberg, 2012), as it offers valuable
information for sociological and historical analy-
sis. In the NLP domain, many authors apply di-
achronic embeddings models to more than one lan-
guage (Hamilton et al., 2016; Schlechtweg et al.,
2020), but without considering their interactions.
Some work studies variations between languages or
dialects, diachronically (Martinc et al., 2020; Mon-
tariol and Allauzen, 2021) or synchronically (Hovy
and Purschke, 2018; Beinborn and Choenni, 2020).
However, although several annotated datasets are
available to evaluate diachronic semantic change
detection methods (Schlechtweg et al., 2020), cross-
lingual semantic change does not have such re-
source and cognates and borrowings seem like a
promising proxy for evaluating these methods.

3 Datasets and Corpora Construction

We create a dataset of cognates and borrowings in
all languages under study. To complement it, we
need corpora in each language to train or extract
word embeddings; such corpora are publicly avail-
able for highly studied languages. We use a sample
of the OSCAR corpus (Ortiz Suarez et al., 2019;

4The Wiktionary is a user-built free multilingual dictionary,
found at en.wiktionary.org

Abadji et al., 2021) for contemporary languages
and Latin. For Middle French and Old Spanish, we
use less well-known resources.

3.1 Reference dataset construction

From the latest version of the Wiktionary, our goal
is to construct a simple relational set of triplets
(lang, lexeme, gloss) to other triplets for cognates
and borrowings.

Parsing and general information extraction (for
lexeme, language, relations) is described in Ap-
pendix A.5 As extracting glosses proved less
straightforward, we detail it here. We encoun-
tered three types of problem. 1) In the Wiktionary,
some words have English translations as glosses,
while others have English definitions: for exam-
ple, the first definition of ‘eau’ (water) is ‘Water,
a liquid that is transparent, colorless, odorless and
tasteless in its pure form, the primary constituent
of lakes, rivers, seas and oceans’, while for ‘fort’
(strong) it is ‘strong; powerful’ and ‘skilled, profi-
cient, successful, ...’, a translation. Splitting glosses
on punctuation to store the different semantic as-
pects as words is therefore indispensable in trans-
lation cases, but introduces mistakes when defi-
nitions are present. These cases were manually
checked, but some mistakes might still remain. 2)
All English words are defined (which makes sense,
as the Wiktionary technically is an English mul-
tilingual dictionary). In order to have an homo-
geneous base, and as we try to keep translations
only, we therefore make the choice to use English
lexemes as their own ‘translation’ to English. 3)
Some words (especially in Latin) are only defined
as inflections or derivations of other words (e.g. ca-
pitum, only defined as ‘genitive plural of caput’).
In those cases, the gloss is not retained. After
cleaning (also detailed in App. A), we construct
our database, looking only at inheritance relations
(App. A.2). Though cognate-typed relations exist
in the Wiktionary, we deliberately choose to ignore
them, as they can induce noise for our task: to
define cognacy, we stood so far on the side of his-
torical linguistics, but the term can sometimes more
broadly refer to words with shared form and mean-
ing, regardless of etymology (Frunza and Inkpen,
2009). This underlines the attention to sources
which needs to be paid when constructing one’s
own database.

Statistics by language are detailed in App. A.4,

5github.com/clefourrier/historical-semantic-change
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Table 3. The cognate set contains a total of 34,574
word pairs, linking 8,334 unique words from all
languages except English, which only has cognates
to itself, as it does not descend from Latin and
therefore cannot have cognates with any of the
Romance languages. The borrowing set contains
a total of 5,042 word pairs, linking 2,925 unique
words. Here, most relations include English, with
less than 100 pairs in relations without English.

3.2 Historical languages datasets

For Middle French (FRM, 1340–1610), we collect
data from several datasets (see App. C.1): LEM17,
a linguistically annotated corpus of modern French;
MCVF 1.0/2.0 and PPCHF 1.0, parsed historical
French data; OpenMedFr, plain versions of Mid-
dle French texts; and BFM2019, annotated Middle
French texts. We manually filter these datasets to
select all texts in the correct time period and clean
them (see App. C.2).

For Old Spanish (OSP, 10th to 15th century),
we extract data from the Digital Library of Old
Spanish Texts6, then clean it using the transcription
norms described on the website.

After preprocessing, we obtain FRM/OSP
datasets of 3.1M/4.7M words respectively.

4 Cross-lingual embeddings

We compare the semantic function of words in cog-
nates and borrowings pairs. To this end, we explore
various ways of obtaining aligned word embed-
dings in all languages (multilingual embeddings),
using static and contextualised embeddings. The
former are trained using FastText (Bojanowski
et al., 2016) and aligned a posteriori, while the lat-
ter are extracted using the multilingual language
model mBERT (Devlin et al., 2019) from corpora
in all the languages under study. Trained embed-
dings and language models can be found for all
our contemporary languages. However, historical
languages such as Middle French and Old Spanish
suffer from a scarcity of resources that we have to
address.

4.1 Static embeddings

Available FastText embeddings. They were
trained on Wikipedia data and either already cross-
lingually aligned for our contemporary languages
(Bojanowski et al., 2016), or available unaligned
for Latin (Grave et al., 2018).

6http://www.hispanicseminary.org/t&c/nar/index-en.htm

Training FastText embeddings. OSP and FRM
do not have available embeddings: we therefore
train some, using default subword tokenisation and
an embedding size of 300.7 However, we expect the
quality of these new embeddings to be lower than
the pre-trained ones, as 1) the imposed embedding
size is likely too big with respect to the training
data size, which could affect embedding ability to
store relevant information, and 2) we were not able
to define an adapted preprocessing.8

Aligning all embeddings spaces. Alignment is
needed to obtain a coherent representation space
between languages, and can be done either in a su-
pervised or unsupervised way (Lample et al., 2017;
Conneau et al., 2017). Preliminary experiments
of unsupervised alignment (Alaux et al., 2018) led
to extremely poor results. Consequently, we use
bilingual lexicons9 to supervise the alignment of
Latin embeddings with Spanish, with around 2k
bilingual word pairs used for supervision. Having
no such dictionary for OSP/FRM, we use transpar-
ent words with their closest language (respectively
SP/FR) to perform a supervised alignment, extract-
ing for each language a bilingual lexicon of around
8k transparent words.

Extracting embeddings To build word embed-
dings, we had to manage un-homogeneous data
with respect to diacritic: many cognates and bor-
rowings seem absent from the embeddings vo-
cabulary, especially for languages with diacritics
(FR, RO, ES) or spelling variations (FRM) not
homogenised in the embedding training corpora.
We define a set of rules to extract embeddings de-
spite word form variations. To embed word glosses
(when made up of several words/sentences), we
remove stopwords and compute the mean of all
sequence word embeddings.

4.2 Contextualised embeddings

For contemporary languages and Latin, we use
a sample of the OSCAR corpus (Ortiz Suarez
et al., 2019; Abadji et al., 2021) to build our con-
textualised embeddings, as, given its very large

7We use the same parameters as the pre-trained embed-
dings, to be able to align them together.

8OSP and FRM are too different from their descendants
(e.g strong spelling variations inside FRM) to just use their
languages preprocessing as such, and very few resource exist
for these languages (e.g lists of stopwords).

9github.com/clefourrier/CopperMT/blob/master/inputs/r
aw_data/romance_bilingual
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size (e.g. for Spanish, more than 25 billion to-
kens), working on the whole corpus would be time-
intensive. For the other languages, we use the cor-
pora descibed in Section 3.2.

We use an mBERT 10 model trained on 104
languages, including Latin and all our contempo-
rary languages, from the transformers library
(Wolf et al., 2020). Its training on Wikipedia data,
allows for fairer comparison with FastText embed-
dings.

Massive multilingual pre-trained language mod-
els have been shown to perform well on new lan-
guages in a zero-shot fashion (Muller et al., 2021),
especially those closely related to already seen high
resource languages. Thus, we expect mBERT to
perform well on OSP and FRM, but we also com-
pare fine-tuning it on our FRM and OSP corpora us-
ing the masked language modelling task. We study
cognates and borrowings representations in context,
by computing the average embedding across all tar-
get word occurrences in corpora of their respective
languages (Martinc et al., 2020). We compute word
embeddings as the sum of the last 4 encoder lay-
ers of the model. When a word is divided into
sub-words, we take the average of the sub-word
embeddings

For word gloss embeddings (that we see as a rep-
resentation of meaning), as we often have several
words or a sentence as definition, we can directly
generate their embeddings without contextualisa-
tion in a corpus. When the gloss is composed of
several words, we try both averaging the represen-
tations of all tokens in the gloss, and using the
embedding of the CLS representation. To compare
them, we compute the cosine similarity between
the target word embedding and the embedding of
its associated gloss. Taking the CLS embedding
leads to a similarity of 0.61 on average, while the
average of all token embeddings leads to 0.67; we
choose the latter to represent word meanings.

5 Results

Our metric is cosine similarity, commonly used in
semantic change detection (Kutuzov et al., 2018).
Our results are summarised in Table 1 (full results
in App. B). Language pairs are split into parent
to child (with LA, FRM, or OSP), and child to
child (between contemporary languages) relations.
We also differentiate cognates and borrowing pairs
whose meaning stayed the same (un-shifted, equal

10bert-base-multilingual-cased

gloss between the two items) or changed between
the two languages (shifted, different gloss between
the two items).11

We display similarity (across all our languages)
between cognates / borrowings and their counter-
parts in an un-shifted (line 1) or shifted (l. 2) pair.
We also display the average difference between
these two scores (l. 3), this time computed per
language pair: we expect it to be a measure of the
models ability to capture semantic shift. The last
two lines show the average embedding similarity
between an item and its meaning,12 which should
be constant on average for a given language pair,
since it reflects embedding alignment distance be-
tween the languages of interest and English.13

Embedding space quality. For FastText , the
average similarity between item and meaning (l.
4 and 5) varies considerably from one language
pair to another, which indicates variation in em-
bedding alignment quality between English and
other languages. This score also varies inside a
given language pair (between borrowing/cognates
or shifted/un-shifted words), which could further
indicate embedding space quality problems. In-
deed, an item embeddings and the embedding of its
English gloss should always be relatively similar
when using properly aligned embeddings spaces.
We also observe that, contrary to expectations, pub-
licly available pre-aligned embeddings (child-to-
child) often have even higher variance and lower
item-meaning similarity (therefore a worst align-
ment to English) than our aligned low-resource
historical embeddings (parent-to-child). On the
other hand, for mBERT embeddings, this similar-
ity score is constant (with a slight variation between
cognates and borrowings, likely explained by the
fact that language pairs distribution between cog-
nates and borrowings is different), which reflects
a high embedding alignment quality. One should
therefore be wary of conclusions drawn from the
aligned FastText embeddings, even publicly avail-
able pre-aligned ones, which might lead to incor-
rect assumptions by introducing hidden factors into
play. We will therefore draw conclusions only us-

11Semantic change would normally be seen as more of
a continuum than a binary, but this was the more feasible
approach with respect to our data.

12The item is the word form, where its meaning is the word
English gloss.

13Note that even though we use definition embeddings,
they should be comparable with word embeddings (Bosc and
Vincent, 2018).
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FastText mBERT

Relation Parent to child Child to child Parent to child Child to child

cog bor cog bor cog bor cog bor

item(a)↔ item(b)
un-shifted 50±20 38±18 14±18 1±10 84± 9 86± 9 86±10 82± 9

shifted 35±20 14±16 21±17 1± 9 79± 9 77± 9 79±10 76± 8
difference 16± 7 16± 8 3± 6 -1± 3 4± 3 4± 7 2± 2 5± 4

item↔ gloss un-shifted 35±17 67±34 22±22 47±49 67± 5 72± 6 69± 6 71± 6
shifted 29±24 62±40 16±16 49±48 69± 5 72± 6 69± 6 72± 6

Table 1: Aggregated results of cosine similarity (%) and standard deviation, for both FastText and mBERT em-
beddings. cog stands for cognate, bor for borrowing.

FR-ES FR-IT

cog bor cog bor

% for un-shifted 84±8 92±4 84±8 87±5
% for shifted 79±9 84±8 80±9 83±8

#items 1884 22 1740 36

Table 2: item(a) ↔ item(b) mBERT similarity (%).

ing mBERT.
We also compared vanilla and fine-tuned OSP

and FRM mBERT embeddings (Tables 8 and 9
in App. B); fine-tuning shows no significant im-
provement, though for some edge cases, it seems
to increase semantic shift sensitivity slightly while
decreasing similarity with other embedding spaces;
consequently, we keep the simplest approach, the
vanilla mBERT model. When working on his-
torical data, it is interesting to study whether fine-
tuning results justify its cost, or if zero-shot transfer
can directly provide good enough results.

Global comparison Using mBERT embed-
dings, the only difference in similarity scores for
items occurs between un-shifted and shifted word
embeddings, with un-shifted pairs similarity being
on average 4 points higher than shifted pairs (not
necessarily statistically significant). Some outliers
cases can be found in the per-language tables (see
Table 6 in App. B), where shifted cognates have
higher intra-pair similarity compared to un-shifted
cognates for the same language pair. However,
this situation only happens for languages with less
than 20 cognates examples of shifted or un-shifted
pairs (e.g. OSP-FRM, 12 shifted cognates), and are
likely not significant.

There is virtually no difference between cog-
nates or borrowings embeddings similarity. As a
side note, FastText embeddings would have shown
that cognates are more similar than borrowings,
and a word is more similar to its parent than to

its siblings: a hasty analysis using bad quality em-
beddings could have lead us to draw seductive but
erroneous conclusions from the FastText embed-
dings.

Focus In order to investigate differences at the
language pair level for the mBERT embeddings,
we focus on two language pairs which have at least
20 samples for both shifted and un-shifted pairs of
cognates and of borrowings: FR-ES and FR-IT (Ta-
ble 2).14 Both present a trend where borrowings are
more similar than cognates and un-shifted words
more similar than shifted words (as expected).

6 Conclusion

In this work, we create a cognate and borrowing
dataset for English and Romance languages from
different periods, as well as two aligned embed-
dings sets for all languages. When assessing em-
bedding quality and alignment, we show that Fast-
Text embeddings, even when already pre-trained
and aligned, are poorer than the mBERT ones on
all respects. We therefore use the latter to study
semantic change between cognates and borrow-
ings: as expected, un-shifted word pairs are on
average more similar than shifted ones. Further-
more, we observe a trend between cognates and
borrowings, the latter being seemingly more sim-
ilar than the former. Further analysis would be
needed to determine whether this difference can
be confirmed, by looking at chosen cognate and
borrowings of similar histories in more languages.
In summary, properly designed embeddings can
be used to support historical lexicographic studies,
while well-understood phenomena underlying cog-
nates and borrowings can help design and evaluate
cross-lingual word embeddings.

14There is a difference in data size of two orders of mag-
nitude between small borrowing sets and bigger cognate sets,
therefore conclusions must be taken with a pinch of salt.
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A Extracting cognates and borrowings data

A.1 Extraction

Parsing the Wiktionary The Wiktionary dumps mixes several formatting types, mostly HTML for the
page tags and a pseudo-markdown for the internal structure of each article, which is not homogeneous
between entries. The first step of processing was 1) to cut the Wiktionary by page, by literally cutting
it on page HTML tags, and 2) at the same time, to only keep the title (lexeme) using HTML title tags
and the text (core of the page) without the rest of the HTML using HTML text tags. Some pages were
automatically discarded, if containing "Wiktionary", "App." or "Thesaurus" in their titles, as they are out
of scope for the database.

Storing words and relations Once each page was cut, we cleaned the text, by extracting lexeme
(first line), langs (second level pseudo markdown separation), and associated information (third levels
pseudo markdown separations). The associated information was then cleaned using regexes, to find
meanings (lines starting with an enumeration marker), descendants (using ‘desc’, ‘desctree’, and ‘bor=1’
as markers), ascendants (using ‘inh’ and ‘root’ as markers),15 and supposed cognates (using ‘cog’ as
marker). Lexemes were normalized using unicodedata. This allowed us to construct a list of Word objects,
storing lexeme, lang, gloss, parent words, children words, and plausible cognates. (Related words were
stored as "word_lang" in order to filter them). For each word, we added to its ancestor the set of its
ancestors’ ancestors, and we converted gloss for English lexemes to the English lexeme itself.

A.2 Constructing our cognates and borrowing sets

Lastly, we converted this list to our cognate and borrowing sets. For each word, we first stored indirect
parents as borrowing relations (borrowing set) and direct parents as cognate relations (cognate set), for
parent languages in our languages of interest. Then, we looked at each direct ancestor’s children (no
matter the direct ancestor language): if a given child was direct, both its relation to the parent and to the
initial word were stored as cognates (for language pairs of interest). Else, we stored both relations in our
‘borrowings’ set (id.). In other terms, two words are kept if they share a common proto-form. If their
ancestor is direct, we save them as cognates, else borrowings. We use an extended version of the notions
of cognacy and borrowing defined in the introduction, and consider that the proto-words are also both
cognates with their direct descendants, and in a borrowing relationship with their indirect descendants.

A.3 Cleaning

Extraction problems Splitting the document on HTML page limits was sometimes linked to pages
not being cut at the right place, and the title tag not being recognised: some lexemes were stored as
‘<tag>’ (they were removed). Some irregularities in meaning definitions appeared, such as #English not
being removed, or some reference urls being accidentally added to the English meanings. All these were
manually managed.

Special characters Some symbols were not homogeneous in the Wiktionary originally, and appeared
under several forms, such as ‘|’ for ‘or’, ‘&lt’ for ‘<’, ‘&gt’ for ‘>’, ‘&amp’ for ‘&’, among others. They
were manually removed to ensure consistency.

A.4 Results

Our most doted language pairs usually contain relations between generally higher-resourced contemporary
languages (FR-ES, IT-ES, PT-ES, FR-IT, IT-PT, more than 1,000 pairs), as well as, surprisingly, the
FR-FRM pair. Pairs with Latin and other contemporary languages follow, with our least doted language
pairs being Middle French or Old Spanish to any language other than French or Spanish, and most
languages to themselves (word pairs including two different descendants from a common origin word in
the same language).

15The ‘from’ marker was too noisy and therefore ignored.
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Cognates

Lang #words #uniq Pair
Total 34574 8334 EN ES FR FRM IT LA OSP PT RO

EN 896 498 448 0 0 0 0 0 0 0 0
ES 6156 1403 0 270 1047 225 1222 763 263 1255 841
FR 6062 1377 0 1047 230 1208 958 660 84 952 693
FRM 2253 630 0 225 1208 13 200 202 21 198 173
IT 5363 1058 0 1222 958 200 141 696 101 1080 824
LA 3573 1309 0 763 660 202 696 0 78 668 506
OSP 710 188 0 263 84 21 101 78 2 91 68
PT 5451 1103 0 1255 952 198 1080 668 91 209 789
RO 4110 768 0 841 693 173 824 506 68 789 108

borrowings

Lang #words #uniq Pair
Total 5042 2925 EN ES FR FRM IT LA OSP PT RO

EN 2456 873 0 418 711 226 399 0 40 405 257
ES 435 354 418 0 12 4 0 1 0 0 0
FR 756 574 711 12 0 0 18 0 1 11 3
FRM 242 177 226 4 0 0 6 0 1 4 1
IT 424 348 399 0 18 6 0 1 0 0 0
LA 4 1 0 1 0 0 1 0 0 1 1
OSP 42 36 40 0 1 1 0 0 0 0 0
PT 421 341 405 0 11 4 0 1 0 0 0
RO 262 221 257 0 3 1 0 1 0 0 0

Table 3: Cognate and borrowings pairs relations

B Full results tables

The tables contain the number of cognate pairs kept for each language pairs, as well as an embedding
similarity score between 1) both cognates/borrowings of a given pair, 2) both glosses of a given pair, 3)
each cognate/borrowing to its gloss. Results are split by language pair and category (meaning shift or no
meaning shift).
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Cognates shifted in meaning EN-EN ES-EN ES-ES ES-FRM ES-IT ES-LA ES-OSP ES-RO

cognate (a)↔ cognate (b) 27 ± 18 32 ± 18 4 ± 8 45 ± 21 35 ± 16 38 ± 10 28 ± 16
meaning (a)↔ meaning (b) 27 ± 18 42 ± 19 52 ± 24 55 ± 24 59 ± 20 69 ± 19 50 ± 23

cognate↔ meaning 100 ± 0 26 ± 17 13 ± 18 26 ± 16 19 ± 16 22 ± 16 23 ± 16
#items 706 0 474 304 2002 1172 276 1230

Cognates similar in meanings EN-EN ES-EN ES-ES ES-FRM ES-IT ES-LA ES-OSP ES-RO

cognate (a)↔ cognate (b) 49 ± 26 3 ± 8 62 ± 17 41 ± 15 40 ± 8 43 ± 17
meaning (a)↔ meaning (b) 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0

cognate↔ meaning 22 ± 22 24 ± 27 41 ± 16 27 ± 17 29 ± 20 34 ± 18
#items 0 0 14 64 286 86 136 230

Cognates shifted in meaning FR-EN FR-ES FR-FR FR-FRM FR-IT FR-LA FR-OSP FR-RO

cognate (a)↔ cognate (b) 39 ± 20 32 ± 17 5 ± 7 41 ± 21 26 ± 11 25 ± 11 27 ± 16
meaning (a)↔ meaning (b) 52 ± 23 33 ± 18 63 ± 24 54 ± 23 56 ± 21 54 ± 25 49 ± 24

cognate↔ meaning 25 ± 16 25 ± 16 13 ± 17 24 ± 16 18 ± 15 20 ± 14 22 ± 15
#items 0 1690 410 1194 1512 1026 108 1024

Cognates similar in meanings FR-EN FR-ES FR-FR FR-FRM FR-IT FR-LA FR-OSP FR-RO

cognate (a)↔ cognate (b) 53 ± 20 66 ± 29 3 ± 8 57 ± 16 31 ± 9 32 ± 8 40 ± 16
meaning (a)↔ meaning (b) 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0

cognate↔ meaning 35 ± 17 31 ± 20 19 ± 24 38 ± 15 28 ± 15 27 ± 18 34 ± 16
#items 0 256 10 706 250 74 30 198

Cognates shifted in meaning FRM-EN FRM-FRM IT-EN IT-FRM IT-IT IT-LA IT-OSP LA-EN

cognate (a)↔ cognate (b) 42 ± 30 5 ± 9 33 ± 17 30 ± 12 33 ± 10
meaning (a)↔ meaning (b) 35 ± 12 53 ± 25 41 ± 21 60 ± 21 61 ± 25

cognate↔ meaning -0 ± 6 13 ± 18 24 ± 16 19 ± 15 23 ± 14
#items 0 14 0 270 236 1088 134 0

Cognates similar in meanings FRM-EN FRM-FRM IT-EN IT-FRM IT-IT IT-LA IT-OSP LA-EN

cognate (a)↔ cognate (b) 64 ± 21 5 ± 8 47 ± 30 30 ± 12 34 ± 10
meaning (a)↔ meaning (b) 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0

cognate↔ meaning -8 ± 8 24 ± 25 24 ± 21 25 ± 18 30 ± 17
#items 0 8 0 68 12 74 42 0

Cognates shifted in meaning LA-FRM LA-LA LA-OSP OSP-EN OSP-FRM OSP-OSP RO-EN RO-FRM

cognate (a)↔ cognate (b) 3 ± 7 28 ± 9 2 ± 6 76 ± 0 4 ± 8
meaning (a)↔ meaning (b) 53 ± 22 66 ± 18 70 ± 30 23 ± 0 44 ± 24

cognate↔ meaning 6 ± 10 13 ± 9 7 ± 12 22 ± 10 11 ± 15
#items 274 0 96 0 12 2 0 170

Cognates similar in meanings LA-FRM LA-LA LA-OSP OSP-EN OSP-FRM OSP-OSP RO-EN RO-FRM

cognate (a)↔ cognate (b) -1 ± 7 27 ± 11 2 ± 7 4 ± 7
meaning (a)↔ meaning (b) 100 ± 0 100 ± 0 100 ± 0 100 ± 0

cognate↔ meaning 12 ± 14 18 ± 14 13 ± 15 17 ± 19
#items 30 0 20 0 20 0 0 102

Cognates shifted in meaning RO-IT RO-LA RO-OSP RO-RO

cognate (a)↔ cognate (b) 30 ± 17 21 ± 10 18 ± 10 29 ± 24
meaning (a)↔ meaning (b) 52 ± 23 57 ± 21 54 ± 26 38 ± 16

cognate↔ meaning 23 ± 15 15 ± 13 16 ± 14 19 ± 15
#items 1210 682 64 136

Cognates similar in meanings RO-IT RO-LA RO-OSP RO-RO

cognate (a)↔ cognate (b) 39 ± 17 26 ± 10 26 ± 8 40 ± 18
meaning (a)↔ meaning (b) 100 ± 0 100 ± 0 100 ± 0 100 ± 0

cognate↔ meaning 32 ± 17 22 ± 14 26 ± 13 20 ± 8
#items 230 44 38 6

Table 4: Cognate results for fasttext embeddings
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Borrowings shifted in meaning EN-EN ES-EN ES-ES ES-FRM ES-IT ES-LA ES-OSP ES-RO

borrowing (a)↔ borrowing (b) 13 ± 16 -2 ± 4 29 ± 0
meaning (a)↔ meaning (b) 38 ± 21 62 ± 4 47 ± 0

borrowing↔ meaning 64 ± 38 10 ± 16 14 ± 14
#items 0 704 0 4 0 2 0 0

Borrowings similar in meanings EN-EN ES-EN ES-ES ES-FRM ES-IT ES-LA ES-OSP ES-RO

borrowing (a)↔ borrowing (b) 37 ± 15 -0 ± 8
meaning (a)↔ meaning (b) 100 ± 0 100 ± 0

borrowing↔ meaning 69 ± 33 31 ± 30
#items 0 40 0 4 0 0 0 0

Borrowings shifted in meaning FR-EN FR-ES FR-FR FR-FRM FR-IT FR-LA FR-OSP FR-RO

borrowing (a)↔ borrowing (b) 14 ± 17 46 ± 15 43 ± 13 38 ± 10
meaning (a)↔ meaning (b) 42 ± 24 51 ± 16 63 ± 22 78 ± 5

borrowing↔ meaning 61 ± 40 22 ± 15 28 ± 16 38 ± 13
#items 1066 10 0 0 28 0 0 4

Borrowings similar in meanings FR-EN FR-ES FR-FR FR-FRM FR-IT FR-LA FR-OSP FR-RO

borrowing (a)↔ borrowing (b) 39 ± 17 63 ± 11 60 ± 18 43 ± 0 36 ± 0
meaning (a)↔ meaning (b) 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0

borrowing↔ meaning 69 ± 33 39 ± 19 47 ± 13 39 ± 19 36 ± 15
#items 206 12 0 0 8 0 2 2

Borrowings shifted in meaning FRM-EN FRM-FRM IT-EN IT-FRM IT-IT IT-LA IT-OSP LA-EN

borrowing (a)↔ borrowing (b) -1 ± 7 15 ± 16 4 ± 11 32 ± 0
meaning (a)↔ meaning (b) 34 ± 21 39 ± 21 42 ± 16 60 ± 0

borrowing↔ meaning 51 ± 50 63 ± 39 3 ± 16 18 ± 18
#items 278 0 702 10 0 2 0 0

Borrowings similar in meanings FRM-EN FRM-FRM IT-EN IT-FRM IT-IT IT-LA IT-OSP LA-EN

borrowing (a)↔ borrowing (b) -1 ± 8 33 ± 19
meaning (a)↔ meaning (b) 100 ± 0 100 ± 0

borrowing↔ meaning 49 ± 51 67 ± 36
#items 72 0 36 0 0 0 0 0

Borrowings shifted in meaning LA-FRM LA-LA LA-OSP OSP-EN OSP-FRM OSP-OSP RO-EN RO-FRM

borrowing (a)↔ borrowing (b) 8 ± 10 9 ± 12
meaning (a)↔ meaning (b) 36 ± 21 31 ± 17

borrowing↔ meaning 58 ± 42 60 ± 42
#items 0 0 0 56 0 0 384 0

Borrowings similar in meanings LA-FRM LA-LA LA-OSP OSP-EN OSP-FRM OSP-OSP RO-EN RO-FRM

borrowing (a)↔ borrowing (b) 3 ± 7 12 ± 0 22 ± 7
meaning (a)↔ meaning (b) 100 ± 0 100 ± 0 100 ± 0

borrowing↔ meaning 52 ± 49 7 ± 5 61 ± 39
#items 0 0 0 6 2 0 14 0

Borrowings shifted in meaning RO-IT RO-LA RO-OSP RO-RO

borrowing (a)↔ borrowing (b) 24 ± 0
meaning (a)↔ meaning (b) 49 ± 0

borrowing↔ meaning 21 ± 20
#items 0 2 0 0

Borrowings similar in meanings RO-IT RO-LA RO-OSP RO-RO

borrowing (a)↔ borrowing (b)
meaning (a)↔ meaning (b)

borrowing↔ meaning
#items 0 0 0 0

Table 5: Borrowings results for fasttext embeddings
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Cognates shifted in meaning EN-EN ES-EN ES-ES ES-FRM ES-IT ES-LA ES-OSP ES-RO

cognate (a)↔ cognate (b) 73 ± 8 79 ± 6 77 ± 8 84 ± 10 74 ± 8 87 ± 8 77 ± 8
meaning (a)↔ meaning (b) 84 ± 6 81 ± 6 81 ± 6 83 ± 7 83 ± 7 84 ± 5 81 ± 7

cognate↔ meaning 73 ± 5 70 ± 5 69 ± 5 70 ± 5 68 ± 6 74 ± 5 69 ± 5
#items 620 0 450 322 1962 906 300 1200

Cognates similar in meanings EN-EN ES-EN ES-ES ES-FRM ES-IT ES-LA ES-OSP ES-RO

cognate (a)↔ cognate (b) 76 ± 6 81 ± 7 89 ± 8 77 ± 10 86 ± 8 81 ± 9
meaning (a)↔ meaning (b) 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0

cognate↔ meaning 65 ± 7 67 ± 6 68 ± 5 65 ± 7 72 ± 7 67 ± 5
#items 0 0 10 64 270 46 150 216

Cognates shifted in meaning FR-EN FR-ES FR-FR FR-FRM FR-IT FR-LA FR-OSP FR-RO

cognate (a)↔ cognate (b) 79 ± 9 77 ± 7 90 ± 8 80 ± 9 72 ± 8 77 ± 7 76 ± 8
meaning (a)↔ meaning (b) 83 ± 7 79 ± 6 83 ± 7 82 ± 7 82 ± 7 82 ± 5 81 ± 6

cognate↔ meaning 70 ± 5 69 ± 6 69 ± 6 69 ± 5 68 ± 6 74 ± 6 68 ± 6
#items 0 1632 388 1314 1500 824 112 974

Cognates similar in meanings FR-EN FR-ES FR-FR FR-FRM FR-IT FR-LA FR-OSP FR-RO

cognate (a)↔ cognate (b) 84 ± 8 78 ± 3 91 ± 8 84 ± 8 75 ± 8 79 ± 8 80 ± 7
meaning (a)↔ meaning (b) 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0

cognate↔ meaning 68 ± 5 70 ± 5 69 ± 6 68 ± 5 66 ± 6 72 ± 6 66 ± 5
#items 0 252 8 780 240 56 34 198

Cognates shifted in meaning FRM-EN FRM-FRM IT-EN IT-FRM IT-IT IT-LA IT-OSP LA-EN

cognate (a)↔ cognate (b) 82 ± 5 79 ± 8 78 ± 6 77 ± 8 82 ± 8
meaning (a)↔ meaning (b) 73 ± 8 81 ± 7 81 ± 7 83 ± 7 84 ± 5

cognate↔ meaning 66 ± 8 69 ± 5 69 ± 5 68 ± 6 74 ± 6
#items 0 10 0 292 236 874 134 0

Cognates similar in meanings FRM-EN FRM-FRM IT-EN IT-FRM IT-IT IT-LA IT-OSP LA-EN

cognate (a)↔ cognate (b) 84 ± 3 80 ± 8 86 ± 9 81 ± 9 84 ± 6
meaning (a)↔ meaning (b) 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0

cognate↔ meaning 64 ± 9 67 ± 5 66 ± 4 66 ± 5 73 ± 5
#items 0 10 0 76 10 52 42 0

Cognates shifted in meaning LA-FRM LA-LA LA-OSP OSP-EN OSP-FRM OSP-OSP RO-EN RO-FRM

cognate (a)↔ cognate (b) 74 ± 8 77 ± 7 83 ± 6 84 ± 0 74 ± 7
meaning (a)↔ meaning (b) 79 ± 7 82 ± 6 89 ± 3 87 ± 0 80 ± 6

cognate↔ meaning 67 ± 6 72 ± 7 74 ± 5 78 ± 4 67 ± 6
#items 272 0 90 0 12 2 0 172

Cognates similar in meanings LA-FRM LA-LA LA-OSP OSP-EN OSP-FRM OSP-OSP RO-EN RO-FRM

cognate (a)↔ cognate (b) 76 ± 8 78 ± 6 79 ± 5 79 ± 0 78 ± 6
meaning (a)↔ meaning (b) 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0

cognate↔ meaning 66 ± 6 70 ± 6 71 ± 7 72 ± 1 67 ± 5
#items 24 0 22 0 26 2 0 110

Cognates shifted in meaning RO-IT RO-LA RO-OSP RO-RO

cognate (a)↔ cognate (b) 79 ± 8 73 ± 8 76 ± 5 77 ± 7
meaning (a)↔ meaning (b) 81 ± 7 81 ± 7 84 ± 4 80 ± 6

cognate↔ meaning 68 ± 5 66 ± 6 73 ± 6 69 ± 6
#items 1218 548 66 144

Cognates similar in meanings RO-IT RO-LA RO-OSP RO-RO

cognate (a)↔ cognate (b) 81 ± 9 75 ± 10 79 ± 6 83 ± 13
meaning (a)↔ meaning (b) 100 ± 0 100 ± 0 100 ± 0 100 ± 0

cognate↔ meaning 66 ± 4 64 ± 5 71 ± 6 62 ± 7
#items 224 34 48 6

Table 6: Cognates results for BERT embeddings, using the last 4 layers
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Borrowings shifted in meaning EN-EN ES-EN ES-ES ES-FRM ES-IT ES-LA ES-OSP ES-RO

borrowing (a)↔ borrowing (b) 75 ± 8 83 ± 2
meaning (a)↔ meaning (b) 79 ± 6 74 ± 5

borrowing↔ meaning 72 ± 5 70 ± 5
#items 0 636 0 4 0 0 0 0

Borrowings similar in meanings EN-EN ES-EN ES-ES ES-FRM ES-IT ES-LA ES-OSP ES-RO

borrowing (a)↔ borrowing (b) 85 ± 7 92 ± 1
meaning (a)↔ meaning (b) 100 ± 0 100 ± 0

borrowing↔ meaning 73 ± 5 67 ± 5
#items 0 40 0 4 0 0 0 0

Borrowings shifted in meaning FR-EN FR-ES FR-FR FR-FRM FR-IT FR-LA FR-OSP FR-RO

borrowing (a)↔ borrowing (b) 78 ± 10 84 ± 8 83 ± 8 83 ± 7
meaning (a)↔ meaning (b) 80 ± 6 81 ± 10 84 ± 6 83 ± 1

borrowing↔ meaning 72 ± 6 71 ± 5 71 ± 5 70 ± 2
#items 974 10 0 0 28 0 0 4

Borrowings similar in meanings FR-EN FR-ES FR-FR FR-FRM FR-IT FR-LA FR-OSP FR-RO

borrowing (a)↔ borrowing (b) 87 ± 8 92 ± 4 87 ± 5 92 ± 0 73 ± 0
meaning (a)↔ meaning (b) 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0

borrowing↔ meaning 72 ± 6 69 ± 5 70 ± 5 79 ± 4 69 ± 1
#items 200 12 0 0 8 0 2 2

Borrowings shifted in meaning FRM-EN FRM-FRM IT-EN IT-FRM IT-IT IT-LA IT-OSP LA-EN

borrowing (a)↔ borrowing (b) 75 ± 8 77 ± 8 81 ± 6
meaning (a)↔ meaning (b) 82 ± 6 79 ± 6 82 ± 5

borrowing↔ meaning 71 ± 6 72 ± 5 67 ± 5
#items 274 0 632 10 0 0 0 0

Borrowings similar in meanings FRM-EN FRM-FRM IT-EN IT-FRM IT-IT IT-LA IT-OSP LA-EN

borrowing (a)↔ borrowing (b) 82 ± 8 85 ± 9
meaning (a)↔ meaning (b) 100 ± 0 100 ± 0

borrowing↔ meaning 71 ± 6 74 ± 5
#items 82 0 34 0 0 0 0 0

Borrowings shifted in meaning LA-FRM LA-LA LA-OSP OSP-EN OSP-FRM OSP-OSP RO-EN RO-FRM

borrowing (a)↔ borrowing (b) 76 ± 8 74 ± 8
meaning (a)↔ meaning (b) 84 ± 4 80 ± 6

borrowing↔ meaning 77 ± 3 70 ± 6
#items 0 0 0 56 0 0 340 0

Borrowings similar in meanings LA-FRM LA-LA LA-OSP OSP-EN OSP-FRM OSP-OSP RO-EN RO-FRM

borrowing (a)↔ borrowing (b) 75 ± 11 82 ± 0 75 ± 10
meaning (a)↔ meaning (b) 100 ± 0 100 ± 0 100 ± 0

borrowing↔ meaning 74 ± 6 72 ± 2 70 ± 5
#items 0 0 0 6 2 0 16 0

Borrowings shifted in meaning RO-IT RO-LA RO-OSP RO-RO

borrowing (a)↔ borrowing (b)
meaning (a)↔ meaning (b)

borrowing↔ meaning
#items 0 0 0 0

Borrowings similar in meanings RO-IT RO-LA RO-OSP RO-RO

borrowing (a)↔ borrowing (b)
meaning (a)↔ meaning (b)

borrowing↔ meaning
#items 0 0 0 0

Table 7: Borrowings results for BERT embeddings, using the last 4 layers
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C Corpora for Embeddings Training

C.1 Data collection sources
All datasets are under open, CC BY, or CC BY-NC-SA licences, and our chosen subset will be released
with the paper. LEM17 is found at https://github.com/e-ditiones/LEM17, MCVF 1.0/2.0 and PPCHF 1.0
at https://github.com/beatrice57/mcvf-plus-ppchf, OpenMedFr at https://github.com/OpenMedFr/texts,
BFM2019 at http://txm.ish-lyon.cnrs.fr/bfm/?path=/BFM2019, and the Digital Library of Old Spanish
Texts at http://hispanicseminary.org/t&c/nar/index-en.htm.

C.2 FRM preprocessing
The LEM files were in csv format for UD, and only the words (first column) were extracted. The BFM2019
and MCVF v1 files were in XML format, and the div containing text were selected. The MCVF v2
and PPCHF files were in text format, parsed, and text was extracted from the correct lines. Lastly, the
OpenMedFr were already in raw text format, and we only had to remove the comment lines and page
indications. Then, all files were automatically separated on end of sentence punctuation mark (full stop,
exclamation mark, question mark), then manually on indicators of dialogue (dashes, quotation marks) to
keep one sentence per line. The line creation process could have introduced some noise. One specificity
of FRM is the presence of extremely long sentences divided into sub-sentences with commas. Thus, we
perform a secondary split around commas when the sentences are too long to ease the model fine-tuning
and embeddings extraction steps.

C.3 Fine-tuning experiments

110



Cognates un-shifted in meanings OSP-ft OSPft-FR OSP-ES OSPft-ES OSP-RO OSPft-RO

cognate (a)↔ cognate (b) 79 ± 8 75 ± 7 86 ± 8 79 ± 7 79 ± 6 74 ± 8
meaning (a)↔ meaning (b) 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0

cognate↔ meaning 72 ± 6 67 ± 5 72 ± 7 68 ± 5 71 ± 6 66 ± 5

Cognates shifted in meaning OSP-ft OSPft-FR OSP-ES OSPft-ES OSP-RO OSPft-RO

cognate (a)↔ cognate (b) 77 ± 7 72 ± 8 87 ± 8 79 ± 7 76 ± 5 70 ± 6
meaning (a)↔ meaning (b) 82 ± 5 82 ± 5 84 ± 5 84 ± 5 84 ± 4 84 ± 4

cognate↔ meaning 74 ± 6 69 ± 5 74 ± 5 69 ± 5 73 ± 6 69 ± 5

Shift measure 1 3 -0 1 3 4

Cognates un-shifted in meanings OSP-IT OSPft-IT OSP-LA OSPft-LA OSP-FRM OSPft-FRM

cognate (a)↔ cognate (b) 84 ± 6 79 ± 4 78 ± 6 72 ± 7 79 ± 5 71 ± 7
meaning (a)↔ meaning (b) 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0

cognate↔ meaning 73 ± 5 69 ± 3 70 ± 6 66 ± 4 71 ± 7 67 ± 5

Cognates shifted in meaning OSP-IT OSPft-IT OSP-LA OSPft-LA OSP-FRM OSPft-FRM

cognate (a)↔ cognate (b) 82 ± 8 76 ± 8 77 ± 7 69 ± 8 83 ± 6 74 ± 7
meaning (a)↔ meaning (b) 84 ± 5 84 ± 5 82 ± 6 82 ± 6 89 ± 3 89 ± 3

cognate↔ meaning 74 ± 6 69 ± 5 72 ± 7 68 ± 5 74 ± 5 70 ± 3

Shift measure 2 3 1 3 -4 -3

Cognates un-shifted in meanings FRM-ft FRMft-FR FRM-ES FRMft-ES FRM-RO FRMft-RO

cognate (a)↔ cognate (b) 91 ± 8 84 ± 6 81 ± 7 78 ± 7 78 ± 6 75 ± 7
meaning (a)↔ meaning (b) 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0

cognate↔ meaning 69 ± 6 68 ± 6 67 ± 6 67 ± 6 67 ± 5 67 ± 5

Cognates shifted in meaning FRM-ft FRMft-FR FRM-ES FRMft-ES FRM-RO FRMft-RO

cognate (a)↔ cognate (b) 90 ± 8 83 ± 7 77 ± 8 74 ± 7 74 ± 7 70 ± 7
meaning (a)↔ meaning (b) 83 ± 7 83 ± 7 81 ± 6 81 ± 6 80 ± 6 80 ± 6

cognate↔ meaning 69 ± 6 68 ± 6 69 ± 5 68 ± 5 67 ± 6 66 ± 6

Shift measure 2 2 4 4 5 5

Cognates un-shifted in meanings FRM-IT FRMft-IT FRM-LA FRMft-LA FRM-OSP FRMft-OSP

cognate (a)↔ cognate (b) 80 ± 8 77 ± 6 76 ± 8 71 ± 7 79 ± 5 73 ± 6
meaning (a)↔ meaning (b) 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0 100 ± 0

cognate↔ meaning 67 ± 5 66 ± 5 66 ± 6 65 ± 6 71 ± 7 71 ± 7

Cognates shifted in meaning FRM-IT FRMft-IT FRM-LA FRMft-LA FRM-OSP FRMft-OSP

cognate (a)↔ cognate (b) 79 ± 8 75 ± 7 74 ± 8 69 ± 8 83 ± 6 77 ± 6
meaning (a)↔ meaning (b) 81 ± 7 81 ± 7 79 ± 7 79 ± 7 89 ± 3 89 ± 3

cognate↔ meaning 69 ± 5 68 ± 5 67 ± 6 66 ± 6 74 ± 5 73 ± 5

Shift measure 2 2 2 2 -4 -3

Table 8: Statistics when using mBERT embeddings, with OSP/FRM finetuning (ft-) or without, for Old Spanish
and Medieval French cognates. The ‘shift measure’ is the average difference between semantic item similarity,
between non-shifted and shifted pairs.
The semantic shift between shifted and un-shifted items is slightly increased for fine-tuned OSP, and not at all
for FRM, at the cost of an alignment drift with the meanings (line 3). We consider that this extremely small
improvement is not worth the cost, and therefore only use vanilla embeddings. However, it would still be worth
investigating how to improve fine-tuning.
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Borrowings un-shifted in meanings OSP-EN OSPft-EN

borrowing (a)↔ borrowing (b) 75 ± 11 70 ± 12
meaning (a)↔ meaning (b) 100 ± 0 100 ± 0

borrowing↔ meaning 74 ± 6 69 ± 6

Borrowings shifted in meaning OSP-EN OSPft-EN

borrowing (a)↔ borrowing (b) 76 ± 8 71 ± 7
meaning (a)↔ meaning (b) 84 ± 4 84 ± 4

borrowing↔ meaning 77 ± 3 72 ± 5

Shift measure -1 -2

Borrowings un-shifted in meanings FRM-ES FRMft-ES FRM-EN FRMft-EN

borrowing (a)↔ borrowing (b) 92 ± 1 86 ± 2 82 ± 8 78 ± 7
meaning (a)↔ meaning (b) 100 ± 0 100 ± 0 100 ± 0 100 ± 0

borrowing↔ meaning 67 ± 5 65 ± 6 71 ± 6 71 ± 7

Borrowings shifted in meaning FRM-ES FRMft-ES FRM-EN FRMft-EN

borrowing (a)↔ borrowing (b) 83 ± 2 82 ± 3 75 ± 8 71 ± 7
meaning (a)↔ meaning (b) 74 ± 5 74 ± 5 82 ± 6 82 ± 6

borrowing↔ meaning 70 ± 5 70 ± 4 71 ± 6 70 ± 6

Shift measure 9 5 6 7

Table 9: Statistics when using mBERT embeddings, with OSP/FRM finetuning (ft) or without, for Old Spanish
and Medieval French borrowings with shifted and unshifted pairs. The ‘shift measure’ is the average difference
between semantic item similarity, between non-shifted and shifted pairs.
We observe that the difference between shifted and non-shifted items decreases this time, when compared to
cognates, for OSP-EN and FRM-ES, and increases for FRM-EN. We consider that variations are not consistent
enough to draw conclusions.
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Abstract

Recent research has brought a wind of using
computational approaches to the classic topic
of semantic change, aiming to tackle one of
the most challenging issues in the evolution of
human language. While several methods for
detecting semantic change have been proposed,
such studies are limited to a few languages,
where evaluation datasets are available.

This paper presents the first dataset for evalu-
ating Chinese semantic change in contexts pre-
ceding and following the Reform and Opening-
up, covering a 50-year period in Modern Chi-
nese. Following the DURel framework, we col-
lected 6,000 human judgments for the dataset.
We also reported the performance of alignment-
based word embedding models on this evalu-
ation dataset, achieving high and significant
correlation scores.

1 Introduction

Lexical semantic change not only satisfies the ap-
petite for linguistic exploration but also reflects
the societal and cultural developments (Varian and
Choi, 2009; Michel et al., 2011). Recently, this
topic has been receiving growing interest from
the NLP community, as witnessed a wealth of pa-
pers working on this research questions with com-
putational approaches emerged over the past two
decades (Kutuzov et al., 2018; Tahmasebi et al.,
2019; Schlechtweg et al., 2020). Among these
studies, most make use of distributional word rep-
resentations with temporal information to model di-
achronic meaning change (Kim et al., 2014; Hamil-
ton et al., 2016a,b; Giulianelli et al., 2020).

Although a variety of computational methods
have been proposed for the task of lexical semantic
change, evaluation datasets are only available for a
limited number of languages, e.g. English, Latin,
Italian, Swedish, German, Russian (Schlechtweg
et al., 2020; Rodina and Kutuzov, 2020; Basile
et al., 2020; Kutuzov and Pivovarova, 2021). Few

studies have investigated Chinese in this domain
(Tang et al., 2013, 2016) and there is currently
no evaluation dataset for detecting Chinese lexical
semantic change.

This paper presents the first Chinese evaluation
dataset, ZhShiftEval, for the detection task. 1 This
dataset allows us to evaluate those shifts that oc-
curred to Modern Chinese from 1953 to 2003, over
two roughly equal intervals: sub-corpus C1 (1953-
1978) and the sub-corpus C2 (1979-2003). These
two intervals were chosen on the basis of the Re-
form and Opening-up, the most influential mile-
stone in the recent history of China 2. It is gen-
erally assumed that this remarkable social change
brought significant changes to the lexicon of Mod-
ern Chinese (Diao, 1995).

The remainder of this paper is organized as fol-
lows. Section 2 situates our study within previous
work. In Section 3, we introduce how the evalua-
tion dataset has been created following the DURel
framework. Section 4 qualitatively discusses the
dataset itself, and Section 5 presents the prelim-
inary results of static word embeddings on this
evaluation dataset.

2 Related Work

Before SemEval 2020, the field lacked shared
standard datasets for evaluating lexical semantic
change with computational approaches. Most early
works were exploratory, testing whether compu-
tational models could capture specific established
cases of semantic change, but without a quantita-
tive evaluation of the models’ performance (Sagi
et al., 2009; Kim et al., 2014; Kulkarni et al., 2014).

Some evaluation datasets consisted of a list of
target words labeled as ‘changed’ and ‘unchanged’

1Researchers interested in the dataset should contact the
first author of the study.

2Since the decision for the Reform and Opening-up was
officially announced by the end of 1978, we set 1979 as the
starting point for C2.
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with reference to linguistic papers, dictionaries
(Tang et al., 2013; Basile et al., 2020), and WordNet
(Mitra et al., 2014). However, these datasets are
based on a binary judgment on semantic change, ig-
noring its cumulative nature. In contrast, Gulordava
and Baroni (2011) demonstrated a ‘gradable’ view
towards semantic change, asking native speakers to
annotate target words with multiple labels for their
changing degrees, according to their intuitions.

Schlechtweg et al. (2018) later proposed the
Diachronic Usage Relatedness (DURel) framework
to construct evaluation datasets for the detection
task. They asked annotators to compare and grade
the semantic relatedness of target words, from un-
related (1) to identical (4), across the context pairs.
The ratings, together with target words, formed a
small-scale evaluation dataset for German. Follow-
ing this framework, Rodina and Kutuzov (2020)
and Kutuzov and Pivovarova (2021) created a two-
period evaluation dataset, ‘RuSemShift’ and a three-
period evaluation dataset ‘RuShiftEval’ for Rus-
sian, assessing those meaning shifts that occurred
to Russian words from the pre-Soviet period to the
Post-Soviet period.

In SemEval 2020, evaluation datasets for En-
glish, German, Swedish, and Latin were released
as benchmarks for the shared task (Schlechtweg
et al., 2020). The datasets were built under the
Diachronic Word Usage Graph (DWUG), an ex-
tension of the DURel framework, exploiting usage
graphs to represent the gain and loss of senses for
target words. The usage graph is weighted and
undirected. The nodes represent word usages, and
the weights are semantic relatedness scores graded
by human annotators (Schlechtweg et al., 2021).

3 Dataset Construction

3.1 Corpora
Detecting lexical semantic change over time re-
quires a diachronic corpus having temporal infor-
mation about texts. The dataset exploited in this
study is derived from People’s Daily, one of the
most popular newspapers. This dataset has texts
approximately ranging from the 1950s to the early
2000s, which are stored in MD format and in dif-
ferent folders according to the publication year of
every newspaper article. To our knowledge, it is
by far the largest diachronic Chinese dataset that is
publicly accessible to full texts. 3

3A reviewer suggested two other diachronic Chinese
datasets for consideration. One is the Google Ngram cor-

The Reform and Opening up is assumed as the
most influential and significant milestone in the sec-
ond half of the last century in China. An exploding
number of new lexical usages emerged in the pro-
cess of this pronounced social development, which
further introduced significant changes to Modern
Chinese (Diao, 1995). Setting the year of the Re-
form and Opening-up as the borderline, we split
the dataset into two subcorpora. Thanks to the tem-
poral information of every single text, we obtained
two time-specific subcorpora: texts produced from
1953 to 1978 are used to represent the C1 period,
before the Reform and opening-up, and those from
1979 to 2003 are set to represent the C2 period,
after the Reform and opening-up. The statistics of
subcorpora are listed in Table 1.

Periods Word tokens (million) Word types (million)

1953 – 1978 262 1.73
1979 – 2003 331 2.54

Table 1: Overview of subcorpora: C1 and C2.

3.2 Word List

The word list for annotation includes 20 words,
consisting of 10 words that changed their meaning
over time and 10 stable words as counterparts. As
for the changed words, we first manually picked
them from previous literature, such as dictionaries
(Guo and Chen, 1999; Shen, 2009) and linguistic
books (Diao, 1995) as candidates. We then only
included words satisfying the following conditions:
1) have high frequencies in both two corpora; 2) the
changes suggested by the linguistic references are
reflected in the corpus, either strongly or weakly.
This step is conducted by scrutinizing 20 sampled
sentences from each subcorpus.

We sampled stable words for each shifted word
as counterparts. The changed word and its coun-
terpart must have the same part of speech and the
same frequency percentage in both two periods.
The diachronic stability of stable words is checked
by making use of dictionaries (Diao, 1995; Depart-
ment of Chinese Lexicography, 2019), as well as
with the intuitions of native speakers with linguistic
backgrounds.

pus, which contains a Chinese subset, but the access is limited
to 5-grams. Another one is the more recent diachronic Chinese
corpus (Zinin and Xu, 2020). However, the small scale of the
earlier subcorpus (less than 1 million characters) and the fact
that it is written in Classic Chinese would make the training
process more problematic. These datasets, however, could be
useful for future investigations.
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3.3 Sampling

In the DURel framework, two metrics are used
for quantifying degrees of semantic change
(Schlechtweg et al., 2018; Rodina and Kutuzov,
2020): (1) ΔLATER = MeanL −MeanE , com-
paring the average score of mean relatedness across
the context pairs consisting of two sentences from
the LATER group and the context pairs having
two sentences from the EARLIER group ; (2) the
COMPARE score was obtained by directly calculat-
ing the mean relatedness in the COMPARE group
comprised of one context in C1 period and the
other from the C2 period. According to the de-
sign,ΔLATER is specifically robust to detect those
monosemous words in the EARLIER period that
acquired new senses in the LATER period. How-
ever, if a changed word has already finished the
process of semantic replacement in the LATER pe-
riod, probably this metric would not be informative
anymore. The COMPARE metric was thus pro-
posed to directly compare words usages from the
two time intervals.

Following this rationale, we formulated 3 groups
of use pairs for each target word, named C1, C2
and C1C2, and then randomly sampled 20 use pairs
from our subcorpora (see Table 1). In total, each
target word would have 60 use pairs, and 1,200 use
pairs for all 20 target words.

Each usage pair (see Table 2) is comprised of
two sentences containing the target word sampled
from relative subcorpora. Enough context informa-
tion for each sentence is guaranteed by manually
checking. The average length of context is around
15 words.

Target word Context 1 Context 2 Score Comment

火
极苦的生活和残酷的压迫激起了

采煤工人的暴动，
暴动的工人一把火点燃了煤窑

鲁菜卖火了—山东由农业大省
向强省迈进

Table 2: An example of the use pair in COMPARE
group: 火 ‘fire’.

3.4 Annotation

We recruited five native speakers of Mandarin Chi-
nese with linguistics backgrounds as annotators, all
of them with a MA degree in Linguistics.

Following Schlechtweg et al. (2018), annotators
are asked to give scores to target words by com-
paring the semantic relatedness across each usage
pair (see Table 3). They are also allowed to give a
0 score if they cannot make a decision.

Excluding judgments with 0 grades, 5,968 re-
sponses have been collected. The Krippendorff’s
alpha was calculated based on five annotators’
ratings. The inter-annotator correlation score
is 0.515, comparable to the scores reported for
other datasets constructed under the framework of
DURel (Schlechtweg et al., 2018, 2020; Kutuzov
and Pivovarova, 2021).

Description
1 Unrelated
2 Distantly related
3 Closely related
4 Identical

Table 3: Four-point scale of relatedness. Taken from
Schlechtweg et al. (2018).

4 Dataset Analysis

As described in previous sections, the ΔLATER
metric subtracts the mean relatedness of the EAR-
LIER group from the LATER group. Therefore, a
positive ΔLATER value is assigned when usages
of the annotated word in the C2 group are more
similar, whereas negative ΔLATER is assigned to
words with less similar usages in the C2 group. Pos-
itive and negative ΔLATER values can be consid-
ered as two different sub-types of semantic change:
innovative meaning change and reductive mean-
ing change, roughly representing the gain or loss
of word senses (Schlechtweg et al., 2018). The
absolute ΔLATER value assesses the strength of
semantic change.

As shown in Figure 1, most annotated words are
predicted as stable words, with ΔLATER values
around 0. The two topmost words ‘推出’(push
out; launch), ‘机制’(machine-made; mechanism)
and the two bottommost words: ‘拐’(crutch, traf-
fic), ‘炒’(to fry, to speculate(in the stock market))
are predicted as the words with stronger effects of
semantic change.

The successful predictions on ‘推出’, ‘机制’,
‘炒’ coincide with documented linguistic publica-
tions (Diao, 1995; Shen, 2009), verifyingΔLATER
as an effective measure of lexical semantic change.
Interestingly, the metric predicted ‘拐’ as a changed
word, despite it being originally a stable control
word. A closer inspection of all three groups of
sampled sentences suggested that ‘拐’ is used more
frequently with the ‘crutch’ meaning in the sub-
corpus C1, but it shows a high prevalence of the
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‘trafficking’ meaning in the sub-corpus C2. How-
ever, the usage fluctuation detected here has to take
into account the corpus bias, as ‘trafficking’ is more
likely to occur in a newspaper corpus.

Technically speaking, words such as ‘机制’ and
‘拐’ are homographs with different meanings, i.e.
different words with less related or even unrelated
meanings. The detected shift actually shows the
competition among different meanings with the
same surface form, rather than the gain or loss of
senses. For example, ‘机制’ in the sampled texts
from C1 period dominantly refers to a way of manu-
facturing as ‘machine-made’ (against ‘handmade’).
With the process of industrialization,‘machine-
made’ objects became so prevalent in everyday
life that the need to mention this feature quickly be-
came obsolete and the usage slipped into obscurity.
Meanwhile, the program of Reform and Opening-
up was carried out thoroughly, especially concern-
ing the revolution of the Socialist market economy
system and mechanism. For this reason, ‘机制’
with the ‘mechanism’ meaning became dominant
in the C2 period.

Figure 1: Rank of the target words according to the
∆ LATER metric.

The COMPARE metric directly compares the
semantic relatedness of a usage pair within the
COMPARE group, which consists of sentences
from two different periods. Higher COMPARE
scores would be assigned to more stable words,
like ‘照片(photo),’ ‘雪(snow)’, getting full scores
of 4. Lower COMPARE scores are assigned to
the shifting ones, e.g. the four changed words pre-
dicted by the ΔLATER metric (see Figure 2).

Moreover, this metric captured a shifting word
‘软(soft)’. A closer checking on sampled sentences
suggested that ‘软’ is polysemous in the C1 group,
but with a dominant usage meaning ‘soft texture of
concrete stuff’. In the C2 group, its metaphorical

senses even became more diverse, like ‘soft science,
soft power’, meanwhile, the ‘soft texture’ sense lost
its prevalence based on our observation. The multi-
ple changes made the ΔLATER score not salient
per se, but they were captured by the COMPARE
metric, where usages from two different historical
periods are directly compared.

Figure 2: Rank of target words according to the COM-
PARE metric.

5 Evaluation

The SemEval shared task has indicated that tra-
ditional static embeddings may outperform more
recent paradigms - e.g., contextualized embeddings
(Devlin et al., 2019)- in the task of semantic change
detection (Schlechtweg et al., 2020). Therefore, we
trained a static word embedding model for this task
and evaluated its performance on our newly-created
dataset in this study.

We first trained our vectors on each subcorpus us-
ing both the Skip-gram model and the Continuous
bag of words, which are the two most widely used
static word embeddings models (Mikolov et al.,
2013a,b). To have an assessment of the quality of
the word embeddings trained on our subcorpora,
we performed a preliminary evaluation on the Chi-
nese word similarity dataset COS960, introduced
by Huang et al. (2019).

The results indicated that the quality of the word
embedding models was satisfactory (see Table 4).
The vectors obtained with the Skip-gram models
were better performing, with higher correlation
scores for both periods: 0.56 for the C1 period
and 0.61 for the C2 period (p < 0.05). We thus as-
sumed that Skip-Gram embeddings would provide
a better basis for detecting the diachronic semantic
change in our study.

We then aligned word representations for the
two periods into a shared space with the Orthogo-
nal Procrustes algorithm (Hamilton et al., 2016a,b),
projecting word embeddings for the C2 period onto
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C1’s space and making vectors living in different in-
tervals comparable. The cosine similarity between
two vectors for the same word form is calculated
as the degree of meaning change. According to the
cosine similarity, we ranked those words appearing
in both the C1 and C2 periods, where the higher
the similarity, the more stable the meaning.

Skip-gram CBOW

C1 0.5608 0.4539
C2 0.6144 0.5018

Table 4: Spearman correlation scores between cosine
similarities and human ratings for the vectors trained on
the subcorpora C1 and C2 (all the correlation scores are
significant at p < 0.05).

Compared with the scores derived with the
COMPARE metric, the Skip-gram model achieved
a Spearman correlation score of 0.584. As for the
ΔLATER, we took the absolute value indicating
the degree of semantic drift for the correlation cal-
culation (the positive and the negative ΔLATER
values represent different sub-types of semantic
change, but leave this to future investigations). This
time, the Skip-gram model achieved a Spearman
correlation coefficient of -0.625. Both two correla-
tion scores are statistically significant at p < 0.05.
As expected, the performance of the Skip-gram
model on the detection task is positively correlated
with the COMPARE metric and negatively corre-
lated with the ΔLATER metric.

6 Conclusion

This paper presented the first human-annotated
evaluation dataset for the task of Chinese lexical
semantic change detection. This dataset was built
following the DURel framework, which allows us
to evaluate the usage drift that occurred in coinci-
dence with the Reform and Opening-up in recent
Chinese history. Our data further suggested that
interpretation of the ΔLATER metric could be ex-
tended to the competition among different usages
of the same surface form, in order to accommodate
historical changes involving homographs. We fi-
nally examined the performance of the Skip-gram
model on our evaluation dataset and found that it
achieves a relatively high correlation coefficient
with the two metrics.

This paper served as a first, exploratory study on
modeling lexical semantic change in Chinese, on
the basis of a limited number of words.

In the near future, our goal is to scale up the
dataset and to examine the performance of more
models for Chinese, including the more recent con-
textualized embeddings (Devlin et al., 2019). More-
over, using finer-grained intervals for diachronic
meaning change detection and exploring the di-
atopic variation between different Chinese dialects
are also possible directions of our future work
(Wang et al., 2022; Zampieri et al., 2019).
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Abstract
We compare five Low Saxon dialects from the
19th and 21st century from Germany and the
Netherlands with each other as well as with
modern Standard Dutch and Standard German.
Our comparison is based on character n-grams
on the one hand and PoS n-grams on the other
and we show that these two lead to different
distances. Particularly in the PoS-based dis-
tances, one can observe all of the 21st century
Low Saxon dialects shifting towards the mod-
ern majority languages.

1 Introduction

We are investigating dialect similarity in 19th and
21st century Low Saxon based on data from Ger-
many and the Netherlands. Traditionally, Low
Saxon dialect classification has mostly been based
on phonological and morphological traits, such as
the ones presented by Schröder (2004). In this
study, however, we focus on the orthographic and
the syntactic side and compare how these relate to
each other. We compare two levels as we expect
the intensity and nature of the majority language
influence to differ here. The choice of these two
particular levels was motivated by the fact that or-
thography can be inspected without annotation and
for syntax, we could train sufficiently reliable PoS
taggers1, which at this point is not possible for
morphology and phonology. Furthermore, we in-
vestigate how the dialect closeness on both levels
has changed over time.

An interesting area to pay attention to with re-
spect to dialect distance is the Dutch-German bor-
der. Like Goossens (2019) observed, the Low
Saxon dialects along the border have started to
diverge under the influence of the majority lan-
guages. According to him, this divergence is most
pronounced at the lexical level, but convergence to-
wards the majority language has also been attested

1Around 85% accuracy based on a manually annotated test
set.

in phonology, morphology and syntax. While stud-
ies on the divergence of dialects along the border
often focus on the occurrence and frequency of par-
ticular traits based on interviews, cf. Smits (2011),
we address the overall (dis)similarity in prose texts.

Since in the 19th century school education and
majority language media played a smaller role in
everyday life compared with today, we assume the
effect of language contact with Dutch and German
to be less visible in the morphology and syntax of
19th century Low Saxon, as such changes to the lan-
guage system itself take time and gradually add up.
On the other hand, the border is probably already
clearly discernable at the orthographic level due
to reading and writing education in the majority
language, which we assume to have had a more im-
mediate influence, particularly in areas where the
Low Saxon literary production had ceased (nearly)
completely after Middle Low Saxon times. There-
fore, from the 19th to the 21st century, we expect
a greater change in distance towards the majority
languages at the PoS level than at the character
level. We thus hypothesize that the Low Saxon
dialects will appear closer to each other on the syn-
tactic side with distance to the majority languages
decreasing over time, while 19th century dialects
might already group together with the respective
majority language at the orthographic level.

2 Background

The West Germanic language Low Saxon (also
called “Low German”) today is primarily spoken in
Northern Germany and the North-Eastern Nether-
lands by around 5 million people and enjoys official
recognition in both countries (Moseley, 2010). As
a result of the lack of an interregional standard lan-
guage, Low Saxon speakers tend to use their own
dialects in all language use cases. As there is no
official common orthography either, one needs to
take into consideration two layers of variation: on
the one hand spelling variation and on the other ac-
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tual dialect variation. People may for instance stick
to their own dialect but switch writing systems de-
pending on whom they address.2 This multilayered
variation poses challenges to the development of
NLP for Low Saxon but at the same time presents
an interesting case for historical dialectology of
written language.

Figure 1: Major Low Saxon dialect groups: Dutch North
Saxon (NNS), German North Saxon (DNS), Dutch
Westphalian (NWF), German Westphalian (DWF),
Eastphalian (OFL), Mecklenburgish-West-Pomeranian
(MVP), Brandenburgish-South-Marchian (BRA), East
Pomeranian (POM) and Low Prussian (NPR).

Figure 1 shows the major dialect groups of mod-
ern Low Saxon. The eastern dialects East Pomera-
nian (POM) and Lower Prussian (NPR) were spo-
ken in these areas prior to WWII.

3 Data

The majority of our dataset is taken from the LSDC
dataset (Siewert et al., 2020) since, as far as we are
aware, this is the only dataset for modern Low
Saxon annotated for dialect and century. Espe-
cially in regard to the 19th century data, we supple-
mented it with relevant prose texts from Leopold
and Leopold (1882)3 and the Twentse Taalbank
(van der Vliet, 2021).

The overall size of the dataset is 120,720
sentences and 2,410,261 tokens and it covers
eight dialect regions: Dutch North Saxon, Ger-
man North Saxon, Dutch Westphalian, German
Westphalian, Eastphalian, Mecklenburgish-West-
Pomeranian, Brandenburgish-South-Marchian and
Low Prussian. In this rough division, Dutch
Westphalian includes all Dutch Low Saxon di-
alects except for Gronings, which consequently
is identical with Dutch North Saxon here. The
first five of these dialects are included in our cur-
rent experiments. As we currently lack anno-

2Personal observation from conversations on social media.
3Digitised by dbnl: https://dbnl.nl/tekst/

leop008sche00_01/

tated data from Mecklenburgish-West-Pomeranian
(MVP), Brandenburgish-South-Marchian (BRA)
and Lower Prussian (NPR) for the 20th and 21st

century, we cannot yet perform diachronic com-
parisons and thus exclude these dialects from our
experiments as well. Furthermore, we do not use
the 20th century data in our comparisons as it still
consists mostly of data from only two dialects.

In our experiments, we thus used data from the
five dialects presented in Table 1. We distinguish
dialects from the 19th and 21st century and treat
these as separate data points.

19th 21st

German North Saxon (DNS) 3,869 475
Dutch North Saxon (NNS) 1,774 16,964
German Westphalian (DWF) 2,557 10,225
Dutch Westphalian (NWF) 4,925 9,150
Eastphalian (OFL) 278 7,896

Table 1: Sentences per dialect and century in our dataset.

For comparison, we also used UD data in Stan-
dard German (Borges Völker et al., 2019) and Stan-
dard Dutch (Bouma and van Noord, 2017) con-
taining 153,035 and 18,078 sentences, respectively.
These datasets seem to consist mostly of data from
the late 20th and 21st century.

The Low Saxon data was converted to CoNLL-U
format and automatically PoS tagged with the help
of the Stanza tagger (Qi et al., 2020)4 trained on
UD data in Danish (Johannsen et al., 2015), Dutch
(Bouma and van Noord, 2017), German (McDon-
ald et al., 2013), and Swedish (Borin et al., 2008)
in addition to manually annotated Low Saxon data.

In connection with the publication of the pa-
per, our dataset, as well as the n-gram counts that
form the basis for our experiments, will be added
to LSDC-morph repository5 on the Helsinki-NLP
GitHub page.

4 Methods

Dialect similarity at the orthographic level based
on character n-grams6 will be compared to dialect

4We use the stand-alone version of the tagger
available at https://github.com/yvesscherrer/
stanzatagger.

5https://github.com/Helsinki-NLP/
LSDC-morph

6Character n-grams, of course, do not purely represent the
orthography as they will also capture actual dialect character-
istics such as inflectional suffixes, but this is the closest one
can get without adding a phonological or phonetic layer.
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similarity based on PoS tag sequences to investigate
if these lead to different dialect groupings.

Malmasi and Zampieri (2017) observed in their
experiments for identifying Swiss German dialects
that approaches based on character n-grams outper-
form word-based ones and, in their study on British
dialects, Wolk and Szmrecsanyi (2016) have em-
ployed part-of-speech n-grams for corpus-based
dialectometry, concluding that this approach can
achieve results comparable to manually selected
features.

4.1 N-grams

We extract character bigrams and trigrams from
tokenised and lower-cased text. Trigrams consist-
ing of the last letter of the previous word, a space
sign and the first letter of the following word are
included. As for PoS bigrams and trigrams, we ex-
clude n-grams containing the tags ‘SYM’, ‘X’ and
‘_’. We remove PoS and character n-grams with an
overall frequency of 5 or below and the counts of
the remaining n-grams are normalised with tf-idf.

4.2 Distance measures

For dialect distance measuring, we make use of
scikit-learn (Pedregosa et al., 2011) PCA with k-
means clustering with cluster sizes ranging from 2
to 5.7 The input for our experiments are matrices
with raw n-gram counts which we first normalise
using tf-idf and subsequently reduce to two dimen-
sions with PCA for visualisation purposes. The
results to be seen in Figure 2 and 3 are based on
this PCA-reduced data. We ran the models sev-
eral times and observed marginal changes only for
a larger number of clusters, when cluster borders
divided very close dialects. Consequently, the ran-
dom initialisation did not have a substantial effect
on the results. Additionally, we compared these re-
sults to k-means clustering without PCA reduction
and to hierarchical clustering and obtained similar
results, cf. appendix A.

5 Results

As expected, the PCA-based closeness and the clus-
tering at the character-based level differ clearly
from the PoS-based results, but not all of the diver-
gences correspond to our expectations.

7Inspired by this example: https://scikit-learn.
org/stable/auto_examples/cluster/plot_
kmeans_digits.html

5.1 Character n-grams

As can be seen from Figure 2, in a two-cluster case
based on character n-grams, the varieties group
according to country borders, with German Low
Saxon clustering in the lower left corner and Dutch
Low Saxon and Dutch (NDL) in the lower right
corner. German (DEU) at the top is grouped into
the same cluster with German Low Saxon, but at a
substantial distance from the dialects. When using
three clusters, German is the first to be separated
into its own cluster (cf. appendix A). In case of
Dutch Low Saxon, the greater closeness to stan-
dard Dutch in 21st century Low Saxon compared
with 19th century Low Saxon suggests that the Low
Saxon dialects in the Netherlands increasingly con-
form to the principles of the Dutch orthography.
Such a general tendency, however, cannot be ob-
served for German Low Saxon.

Figure 2: Dialect distances based on character n-grams

5.2 PoS n-grams

Compared to character n-grams, the PoS n-grams
as presented in Figure 3 show a greater closeness of
the Low Saxon dialects from both sides of the bor-
der. Specifically, when clustering into three groups,
19th century Low Saxon forms the left cluster, 21st

century Low Saxon the middle one, and standard
Dutch and German cluster on the right hand side.

When restricting the number of clusters to two,
Dutch and German form one cluster and the Low
Saxon dialects from both centuries form another.

For the PoS n-gram case, the century seems to
play a greater role than the state border, since the
clustering suggests that Low Saxon has become
closer to the majority languages in terms of syntax.

It is remarkable that the overall distance between
Dutch Low Saxon and German Low Saxon does not
seem to have changed drastically over time. Dutch
North Saxon and Dutch Westphalian seem to have
approached each other and the same appears to be
true for German North Saxon and Eastphalian.
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Figure 3: Dialect distances based on PoS n-grams

6 Discussion

Based on our knowledge of and about Low Saxon
dialects, the overall results appear meaningful de-
spite the comparatively low tagging accuracy of
85%.

In the PoS-based experiments, the fact that a
noticeable distance between neighbouring dialect
regions divided by a country border can already be
observed in the 19th century data raises the ques-
tion of how representative the written dialect is of
the actual Low Saxon spoken by the average popu-
lation. Given that written Low Saxon is commonly
produced by people who have received their ed-
ucation in the majority language, this may have
an influence on the kind of written language pro-
duced. On the other hand, one needs to keep in
mind the size of the dialect regions. Both the Ger-
man Westphalian group (DWF) and particularly the
German North Saxon (DNS) group stretching from
the Dutch border to Schleswig-Holstein are on their
own larger than the whole Dutch Low Saxon area
and not all of the texts included are written in va-
rieties particularly close to the border. A more
fine-grained dialect subdivision, where e.g., the
Groningen dialect could be compared with East
Frisian, would therefore be desirable for the future
as well. However, this does not seem feasible in
our research project at this point due to the lack of
sufficient data sources for many of these dialects.

The noticeable distance between German Low
Saxon and German in the character-based experi-
ments compared with the closeness of Dutch and
Dutch Low Saxon might partly be explained by the
greater phonological differences between German
and Low Saxon, but in addition to that, one might
also consider that local writing systems for German
Low Saxon tend to adhere to certain orthographic
principles not found in the German orthography.

One of these is that even the umlauted vowels ä, ö
and ü may occur as digraphs, especially in closed
syllables, e.g., in the words däänsch/däänsk ‘Dan-
ish’, sööt ‘sweet’ and düüster ‘dark’, according to
both the Sass8 spelling (Kahl and Thies, 2009) and
the Münsterland spelling (Kahl, 2009).

The overall PoS-based distance of Dutch Low
Saxon and Standard Dutch appears to be compara-
ble to the overall distance between German Low
Saxon and Standard German. This is interesting as,
due to the greater phonological similarity (e.g. no
High German consonant shift) on the one hand and
the character n-gram results on the other, one might
expect the distance between Dutch Low Saxon and
Dutch to be relatively smaller on the syntactic level
as well.

The relatively greater distance of 21st century
German Westphalian to the other two German Low
Saxon dialects deserves some attention, too. One
possible explanation could be the Westphalian di-
alects’ more conservative morphology. Whereas
several dialects of German Westphalian still inflect
nouns in three cases and have preserved subjunc-
tive forms of verbs (Lindow et al., 1998)9, it might
be the case that Dutch Low Saxon, German North
Saxon and Eastphalian more commonly resort to
prepositions and auxiliary verbs.

The relative closeness of German and Dutch in
the PoS-based results came as a surprise as well,
but the genre might play a role here: Whereas
Dutch and German data largely represents more for-
mal language from non-fiction texts such as news
texts, much of the Low Saxon data sources belong
to various forms of literature. While the possibility
of an influence of genre differences on the distance
between 19th and 21st century Low Saxon dialects
cannot be completely ruled out either, it seems less
likely as the majority of the data from both cen-
turies consists of fiction texts and stories.

Due to the relatively modern data in Dutch and
German, the conclusions to be drawn from our
comparison are restricted. For a more meaningful
comparison, one should include 19th century Dutch
and German as – even though gradual assimilation
to the majority language is what one would expect
– it might still be the case that the distance between
19th century Low Saxon and the Dutch and German

8Named after the creator Johannes Saß.
9While, according to Lindow et al. (1998, 152), the treefold

case distinction is still in use in parts of Southern Eastphalian
as well, our dataset does not include texts from this region as
far as we are aware.
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of that time was not as significant as the distance
presented here would suggest.

7 Future research

In our future research, we will include more Low
Saxon dialects, especially Mecklenburgish-West-
Pomeranian, and add the 20th century as well as
Dutch and German data from relevant time pe-
riods. The eastern dialects like Mecklenburgish-
West-Pomeranian would constitute a meaningful
addition since we could then examine the extent to
which the common division into West Low Saxon
and East Low Saxon / East Low German is apparent
at the levels of language under scrutiny.

Morphological tagging would be a valuable addi-
tion as well, which we plan to include in the future.
At this point, the accuracy is still too low, at around
60-70%, which is why more annotation work is
required. In the future, we will create more train-
ing data for both PoS and morphological tagging
through manual correction of the automaticcally
tagged data.

Regarding dimensionality reduction, we intend
to more closely inspect which features are con-
sidered most central by the model to investigate
whether the dialect distances are based on actual
dialect characteristics or if the results have been
influenced by artifacts of the dataset.

We hope that the datasets gathered and annotated
by us will facilitate the development of NLP tools
for and research into Low Saxon.
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A Results of other clustering approaches

In this appendix, we list the outcomes of other
clustering approaches.

A.1 K-means clustering

Dialect Clusters
2P 2C 3P 1st 3P 2nd 3C

19th DNS 1 0 0 2 1
19th DWF 1 0 0 2 1
19th OFL 1 0 0 2 1
19th NNS 1 1 0 0 0
19th NWF 1 1 0 0 0
21st DNS 1 0 2 2 1
21st DWF 1 0 2 2 1
21st OFL 1 0 2 2 1
21st NNS 1 1 2 0 0
21st NWF 1 1 2 0 0
Dutch 0 1 1 1 0
German 0 0 1 1 2

Figure 4: Results of k-means clustering based on data
without PCA-based dimensionality reduction. The over-
all results are similar, only in the case of three PoS-based
clusters, there was variation between runs as to whether
the Low Saxon dialects cluster according to century or
according to state. P = PoS, C = character.

A.2 Hierarchical clustering
The hierarchical clustering10 uses the following
dialect numbering: 0 = 19th DWF, 1 = 19th DNS, 2
= 19th OFL, 3 = 19th NWF, 4 = 19th NNS, 5 = 21st

NWF, 6 = 21st DWF, 7 = 21st NNS, 8 = 21st OFL,
9 = 21st DNS, 10 = DEU, 11 = NDL.

Figure 5: PoS-based hierarchical clustering using Eu-
clidean metric and ward linkage.

Figure 6: Character-based hierarchical clustering using
Euclidean metric and ward linkage.

10Partly based on this example: https://
scikit-learn.org/stable/auto_examples/
cluster/plot_agglomerative_dendrogram.
html
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Abstract

Languages can respond to external events in
various ways - the creation of new words or
named entities, additional senses might develop
for already existing words or the valence of
words can change. In this work, we explore
the semantic shift of the Dutch words “natie”
(“nation”), “volk” (“people”) and “vaderland”
(“fatherland”) over a period that is known for
the rise of nationalism in Europe: 1700-1880
(Jensen, 2016). The semantic change is mea-
sured by means of Dynamic Bernoulli Word
Embeddings (Rudolph and Blei, 2018) which
allow for comparison between word embed-
dings over different time slices. The word em-
beddings were generated based on Dutch fic-
tion literature divided over different decades.
From the analysis of the absolute drifts, it ap-
pears that the word “natie” underwent a rela-
tively small drift. However, the drifts of “vader-
land” and “volk” show multiple peaks, culmi-
nating around the turn of the nineteenth cen-
tury. To verify whether this semantic change
can indeed be attributed to nationalistic move-
ments, a detailed analysis of the nearest neigh-
bours of the target words is provided. From
the analysis, it appears that “natie”, “volk”
and “vaderland” became more nationalistically-
loaded over time.

1 Introduction

The nineteenth century is often characterized as the
era of modernity and nationalism (Leerssen, 2006;
Hobsbawm, 2012; Jensen, 2016; Gellner, 1983).
However, the development of the modernist mind-
set did not happen overnight. Brunner et al. (1972)
call this cultural transition period from the early
modern period to the modern period the Sattelzeit
or saddle period. In this period, from roughly 1750
to 1850, the reading public expanded, people be-
came used to thinking about the past and the future,
ideologies such as nationalism arose, and abstract
concepts became more politically applicable.

This paper aims to contribute to the study of the
development of the cultural thought of nationalism
during the Sattelzeit in Dutch society by research-
ing fiction literature from 1700 to 1880. By employ-
ing a dynamic word embedding model we examine
whether the (literary) contexts of three target words
“natie” (“nation”), “volk” (“people”) and “vader-
land” (“fatherland”) have changed over the course
of the eighteenth century and nineteenth century.
The dynamic word embedding model allows us to
measure to what extent the contexts might have
changed by quantifying the semantic drift leverag-
ing the target words’ embeddings. By doing so we
aim to establish whether there is indeed a measur-
able semantic change or drift that coincides with
the upcoming cultural and political thoughts of the
era.

2 Related Work

In history, studying how concepts have changed
over time is called Begriffsgeschichte or concep-
tual history. Influential in conceptual history are
the works from Kosselleck (2002), Foucault (1970)
and Skinner (2002). Van Sas (1999) studied differ-
ent representations of the Dutch nation by looking
at words expressing concepts related to national-
ism over the centuries, using political texts and
literature from the fifteenth century to 1940.

In the field of digital humanities, dynamic word
embeddings can be employed to measure how
words change over time. Word embeddings are
distributional representations of words constructed
based on their distribution in texts, i.e. these
embeddings quantify how often words co-occur
with other words in (preferably large) corpora.
This idea is based on the distributional hypothe-
sis, which presumes that the meaning of a word
can be derived from its linguistic context (Firth,
1957). Semantic representations can be learned us-
ing Natural Language Processing techniques, such
as Word2Vec (Mikolov et al., 2013), that automat-
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ically learn associations by leveraging information
from large corpora. These distributional methods
have been proven suitable to capture (broad) se-
mantic changes in large generic corpora (Hamilton
et al., 2016; Kutuzov et al., 2018; Tahmasebi et al.,
2021). More recently, word embeddings have also
been used to investigate semantic shifts in histori-
cal contexts, e.g. shifts in gender bias in historical
newspapers (Wevers, 2019), changes in gender and
ethnic stereotypes (Garg et al., 2018), evolution of
concepts (Orlikowski et al., 2018), study of parlia-
mentary debates (Van Lange and Futselaar, 2018)
and others.

A practical difficulty with dynamic word em-
beddings arises when attempting to compare the
embeddings over different time periods. This prob-
lem is referred to as the alignment problem and
different solutions have been proposed (Di Carlo
et al., 2019; Hamilton et al., 2016). A second chal-
lenge, especially when dealing with historical data,
is the fact that large corpora are required to train
word embeddings (e.g. the model of Hamilton et al.
(2016) required a dataset of 100,000,000 words
per time slice). Kim et al. (2014), Bamler and
Mandt (2017), Yao et al. (2018) and Rudolph and
Blei (2018) proposed a dynamic word embedding
model for handling such sparse data.

For the current research we employ the Dynamic
Bernoulli Embedding model of (Rudolph and Blei,
2018). Rudolph and Blei (2018) demonstrated that
Dynamic Bernoulli Embeddings give good predic-
tive performance for time windows with sparse data.
Moreover, their method is able to capture changes
of rare words. Both Dynamic Filtering of Skip-
Gram and Dynamic Bernoulli Embedding are able
to detect drifts within very sparse datasets. How-
ever, the Dynamic Bernoulli Embedding has been
shown to keep words that do not change over time
more stable (Montariol and Allauzen, 2019). In
our experiments, we apply the Dynamic Bernoulli
Embedding model to Dutch literature to study the
semantic shift of words related to nationalism, with
the goal to contribute to the analysis of the histori-
cal discourse on nationalism.

3 Experimental Setup

3.1 Dataset
The data is retrieved from the Digital Library of
Dutch Language (DBNL)1 which contains thou-
sands of literary texts as well as secondary litera-

1https://www.dbnl.org/

ture and additional information (e.g. biographies
and portrayals) from The Netherlands and Belgium.
We limited the data collected to fiction, since these
works are more widespread than non-fiction and
given that the content of popular genres in the nine-
teenth century had nationalistic tendencies. The his-
torical novel romantically celebrated the nation’s
past, while the rustic novel and the realistic novel
showed their readers the social and moral represen-
tation of the nation (Rigney, 2020; Leerssen, 2020).
While rhyme and other stylistic specifics can have
an effect of the position and context of the target
words, poetry is also included since it is makes up
a large percentage of literary works in the DBNL.
This is in particular true for the earlier decades of
the time period of interest.

The final dataset compiled from DBNL consists
of 414 fiction books, such as prose, plays and youth
literature from the time period between 1700 and
1880. To capture change over time, the data is
sliced into bins per decade, based on their publica-
tion dates. The data is divided in a training (80%)
and a validation (20%) set.

3.2 Preprocessing Steps
We applied spelling normalization based on the
work by Braun (2002). Stop words were removed
using the NLTK package (Bird et al., 2009) and
the word frequency in texts from the target time pe-
riod (1700-1880). Additionally, words that are less
than two characters/numbers were pruned as well
as words occurring less than ten times in the docu-
ments. These steps ensure a compacter dictionary
for the model.

3.3 Dynamic Bernoulli Embeddings
We employ the Dynamic Bernoulli Embedding
model (Rudolph and Blei, 2018). Rudolph and Blei
(2018). This model is a type of exponential family
embeddings that captures sequential changes in the
data representations. It extends Bernoulli embed-
dings for text which provide a conditional model
for individual text entries to text data over time.
This model has a good predictive performance for
time windows with sparse data. It has been proven
that this model captures changes of (rare) words
while keeping words that do not change relatively
stable (Montariol and Allauzen, 2019). The num-
ber of passes over the data is ten, with an additional
first pass, or zeroth pass, where the embedding vec-
tor is trained on all the time slices, for initialization.
The dimension of the embeddings are set to 100,
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and the number of negative samples is set to 20.
These settings are based on the settings of Rudolph
and Blei (2018). After 100 mini batches, the posi-
tive likelihood (Lpos) is calculated on the validation
set and saved. The context size employed is six.

Model values
context size 6
passes over data 10 + 0th
dim. of embeddings 100
Hyperparameters values
minibatch 100, 300, 500
learning rate 0.2, 0.02, 0.002, 0.0002
drift 1, 5 and 10

Table 1: Model and hyperparameter settings that were
explored for the experiments (based on the optimal hy-
perparameters identified by Rudolph and Blei (2018))

The hyperparameters that need to be determined
are the batch size, the learning rate and the preci-
sion of the random drift. We limited the search for
optimal hyperparameters based on the experiments
described in Rudolph and Blei (2018). The model
is expensive to run, so for efficiency reasons, in-
stead of testing a combination of all the settings,
we first determine the optimal batch size, while
keeping the other hyperparameters on their default
setting. We keep the batch size setting that gives
the highest Lpos on the validation set, for compar-
ing different learning rates. This is repeated for
the last setting, the precision of the random drift.
Then, the model with the one with the highest Lpos
is chosen as the final model.

4 Results

The Dynamic Bernoulli Embedding models are
evaluated with the Bernoulli positive likelihood on
the validation set, or Lpos. This metric is used to
select the hyperparameter settings. The results of
the experiments are represented in Table 2.

In Table 3 the absolute drift of the target words
are given. The absolute drift is the metric used to
measure how much the context, or the usage of a
word changes over time. According to the final
model, the target word that has the largest abso-
lute drift and thus changed the most over time is
“volk” (0.1800), followed by “vaderland” (0.1128).
The target word “natie” shows the smallest abso-
lute drift (0.0644). As a reference frame, the word
with the largest absolute drift in our dataset is the
word “we” (informal form of the Dutch 1st per-

Minibatches Learning rate Drift Lpos val
100 0.002 1 -6854684

300

0.2 1 -11756400
0.02 1 -6560637

0.002 1 -6281450
0.002 5 -7143437
0.002 10 -6064922

0.0002 1 -7961574
500 0.002 1 -6287337

Table 2: Overview of hyperparameter settings that were
explored together with the Lpos on the validations set
for every setting.

son plural pronoun “wij”, “we” in English), with
an absolute drift of 0.3864. Looking at the posi-
tion of the words with the largest absolute drift,
the words “volk”, “vaderland”,“natie” are in the
157st, 882nd and 3711th place of a total of 61114
terms. We ought to note that many of the words
with large drifts are either words with old spelling
forms or names. First, words with old spelling have
a hight absolute drift since they go out of use in
later decades - their position in the word embedding
does only rely on the drifting prior mechanism. Al-
though we implemented a spelling normalization
step as a pre-processing step, not all spelling in-
consistencies were successfully corrected. Second,
names used in fictional literature are also among
the words with the largest drifts due to the fact
that they only appear in some books (and in some
decades).

Target Word Embedding
Mean absolute drift 0.0253
“natie” (“nation”) 0.0644
“volk” (“folk”) 0.1800
“vaderland” (“fatherland”) 0.1128

Table 3: Absolute drifts for the target words and
the mean absolute drift of all words

Figure 1 illustrates the drift of the target words
over the different time slices. This graph shows
that while “natie” has a small absolute drift, the
drift becomes a bit larger over time, but it stays
below the average drift of words.

The word “vaderland”shows three peaks in their
drift over time. The first peak coincides roughly
with the emergence of the word “vaderland” in
Dutch book titles (Kloek, 1999). The second peak
is around 1780, which is the decade of the politi-
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Figure 1: The drift of target words and neutral words,
in comparison to their position in the previous decade

cization of the Dutch enlightenment (Kloek, 1999).
The third peak of drift happens in the decade of
the Dutch constitutional reform of 1848 and the
revolutions in Europe of the same year.

Aside from the absolute drift and the drift over
time, the nearest neighbours of the target words in
the embedding of a specific time slice were ana-
lyzed. The nearest neighbors can be understood as
the word most often used in a similar context of the
target words, and are thus considered semantically
close according to the distributional hypothesis.
Due to the page-limit, we restrict ourselves to a
brief illustration of the nearest neighbors of the
word “vaderland”. We allude at some of the find-
ings we observed for the word “volk” and “natie”.

The word “volk” changes fast from the last quar-
ter of the eighteenth century onwards. The nearest
neighbors of “volk” in the earlier decades of the
eighteenth century are mainly related to biblical
themes. De Kruif (2001) explains that biblical lit-
erature was popular in the eighteenth century. The
interpretation of the word “volk” changes from
“people of Israel” towards the meaning of “peo-
ple as a mob” in later decades, which explains the
larger drift from the 1780s onwards.

For “vaderland”, the nearest neighbors are “ge-
boorteland” (“country of birth”) and “geboorte-
grond” (“place of birth”). Among the neighbors
are also some more affectionate words such as
“dierbare” (“dear”) and “dierbaarst” (“dearest”) and
“vrijgevochten” (“free-spirited”). Aside from that,
among the top 10 nearest neighbours, we can find
terms alluding at a fatherland’s past: “wapenroem”
(“fame of arms”), “onafhankelijkheid” (“indepen-
dence”), and, specific to the Dutch past, “bataven”
(“batavian(s)”). From 1780 onwards, the words
“nederland” (“The Netherlands”) and “vlaander-

land” (“Flanders”) are present in the top 10. We
give an example of the top 10 nearest neighbours
of the word “vaderland” in Table 4.

For “volk”, the word “oproerig” (“rebellious”)
is the nearest neighbor for every decade except the
last one. Other words like “oproer” (“rebellion”),
“muitziek” and “muitzucht” (“mutinious”) empha-
size the dangerous/negative connotation of “people”
(“people as a mob”). These words furthermore ap-
pear more frequently and get a higher position in
the top 10 nearest neighbors in the later decades.
“Natie” showed almost no variation over time, as
was expected by the low absolute drift. For “natie”,
many of its nearest neighbours across the different
time slices were words referring to institutions

While “natie” didn’t undergo a traceable seman-
tic shift according to the final mode, we never-
theless looked into the nearest neighbours over
the decades. “Handeldrijvende” (“trading”) is
the nearest neighbor in all decades, followed by
“naäpen” (“copying”, as in what a copycat does)
and “Nationaliteit” (“nationality”). Further down
the neighbouring words we encounter institutions
(universities (“universiteiten”), courts (“gerecht-
shoven”, “rechtbanken”), governments (“gouvern-
ments”), people’s government (“volksregering”),
and republic (“republiek”).

5 Conclusions and Future Work

In this study the emergence and development of
nationalism in Dutch culture is studied by looking
at the semantic change of the target words “natie”,
“volk” and “vaderland”. This is done by apply-
ing the Dynamic Bernoulli Model, proposed by
Rudolph and Blei (2018), to Dutch fiction litera-
ture between 1700-1880, during the emergence and
development of nation building and nationalism
(Gellner, 1983). Furthermore, through the analysis
of the nearest neighbours we show how the contex-
tual meaning of the target words changed. To the
best of our knowledge, this is the first research that
uses Dynamic Bernoulli Embeddings to contribute
to an analysis of historical discourse, which in this
case is the debate on the origins and spread of na-
tionalism in the Netherlands. The results of this
study show that there are measurable changes in
the dynamic word embeddings of words related to
nationalism over the course of the eighteenth and
nineteenth century during a period that is known as
the Sattelzeit.

We want to acknowledge certain limitations of
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1760 1770 1780 1790 1800 1810
geboorteland geboorteland geboorteland geboorteland geboorteland geboorteland
geboortegrond volksbestaan volksbestaan volksbestaan geboortegrond geboortegrond
volksbestaan geboortegrond geboortegrond geboortegrond volksbestaan volksbestaan
dierbaarst dierbaarst dierbaarst dierbaarst dierbaarst dierbaar
eendrachtsband eendrachtsband eendrachtsband eendrachtsband dierbaar dierbaarst
vrijgevochten onafhanklijkheid vrijgevochten dierbaar eendrachtsband eendrachtsband
onafhanklijkheid vrijgevochten dierbaar onafhanklijkheid onafhanklijkheid onafhanklijkheid
wapenroem wapenroem bataven vrijgevochten vaderlande vaderlande
vaderlande bataven onafhanklijkheid bataven bataven vrijgevochten
roemvol dierbaar vlaanderland vlaanderland vlaanderland nederland

Table 4: Top 10 nearest neighbors for the target word “vaderland” for the time slice 1760 – 1810. The words
“vlaanderland” and “nederland” (marked in bold) start showing among the 10 nearest neighbors from 1780.

our study. The method we employed in our study
is sense-agnostic (e.g. homonyms) and works on
a vocabulary common to all the investigated time
slices, meaning that only words appearing in the
entire corpus can contribute to the analysis of the
target words. Additionally, historical sources often
employ a non-standardized spelling. Despite our
preprocessing to standardize the spelling using gen-
eral rules, it is possible that some variations have
been missed.

A more in-depth analysis of how semantic shifts
of words can reflect the development of nation
building, nationalism (or in general the arrival of
certain ideologies) is a research direction we aim to
further explore in future work. Future work could
also benefit from a more in-depth exploration of the
hyperparameter settings and their combinations.
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Abstract

This paper explores lexical meaning changes
in a new dataset, which includes tweets from
before and after the COVID-related lockdown
in April 2020. We use this dataset to evalu-
ate traditional and more recent unsupervised
approaches to lexical semantic change that
make use of contextualized word represen-
tations based on the BERT neural language
model to obtain representations of word usages.
We argue that previous models that encode lo-
cal representations of words cannot capture
global context shifts such as the context shift
of face masks since the pandemic outbreak. We
experiment with neural topic models to track
context shifts of words. We show that this ap-
proach can reveal textual associations of words
that go beyond their lexical meaning represen-
tation. We discuss future work and how to pro-
ceed capturing the pragmatic aspect of meaning
change as opposed to lexical semantic change.

1 Introduction

Various approaches have been suggested in pre-
vious research to analyze semantic change such
as semantic narrowing or broadening or the ap-
pearance of new words. Traditional quantitative
approaches to semantic change identify meaning
change by relative-frequency-based methods (Gu-
lordava and Baroni, 2011). Another traditional
method is the n-gram approach, that identifies
the change in likelihood of words co-occurrence
across time (Gulordava and Baroni, 2011; But-
ler and Simon-Vandenbergen, 2021; Luo, 2021).
While these approaches can detect and track lexi-
cal changes that rely on local lexical and syntactic
differences of words in time, they cannot capture
lexical changes that rely on more distant relations
between words (Giulianelli et al., 2020).

More recent computational approaches to seman-
tic change, have exploited a pre-trained neural lan-
guage model BERT (Devlin et al., 2019) to obtain
contextualized representations for every occurrence

of a word of interest and measure changes of se-
mantic clusters in time (Giulianelli et al., 2020).
Contextualized embeddings can help to detect lex-
ical changes in case linguistic differences are en-
coded in non-local word relations such as in the
whole construction like in here comes your coach,
Cinderella or in you can always go, coach (Giu-
lianelli et al., 2020). These constructions capture
lexical changes by being associated with different
uses of the word coach, which linguistically repre-
sent notions like (in)animacy.

Our goal in this paper is to capture more global
relations between words than word relations in con-
structions. We want to capture context shifts by
global representations of words that share the same
paragraph or document. We use neural contextual-
ized embeddings (Devlin et al., 2019) to generate
better topics, which we consider as proxies for
various word contexts, similar to constructions as
proxies for word senses in previous approaches
(Giulianelli et al., 2020). By studying thematic re-
lations between words in time, we find out changes
in these relations. This approach is not new and
has been already applied by (Sagi et al., 2013). The
authors used classical topic modeling to find out
new associations of words. Words associations
have been described in cognitive linguistics by the
notion of semantic frames (Lakoff, 2008; Fillmore
et al., 2002). According to (Lakoff, 2008), every
word evokes a certain frame, i.e. a conceptual struc-
ture used in human communication. Words evoke
certain images, feelings and (personal) experiences
that can be expressed by other words used in the
same context. In order to capture new associations
of words in time, Sagi et al. (2013) used topic mod-
els to track new thematic relations of words like
war after September 11, 2001. The underlined as-
sumption of their approach is that context shifts
or shifts of semantic frames are closely related to
topic shifts (Sagi et al., 2013).

We apply this idea to our dataset to track changes
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of word associations by topic modeling. Our new
contribution is the use of an improved version of
topic models, namely neural topic models (Bianchi
et al., 2021; Grootendorst, 2022). Neural topic
models exploit the advantages of transformer based
pre-trained language models and considerably im-
prove the coherence of topics(Bianchi et al., 2021;
Grootendorst, 2022). A set representing the topic
about fruits is considered more coherent if it con-
tains words that represent fruits such as “apple,
pear, lemon, banana, kiwi”, not if it contains el-
ements that represent other objects as well such
as “apple, knife, lemon, banana, spoon.” (Bianchi
et al., 2021). Previous work has shown that adding
contextual information to neural topic models pro-
vides a significant increase in topic coherence,
which is missing in Bag-of-Words representations
(Bianchi et al., 2021; Grootendorst, 2022). Incor-
poration of contextualized representations can thus
improve a topic model’s performance. By using im-
proved topic models, we hope to improve analyses
of context shifts of words uses.

In this work, we exploit a particular version of
neural topic models, namely BERTopic (Grooten-
dorst, 2022), which includes three ingredients: (1)
a specific version of pre-trained neural language
model BERT (Devlin et al. (2019)) to obtain con-
textualised representations, (2) additional semantic
clustering of these representations, and (3) calcula-
tion of topic words on the basis of c-TF-IDF, which
we define in §2.5 and in the Appendix B. Despite
other existent neural Topic Models such as com-
bined TM and Top2Vec(Bianchi et al., 2021; An-
gelov, 2020), we have chosen BERTopic, because
it is an appropriate method for modeling changes
in a corpus containing short messages as it contains
c-TF-IDF method (Ghosh et al., 2017; Wang and
Deng, 2017). This method is particularly useful for
analyzing corpora comprised of short documents
such as tweets.

We make the following contributions:

1. We present an approach of using neural topic
models to measure context shifts of words that
make use of state-of-the-art contextualised
word representations.

2. We use this approach on short documents,
namely tweets, from before and after COVID-
19 related lockdown in April 2020.

3. We provide a quantitative and a qualitative
analysis of context shifts by comparing the

use of COVID-related words per topic.

Overall, our study demonstrates the potential of
using neural topic models for analysing context
shifts of words that have preserved their lexical
meaning and are thus difficult to capture by a local
analysis.

The paper is organized as follows. We first
start with the traditional frequency and n-gram ap-
proaches that show which words have increased in
relative frequency and which words have obtained
new linguistic neighbors. We then apply unsuper-
vised approaches to lexical semantic change that
make use of Word Embeddings. Finally, we ap-
ply unsupervised topic analysis to capture thematic
relations between words and context shifts. The
paper finishes with a discussion and evaluation of
these approaches.

2 Methodology

2.1 Data collection
We have used English tweets from the Social Media
platform Twitter divided into two periods: before
and after the lockdown in April 2020. The four
countries with the highest number of tweets in our
data set are: 1. United States, 2.Canada, 3. UK and
4. Australia. We have a similar number of tweets
per country in the two periods. Before the lock-
down, data is distributed in 3 years: from 2017 Oct
we have around 9k, from 2018 January around 12k
and the rest 59 k from 2019 June. The data after the
lockdown was collected from just after lockdown
2020 April, which includes around 76k. The num-
ber of tweets covered in both datasets were around
80K. After doing all the necessary pre-processing
steps, the number of unique words were around
90k in both datasets (94k before lockdown and 87k
after lockdown).

2.2 Relative frequency analysis
We filtered out the most frequent words (Top
words) that appeared before and after lockdown
and calculated the relative frequency as well as the
difference in relative frequency of these words. The
details of this approach can be found in the table A.
The theoretical prediction of the frequency method
is that if a word gets an additional meaning over
time, its relative frequency will also rise.

The list in table 1 contains most frequent words
from the two periods and their relative frequency.
We highlighted the words that do not appear before
the lockdown.
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Word rf before rf after rf diff
0 home 0.012 0.03 0.025
1 quarantine 0.0 0.02 0.0196
2 easter 0.00004 0.02 0.0193
3 covid 0.0 0.03 0.015
. . . . .
8 stay 0.0024 0.0126 0.010
. . . . .
15 coronavirus 0.0 0.008 0.008
. . . . .
18 safe 0.0009 0.0075 0.0066
19 stayhome 0.0 0.0065 0.0065
. . . . .
24 social 0.0015 0.0075 0.006
. . . . .
33 lockdown 0.0 0.0054 0.0054
. . . . .
42 distancing 0.0 0.0049 0.0049
. . . . .

Table 1: Top 50 partial list of words with relative fre-
quency differences. Words that do not appear before the
lockdown are in bold

In table 1, we see that the increase in relative
frequency of words before and after lockdown is in
many cases pandemic related as in lines 1,3,15,33
and 42. However, contextual information is miss-
ing to evaluate the increase of relative frequency of
other words and to detect a potential lexical change.

2.3 N-gram analysis
The n-gram analysis can capture lexical meaning
changes by differences in collocation neighbors
and differences in the likelihood of the bigram and
trigram (Manning and Schutze, 1999). We demon-
strate this point by using Bigram and Trigram Col-
location finder packages from nltk library (Bird
et al., 2009). We merged all the documents as a list
of words (around 1 Million words both in before
and after lockdown datasets) and reported the top 5
collocations of the words distance and mask based
on likelihood ratio. We see a change in colloca-
tions and likelihood ratio in Table 2 in two periods
of these words (Butler and Simon-Vandenbergen,
2021; Luo, 2021). However, a collocation anal-
ysis does not capture the global context of word
meanings. Take the word mask, for instance. Ta-
ble 2 shows that this word was more often used
as ‘face mask’ after the lockdown. However, what
also changed after the lockdown is that the word
mask is now used in a different pragmatic context

than before the lockdown, namely in the everyday
life practices around the world including western
countries, where wearing masks was not part of
everyday life practice before the lockdown. To cap-
ture this effect, a different approach is needed that
includes a more global contextual information of
word senses.

2.4 Word Embeddings

The representation of word meanings by Embed-
dings is nowadays a very standard approach (Giu-
lianelli et al., 2020; Devlin et al., 2019; Mikolov
et al., 2013). We follow this line of approach to
use word meaning representations by Word Em-
beddings to capture semantic changes in times on
our dataset. For creating Word Embeddings, we
have used Gensim word2vec package1. We also
used Google’s Word Embeddings built before the
lockdown as a second model for testing.

The analysis in table 3 shows that Word Embed-
dings for the word distance change over time as
the top words associated with this word are not
the same before and after the lockdown. Compare
hiking and film before the lockdown in column left
with distancing and practicing after the lockdown
in column right. The meaning of the textually re-
lated words after the lockdown are clearly more
pandemic related as evidenced by the word prac-
ticing (e.g. practicing social distancing). Note that
the size of the dataset as evidenced by Google’s
dataset from before the lockdown in the Middle
Column does not change the fact that the word
distance has different word representations from
before and after the lockdown. However, Word Em-
beddings do not capture the global context of word
meanings either, if we think about face masks and
their use in various contexts of our everyday life.
To capture contextual meaning shift, we use Topic
Modeling as an approximation to track pragmatic
meanings or semantic frames of new word senses
(Sagi et al., 2013).

2.5 Topic modeling approach

We applied BERTopic (Grootendorst, 2022) for
creating topics from the set of sentences. We used
our dataset without stop-words for this purpose.
BERTopic is a topic modeling technique that lever-
ages transformers and c-TF-IDF to create dense
clusters allowing for easily interpretable topics

1https://radimrehurek.com/gensim/auto_
examples/tutorials/run_word2vec.html
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Word Before (top 5) After (top 5)

distance

(walking, distance), 36.75
(distance, summerofyes), 22.08
(mincing, distance), 22.08
(twxn__, distance, 22.08)
(long, distance), 18.45

(social, distance), 752.43
(safe, distance), 71.17
(distance, learning), 69.44
(distance, runner), 22.64
(distance, cruise), 21.41

mask

(eye,mask), 26.53
(blackface, mask), 22.19
(firespitter, mask), 22.19
(mask, colorsofbeauty, 22.19)
(mask, mermay), 22.19

(face, mask), 496.4
(yashicamm, mask), 244.43
(mask, covid), 107.83
(a, mask), 99.56
(covid, mask), 35.02

Table 2: N-gram analysis of 2 words: distance and mask

Before lockdown Google After lockdown
hiking, 0.92
film, 0.91
race, 0.91
competition, 0.91
views, 0.91
sweat, 0.91
riding, 0.91

distances, 0.75
Distance, 0.55
withing_striking, 0.541
SMA##_remained_##.##, 0.53
Distances, 0.51
visiting_http:www.newswire.cawebcast, 0.51
Chainsaws_hummed, 0.51

distancing, 0.94
practicing, 0.91
holi, 0.84
self, 0.81
practice, 0.81
distancin, 0.80
donation, 0.80

Table 3: Top most 7 word embedding comparison of word distance between before and after lockdown and Google
Word Embedding

whilst keeping important words in the topic de-
scriptions (Appendix B). The inverse document
part of classic TF-IDF measures how much infor-
mation a term provides to a document. However
in c-TF-IDF, the whole cluster is considered as
a document and hence the top 10 terms or topic
words become representative of the cluster. The
c-TF-IDF method can be used to scale better and
works even when topic reductions are used (Groo-
tendorst, 2022). The model produced 202 topics
from before lockdown dataset and 220 topics after
the lockdown dataset. A topic is represented by a
list of 10 Topic words. We define pragmatic con-
texts or semantic frames as topics and investigate
word distributions per topic to track word contexts.
We suggest two analyses of word distributions per
topic. The first analysis represents distributions
of words as topic words and the second analysis
represents distributions of words as tokens. By
looking at distributions of words as topic words in
the first analysis, we capture only frequent words
and their contexts or topics. The latter analysis
allows us also to capture contexts of less frequent
words. The differences in distributions in time will
inform us about context shifts of words.

2.5.1 Distribution of words as topic words per
topic

Table 4 represents words that are used as topic
words after the lockdown, but not before the lock-
down. We have already seen in the frequency Ta-
ble 1, which words appear only in the dataset after
the lockdown. However, looking at new words as
topic words provides us much more information.
Table 4 not only informs us about which words
became much more frequent, but also in which
contexts or topics these words occur. For instance,
the most frequent topic of the word lockdown is
related to the pandemic situation as evidenced by
words such as coronavirus, covid, virus (Topic 24)
and thus gives us insights about the cause of the
lockdown. Other less frequent topics with the word
lockdown inform us about where the lockdown oc-
curred (Topic 70) and what the consequences of
the lockdown are (Topic 135). The most frequent
topic with the word virus as a topic word is con-
nected to the lockdown (Topic 24). Less frequent
topics are associated with locations where the virus
occurred and their effects on social practices.The
words quarantine and stay both appear in Topic 5,
which is a topic about suggestions to stay home,
to cook and chill during the quarantine. The word
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Word Number of Topics Topic IDs
Before After After

mask 0 1(465) 18
quarantine 0 1(1427) 5
stay 0 4(954) 5,24,33,145
distance 0 1(353) 13
lockdown 0 3(262) 24,70,135
corona 0 3(560) 24,34,90
virus 0 3(85) 24,34,90

Table 4: Distribution of words as topic words per topic
before and after lockdown dataset. The number of
tweets is given in the brackets. Topic IDs refer to topics
from table 7

distance appears in Topic 13 about practicing so-
cial distancing in parks and by hiking. The word
mask appears in Topic 18, which represents pre-
ventive measures against virus infection such as
facemask, hand gloves. The word stay appears in
four different topics as a topic word, that are re-
lated to suggestions to stay home, stay safe and
stay healthy.

Note that some terms in Table 4 appear in the
same topics such as the word corona, virus and
some terms share common topics such as the words
stay, distance, corona, virus (Topic 24). This obser-
vation emphasizes the thematic relatedness of these
words with the COVID-outbreak. However, the fre-
quency of the words as topic words is not equally
distributed per topic as table 4 shows. The word
mask is more prominent in Topic 18, whereas quar-
antine and the word stay are more prominent in
Topic 5. This observation emphasizes the specific
contexts of use of these words and their specific
meanings.

2.5.2 Distribution of words as tokens per topic
The second analysis represents the distribution of
words as tokens and not as topic words per topic
(Table 5). It shows that words like mask, stay, dis-
tance changed their context in time by appearing
in a much wider range of topics after the lockdown
than before and that these topics cover many topics
of our everyday life experience. This means that
these words are used in conversations about drink-
ing beer with friends, music events, eating pizza,
having a haircut and other mundane topics. For
instance, the word mask appears in only 3 topics
as a token before the lockdown, namely in topics
about casino in Las Vegas, homosexual activism
(LGBTQ) and commercial discount (Topics 20,23

and 59 in Table 6). Since the lockdown, the word
mask appears in many more topics, namely in 33
different topics. The most salient topic, i.e. the
topic with the highest number of tweets, is the
topic about preventive measures against virus in-
fection (Topic 18) as already shown in Table 4. In
addition to this salient topic, mask appears in topics
about everyday life activities and events such as
tweets about Easter (bunny, eggs) in Topic 3, tweets
about food in Topic 4, tweets about photography
and selfies in Topic 22, Topic 41 about reposts of
tweets (Table 7). The number of tweets containing
the word mask in these topics representing every-
day life activities is much lower than in the salient
Topic 18 about preventive measures against virus
infection. However, it is considerably higher than
the number of tweets with the word mask before
the lockdown. The wider range of topics of the
word mask after the lockdown can be therefore con-
sidered as an indicator for a contextual change of
this word.

The most frequent collocations in (Table 5) show
that in both periods mask is used as face mask in
the most salient topics. Just by looking at collo-
cations, we do not know how face mask is used
before and after the lockdown. This emphasizes
our criticism of local analyses in §2.3. The topic
descriptions of the word mask adds contextual in-
formation about this word, which is why a topic
analysis is a better analysis. However, collocations
can also change with a topic change as (Table 5)
shows. For instance, the word stay is not only used
in different topics, but also in different collocations
before and after the lockdown. This said, context
shifts or topic shifts of words can correlate with
collocation shifts, but they do not need to. It is this
important observation that motivates the use of our
method.

To sum up, we have shown that a topic analysis
provides information about context shifts of word
uses and the change of thematic word relations in
time.

3 Conclusion

We have introduced a novel dataset that contains
lexical change triggered by the COVID-related out-
break. We have used this dataset to discuss differ-
ent analyses capable of capturing linguistic change,
namely the relative frequency analysis, the n-gram
analysis and lexical change captured by Word Em-
beddings. We have shown that these analyses miss
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Word Number of Topics 3 Top collocations of tweets in Topics
Before After Before After

mask 3 33
’face’,’mask’, 16.67 ’face’,’mask’, 379.94
’mask’,’look’, 12.56 ’wear’,’mask’,118.00

’wearing’, ’mask’, 98.31

quarantine 0 42
’quarantine’,’day’, 105.40
’quarantine’,’quarantinelife’,73.63
’quarantine’,’stayhome’, 58.57

stay 56 121
’stay’, ’tuned’, 256.21 ’stay’,’home’, 1085.74
’stay’, ’hydrated’,32.65 ’stay’, ’safe’, 1019.46
’stay’,’focused’, 22.22 ’stay’, ’tuned’, 371.55

distance 6 49
’walking’,’distance’, 41.62 ’social’,’distance’, 386.603
’mincing’,’distance’,19.78 ’distance’,’learning’,49.22
’twxn__’, ’distance’, 19.78 ’keeping’, ’distance’, 47.11

Table 5: Distribution of words as tokens before and after lockdown dataset. Top 3 collocations are calculated only
considering the tweets of the topics.

an important aspect of meaning change, namely
the pragmatic aspect. This meaning change rep-
resents a change of cultural or everyday practices
associated with words such as mask. We suggested
tracking the pragmatic change via Topic Modeling
by looking at the distribution of words per topic in
two different periods. We discovered that topics
capture the contextual meaning of a word by the
textual association with other words. Changes of
word distributions in topics can give us insights
about pragmatic meaning change of words.

Exploring context shift by neural topic mod-
els falls into the family of neural models used to
track and measure language change by contextual-
ized word representations (Giulianelli et al., 2020;
Del Tredici et al., 2019). In this sense, our contri-
bution is very much related to this work as all these
models have a similar architecture and capture the
meaning of words. However, we use neural con-
textualized embedding for an improved version of
topic modeling and use then topics as proxies for
word contexts. This method allows us to explore
more global relations between words by looking at
their relations to other words in the same document
or text. We admit that this is a very approximate ap-
proach of capturing the pragmatic aspect of words
with an unsupervised method. One important issue
of this approach is that it is very much dependent on
the data size and the size of each document or tweet,
which influence the quantity of topics and the topic
specification. Another important point is that it
does not capture the very many implicit discourse
relations between Topic words such as causal rela-

tions between the lockdown and the virus in Topic
24 in Table 7. One way to approach this issue is
to use unsupervised approaches of capturing dis-
course relations between Topic words of the same
topic (Liu and Lapata, 2018), which we reserve for
future work.
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A Creation of Top words

After some standard pre-processing, we created
Top words from the datasets, by the following
steps:

1. Took the list of sentences and removed stop-
words

2. Create a two dimensional vector for each
words and documents. For example if we
have 100 sentences and 100 unique words in
the whole set, the resulting dimension will
be (100*100). The package was used from
sklearn: CountVectorizer.

3. Extracted and saved the following parameters
for each word in the dataset.

(a) Total found (total_occur): The number
of times in total the word appeared in the
whole dataset.

(b) Number of documents (number_docs):
The number how many documents the
word appeared.

(c) Relative frequency (rf):
rf = Total_found / Total Documents.

(d) Cumulative score (cs): A scoring sys-
tem to give emphasis on number of docu-
ments the word occurred by multiplying
it with relative frequency.
Cs = rf * number_docs

4. Sorted the words in the dataset based on cs
scores and reported Top 100
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B Topic Modeling

BERTopic (Grootendorst, 2022) is a topic modeling
technique that leverages transformers and c-TF-
IDF to create dense clusters allowing for easily
interpretable topics whilst keeping important words
in the topic descriptions.

B.1 Our implementation procedure:
We have used BERTopic for creating topics from
the set of sentences. We have used our dataset
without stop-words for this purpose.

The process is as below

1. Created topics using the model

2. Created dictionary of topic words.

3. Filtered out the topics which matches any of
the covid related words

B.2 Topic modeling Theory
Topic modeling technique LDA (Blei et al., 2003)
is well known but has some limitations like bag
of words, Fixed K (the number of topics is fixed
and must be known ahead), non hierarchical, etc.
BERTopic on the other hand does not pose these
problems.

The procedure how BERTopic works can be di-
vided in 3 steps:

1. Converting sentences into embeddings : The
first step is to convert the documents into em-
beddings. BERT is used to create the embed-
dings.

2. Clustering the embeddings based HDBScan
(McInnes et al., 2017) (a density based Un-
supervised clustering technique). This stage
comprises two parts: Dimensionality reduc-
tion and Clustering. UMAP (McInnes et al.,
2018) is used for Dimensionality reduction
and Hierarchical Density based clustering is
used for Clustering the embeddings.

3. cTF-IDF : Finally, class based TF-IDF (cTF-
IDF) is used to extract words that represent a
clustering.

Wt,c = tft,c · log(1 + A
tft

).

Where the term frequency models the fre-
quency of term t in a class c or in this instance.
Here,the class c is the collection of documents
concatenated into a single document for each
cluster. Then, the inverse document frequency

is replaced by the inverse class frequency to
measure how much information a term pro-
vides to a class. It is calculated by taking
the logarithm of the average number of words
per class A divided by the frequency of term
t across all classes. To output only positive
values, we add one to the division within the
logarithm (Grootendorst, 2022).
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Topic ID Topic words Number
of tweets

20 vegas, las, casino, lasvegas, vegastraffic, nv, nevada, hotel, clark, accident 280
23 pride, gay, lgbtq, pridemonth, month, lgbt, happy, gaypride, rainbow,

loveislove
262

59 code, discount, discountcode, fwcom, bestprice, fyi, orders, extra, get,
sexy

118

Table 6: Topics related to COVID words which appeared as a token from before lockdown dataset

Topic IDs Topic words Number
of tweets

3 easter, birthday, happy, bunny, family, happyeaster, everyone, eggs, sunday,
hope

2147

4 pizza, dinner, chicken, cake, garlic, cookies, sauce, pork, rice, fried 1394
5 quarantine, quarantinelife, quarantined, day, stayhome, life, quaran-

tinecooking, cooking, best, quarantineandchill
1241

13 distancing, social, park, hike, walk, trail, socialdistancing, distance, prac-
ticing, hiking

718

18 mask, masks, face, skin, wear, facemask, dermatology, wearing, hand,
gloves

628

22 photography, camera, photographer, selfie, portrait, photos, streetphotog-
raphy, pictures, model, photooftheday

581

24 coronavirus, covid, virus, pandemic, corona, lockdown, stayhome, update,
tests, outbreak

543

33 amp, safe, call, stay, got, back, keep, need, many, things 393
34 francisco, san, california, angeles, los, thoughts, coronavirus, diego, photo,

posted
373

41 repost, getrepost, reposted, makerepost, talkkellyzola, makeyourselfhappy,
onlinetradefair, makeyourselfproud, iamyourlovestory, thanks

285

47 run, miles, running, mile, ran, runner, marathon, ismoothrun, race, runners 206
70 lockdown, isolation, locked, portelizabeth, self, christchurch, lock, cuenca,

zealand, europa
149

90 stigma, fighting, ireland, stigmabase, hong, kong, china, coronavirus,
northern, health

106

135 notes, unreliable, lockeddown, testing, data, proverty, lockdown, rate,
heavily, adequate

59

145 staysafe, weloveourhealthcareworkers, stayhome, stayhealthy, greenwich,
stay, gratitude, village, staystrong, healthy

45

Table 7: Topic words related to COVID found in the dataset after the lockdown.
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Abstract

The use of word embeddings is an important
NLP technique for extracting meaningful con-
clusions from corpora of human text. One
important question that has been raised about
word embeddings is the degree of gender bias
learned from corpora. Bolukbasi et al. (2016)
proposed an important technique for quantify-
ing gender bias in word embeddings that, at its
heart, is lexically based and relies on sets of
highly gendered word pairs (e.g., mother/father
and madam/sir) and a list of professions words
(e.g., doctor and nurse). In this paper, we doc-
ument problems that arise with this method
to quantify gender bias in diachronic corpora.
Focusing on Arabic and Chinese corpora, in
particular, we document clear changes in pro-
fession words used over time and, somewhat
surprisingly, even changes in the simpler gen-
dered defining set word pairs. We further
document complications in languages such as
Arabic, where many words are highly polyse-
mous/homonymous, especially female profes-
sions words.

Keywords

word embedding, gender bias, NLP, Arabic, Chi-
nese, profession words, diachronic

TLR

We document hurdles in applying a popular gen-
der bias measurement technique using word em-
beddings of profession words and highly gendered
word pairs for diachronic corpora in Arabic and
Chinese.

1 Introduction

Natural Language Processing (NLP) plays a signif-
icant role in many powerful applications such as
speech recognition, text translation, and autocom-
plete and is at the heart of many critical automated
decision systems making crucial recommendations

about our future world. Word embedding systems
are widely used to represent text data as vectors
and enable NLP computation. Systems such as
Word2Vec (Mikolov et al., 2013), GloVe (Penning-
ton et al., 2014), and BERT (Devlin et al., 2018)
ingest large corpora of human text and can be used
to learn semantic and syntactic relationships be-
tween words.

At the same time, it has been demonstrated that
these systems learn a wide variety of societal bi-
ases embedded in human text including racial bias,
gender bias, and religious bias (Caliskan et al.,
2017; Abid et al., 2021). In a widely cited paper,
Bolukbasi et al. (2016) demonstrated that a system
trained with a corpora of Google News would com-
plete the word comparison “man is to computer
programmer as woman is to what?” with the re-
sponse “homemaker” suggesting an alarming level
of gender bias when used in tasks such as sorting
resumes for computer programming jobs. Chen
et al. (2021) extended these techniques beyond En-
glish to eight other languages (Chinese, Spanish,
Arabic, German, French, Farsi, Urdu, and Wolof)
and applied them to Wikipedia corpora in each of
these languages. They documented persistent gen-
der bias and lack of representation in the modern
NLP pipeline.

NLP research often uses large, modern datasets
like Google News and Wikipedia. Developers of
a wide variety of NLP-based applications begin
with large pre-trained models that are also based
on large corpora of human text (Bender et al.,
2021). These pre-trained models also largely re-
flect the speech/writing of modern English speak-
ers producing digital text. The speech/writing of
speakers of the more than 7,000 languages spoken
worldwide is often under-represented (Wali et al.,
2020). Similarly, historical speech/writing is often
under-represented despite the fact that historical
speech/writing is often considered foundational to
cultural identity. Investments in multilingual NLP
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and processing of diachronic corpora are essential
if we want our NLP-based automated decision mak-
ing systems to more widely reflect foundational
cultural norms and identity from around the world.

The inspiration for this paper was to re-examine
Bolukbasi et al.’s popular NLP-technique for quan-
tifying gender bias from the perspective of apply-
ing it to diachronic corpora in Arabic and Chinese.
Specifically, Bolukbasi et al.’s method begins with
identifying a set of profession words and a set of
highly gendered word pairs (defining set). In this
paper, we explore the degree to which these words
might change over time. We document ways in
which this method is fundamentally fragile for di-
achronic corpora because of the way these sets of
words would change over time.

In Section 2, for background, we elaborate on
Bolukbasi et al. and Chen et al.’s multilingual ex-
tensions and some other relevant related work. Sec-
tion 3 describes our experience with two different
diachronic Arabic corpora, especially the impact
on changes in profession set words over time. In
Section 4, we discuss changes in some defining set
words in Chinese using the Google Ngram Viewer.
We conclude and discuss future work in Section 5.

2 Background and Related Work

Bolukbasi et al. (2016) pioneered a method for
quantifying the amount of gender bias learned in
by word embedding systems and many researchers
have built on their techniques including Chen et al.
(2021) who observed substantial hurdles in extend-
ing the techniques beyond English. In this paper,
we build on both Bolukbasi et al. and Chen et al.’s
work to examine additional hurdles that would arise
when attempting to apply these techniques to di-
achronic corpora.

Bolukbasi et al.’s original method is based on
two sets of words. The first set (the defining set)
consists of 10 highly gendered word pairs (she-he,
daughter-son, her-his, mother-father, woman-man,
gal-guy, Mary-John, girl-boy, herself-himself, and
female-male) and the second (profession set) con-
sists of 327 profession words such as nurse, teacher,
writer, engineer, scientist, manager, driver, banker,
musician, artist, and chef. They used the differ-
ence between the defining set word pairs to define
a gendered vector space and then evaluated the re-
lationship of the profession words relative to this
gendered vector space. Ideally, profession words
would not reflect a strong gender bias. However,

in practice, they often do. According to such a
metric, the word doctor might be male biased or
the word nurse female biased based on how these
words are used in the corpora from which the word
embedding model was produced.

Bolukbasi et al. (2016) uses these two sets of
words to compute a gender bias metric for each
word and from there to express the gender bias of
a corpora. Specifically, each word is expressed
as a vector by Word2Vec and then the center of
the vectors for each defining set pair is calculated.
For example, to calculate the center of the defini-
tional pair woman/man, they average the vector
for “woman” with the vector for “man”. Then,
they calculate the distance of each word in the def-
initional pair from the center by subtracting the
center from each word in the pair (e.g., “woman”
- center). They then apply Principal Component
Analysis (PCA) to the matrix of these distances.
PCA is an approach that compresses multiple di-
mensions into fewer dimensions, ideally in a way
that the information within the original data is not
lost. Usually, the number of reduced dimensions is
1-3 as it allows for easier visualization of a dataset.
Bolukbasi et al. (2016) used the first eigenvalue
from the PCA matrix (i.e. the one that is larger
than the rest). Because the defining set pairs were
chosen to be highly gendered, they expected this
dimension to be related primarily to gender and
therefore called it the gender direction or the g di-
rection. Finally, the g direction is a vector, and
there is a vector representing each word. There-
fore, they used cosine similarity between the vector
for each word, w, and the g direction vector as the
measure of gender bias for that word. For a corpora
or other collection of words, one can average the
gender bias of words contained in the corpora as
a measure of gender bias in the corpora using the
equation of Bolukbasi et al. (2016) for the direct
gender bias of an embedding:

DirectBiasc = 1
|N |

∑
w∈N

| cos(w⃗, g)|c

where N is the given gender neutral words, and
c is a parameter that determines the strictness in
measuring gender bias.

Chen et al. (2021) extended the Bolukbasi et al.’
method to eight languages besides English - Chi-
nese, Spanish, Arabic, German, French, Farsi,
Urdu, and Wolof. In order to do so, they first
made modifications to the defining set to make
it more translatable across the 9 languages. For
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example, they dropped pairs like she-he, her-his,
gal-guy, Mary-John, herself-himself, and female-
male because of problems in translation for some
languages and adding pairs like queen-king, wife-
husband, and madam-sir. Second, they observed
that the Bolukbasi et al.’s method cannot be ap-
plied directly to languages such as Spanish, Arabic,
German, French, and Urdu that primarily use gram-
matically gendered nouns (e.g., escritor/escritora
in Spanish vs. writer in English). They solved this
problem using a weighted average of the number
of occurrences of each variant of the professional
word (male, female, or neutral) multiplied by the
gender bias score for that variant.

In this work, we build on both (Bolukbasi et al.,
2016; Chen et al., 2021) and focus on the unique
challenges that arise when applying these tech-
niques to diachronic corpora. Specifically, we
examined changes in both the profession set and
defining set over time in Arabic and Chinese. Cer-
tainly, professions have changed drastically over
that amount of time and so a method based on pro-
fession set words like Bolukbasi et al.’s method will
have substantial challenges. We explored this using
corpora including a database of Arabic poems span-
ning 11 eras from the Pre-Islamic period (before
610) to modern day. While we saw less change
over time in the usage of the simpler defining set
words than in the profession set words, we did ob-
serve some interesting changes in even the defining
set words over time, especially in Chinese. In the
process of this work, we also documented further
complications in languages such as Arabic, where
many words are highly polysemous/homonymous,
especially female professions words.

Wevers (2019) also used word embeddings to
examine gender bias over time. They used a col-
lection of Dutch Newspaper articles spanning over
four eras (1950-1990), training four embedding
models per newspaper, one per era, using the Gen-
sim implementation of Word2Vec to demonstrate
how word embeddings can be used to examine
historical language change. They observed clear
differences in gender bias and changes within and
between newspapers over time. Slight shifting of
bias was observed in some themes like shifting to-
wards female bias in themes related to sexuality
and leisure (mostly seen in newspapers with reli-
gious background). Shifting towards male bias in
themes related ‘money’, ‘grooming’, and negative
emotions, especially in newspapers with a liberal

background, was also observed.

Rudolph and Blei (2018) developed dynamic
embeddings building on exponential family em-
beddings to capture the language evolution or how
the meanings of words change over time. They
used three datasets of the U.S. Senate speeches
from 1858 to 2009, the history of computer science
ACM abstracts from 1951 to 2014, and machine
learning papers on the ArXiv from 2007 to 2015.
They demonstrated how words like Intelligence,
Iraq, computer, Bush, data change their meaning
over time. They observed that the dynamic em-
beddings provided a better fit than classical embed-
dings and captured interesting patterns about how
language changes. For example, a word’s meaning
can change (e.g., computer); its dominant mean-
ing can change (e.g., values); or its related subject
matter can change (e.g., Iraq).

Xu et al. (2019) demonstrated the characteriza-
tion of the semantic weights of subword units in
the composition of word meanings. They used a
subword-incorporated or a word embedding model
variant for the evaluation and revealed interesting
patterns change in multiple languages. Their train-
ing datasets consist of Wikimedia dumps for 6 Lan-
guages (up until July 2017) consisting of Chinese
and other Indo-European languages like English,
French, German, and Italian. The results revealed
major differences in the long-term temporal pat-
terns of semantic weights between Chinese and
five Indo-European languages. For example, in
Chinese, the weights on subword units (characters)
show a decreasing trend, i.e., individual characters
play less semantic roles in newer words than older
ones whereas the opposite trend was observed in
other languages. Therefore, Chinese words are
treated more as a whole semantic unit “syntheti-
cally”, while words in Indo-European languages
require more attention into the subword units “ana-
lytically”. These results provide evidence towards
word formations to the linguistic theories. For ex-
ample, the notion of “word” in Chinese is always
changing: Modern Chinese has multiple characters
as a whole semantic unit opposite to its older coun-
terpart. The semantic weight carried by a single
character is decreasing over time. This is strong
evidence in support of the claim that Chinese has
been evolving towards more detailed multisyllabic
words from concise and monosyllabic words.
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Time Periods Number of Books Vocab Size Token Size
Books Before Islam 3 16,460 39,255
Books Before 1900 2,820 2,075,505 566,366,883
Books After 1900 773 1,335,027 136,870,579
Duplicate Books 11 - -
Unknown Books 2,931 - -
All Shamela’s Books 6,527 2,520,372 703,276,717

Table 1: Measurements of Shamela Library dataset in terms of the number of books, vocabulary size (unique
words), and token size (all words) for each time period. We did not train a GloVe model on the unknown books
alone or the duplicate books and therefore are not reporting vocab size and token size.

3 Changes in Arabic Over Time

Building on both Bolukbasi et al. (2016) and Chen
et al. (2021), we consider how the sets of profession
words required by the Bolukbasi et al.’s method
would need to change over time in Arabic. We
begin by describing two diachronic datasets that
we used and how we processed these datasets, then
we describe the changes in the profession word
usage over time.

3.1 Datasets and Methodology

In this paper, we use two Arabic datasets: Shamela
Library ( �éÊÓA ��Ë@ �éJ. �JºÖÏ @) that is released by Shamela
Library Foundation (2012), and Arabic Poem Com-
prehensive Dataset (APCD) by (Yousef et al.,
2018). Shamela Library is a free project that col-
lects thousands of Islamic religious and other re-
lated sciences books. APCD is a collection of Ara-
bic poems spanning 11 eras, from the Pre-Islamic
(before 610) to the Modern age (1924 - Now).
Arabic NLP researchers commonly use these two
datasets to study Arabic classics.

We processed the Shamela Library dataset ver-
sion of 6,538 Arabic books (6,527 unique books af-
ter removing duplicates) in Microsoft Word format
(1997-2004).1 The books in this corpora were not
labeled according to the publication dates. Thus, to
study the language change over time in the Arabic
language, we further classified Shamela’s Arabic
books into three different time periods based ei-

1We contribute the scripts we wrote to process these
corpora and overcome several challenges with the data. For
example, one challenge we faced was correctly converting
back and forth between the Arabic Windows-1256 to the
Unicode (UTF-8) encoding schemes. The Arabic books were
written in an old version of Microsoft Word (1997-2004),
which caused encoding scheme conversion errors, resulting in
unreadable characters by native Arabic speakers or even NLP
tools. Scripts can be found here: https://github.com/
Clarkson-Accountability-Transparency/
gBiasRoadblocks

ther on their publication date or the authors’ date
of death when publication date was not available.
We identified books written before Islam or be-
fore 610 (only three books), books written before
1900 (2,820 books), and books written on or after
1900 (773 books). We were not able to identify
publication dates or the authors’ dates of death of
the remaining 2,931 books due to not having any;
Table 1 summarizes some key attributes of this
dataset.

We also processed the APCD, an Arabic poetry
dataset that is collected mainly from the Poetry En-
cyclopedia ( �éK
Qª ��Ë@ �é«ñ�ñÖÏ @) that is released by
Abu Dhabi Department of Culture and Tourism
(2016) and Diwan ( 	à@ñK
YË@) (Diwan, 2013). Un-
like Shamela, this dataset was already labeled by
era, making it a good choice for studying language
change over time. It has, before preprocessing,
approximately 1,831,770 poetic verses labeled by
their meter, the poet’s name, and the era they were
written in. One drawback of this corpora is that it
is relatively small. Table 2 summarizes some key
attributes of this dataset.

We then produced a total of 16 GloVe models
(Pennington et al., 2014) from the three time peri-
ods of Shamela, the 11 eras of APCD, all Shamela,
and all APCD.2 Each GloVe model is a context-
independent model that produces a one-word vector
(word embedding) for each word even if that word
appears in the context a few times unlike BERT
and ELMo (Devlin et al., 2018; Peters et al., 2018).
Each GloVe model provides vocabulary size, to-
ken size, and word vectors. It is important to note
that before training GloVe models, it was necessary
to preprocess the two datasets using Linux/Unix
command-line utilities like tr (for translating or

2Bolukbasi et al. (2016) used Word2Vec to generate word
embeddings, and in this paper, we chose GloVe instead be-
cause GloVe performs better than Word2Vec in the Arabic
language (Naili et al., 2017)
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Eras Poetic Verses Vocab Size Token Size
Pre-Islamic (before 610) 21,907 60,082 204,450
Islamic (610-661) 2,942 12,388 24,461
Umayyad (661–750) 63,776 119,533 610,563
Between Umayyad and Abbasid 24,077 65,220 221,058
Abbasid (750–1258) 234,494 252,339 2,156,195
Andalusian (756–1269) 111,011 151,503 1,024,653
Fatimid (909–1171) 124,129 172,460 1,171,842
Ayyubid (1174–1252) 112,350 152,165 1,061,503
Mamluk (1250–1517) 164,780 198,748 1,550,669
Ottoman (1517–1924) 159,576 186,795 1,492,132
Modern (1924 - Now) 778,723 462,478 7,146,135
All APCD’s eras 1,797,765 736,576 16,663,658

Table 2: Measurements of Arabic Poem Comprehensive Dataset in terms of number of poetic verses, vocabulary
size (unique words), and token size (all words) for each era.

deleting characters), sed (for filtering and trans-
forming text), iconv (for converting between en-
coding schemes), and awk (for pattern scanning
and language processing), along with CAMeL tools
(Obeid et al., 2020), an open-source python toolkit
for Arabic NLP, to dediacritize the Arabic diacriti-
cal marks and remove unnecessary characters.

3.2 Modern and Historical Professions

We began with a consideration of how the profes-
sion sets used in Bolukbasi et al. (2016) and Chen
et al. (2021) would need to change over time. First,
we identified 50 modern profession words that we
expect would simply not exist in the older time
periods/eras in Shamela and APCD datasets.3 For
example, the profession of electrician would not
have existed before the advent of electricity. Sec-
ond, we identified 50 historical profession words
that we think exist in older time periods/eras in
Shamela and APCD datasets but which are much
less common in modern times.

As in Chen et al. (2021), we further categorized
each word based on gender. In Arabic, most profes-
sion words have a male variant and a female variant
in which the spelling is changed slightly based on
gender, for example female pilot ( �èPA��J
£) and male

pilot (PA��J
£). Linguistically, many professions that
would be extremely uncommon for men or women
do have a male or female version of the word (e.g.,
it is rare for a woman to have the profession cham-

3We point to an expanded technical report with the full list
of used modern and historical profession words. The report
can be accessed here: https://lin-web.clarkson.
edu/~jmatthew/LChange2022/

berlain/head of staff (I. k.� A
�g), but there is a female

word for that profession). However, in some cases,
either the male or female version does not even
exist linguistically (e.g., there is no male word of
midwife ( �éÊK.� A

��̄) profession). There are also more

rare neutral words, like musician (PA ��®J
��ñÓ), that is
used for both genders with no spelling changes.

In the APCD dataset, we found, as expected,
that there are some modern professions that occur
noticeably only in the modern era of the Arabic
poems, but do not appear at all in the previous
historical eras, such as the male engineer (�Y� 	J

�ê �Ó)
that occurs 17 times, and the neutral profession of
an electrician (ù



K� AK. �Qê
�
») that occurs only four times

in the modern age, indicating that those modern
professions are increasingly appearing in the mod-
ern age of the Arabic poems and confirming that
Arabic native speakers (i.e., Arabs) still use the
poems as an effective way to document the Arabic
language changes over time.

On the other side of history, in the Shamela
dataset, we found that a few historical professions
frequently occur in the time periods before 1900
but not significantly after 1900. Some professions
reflect essential shifts in legality. For example,
one profession that is fortunately no longer legal

or acceptable is male slaver (�A
��	m�
�	'). Fortunately,

the male slaver profession appears much less often
(only 12 times) in the time period after 1900, while
it appears unpleasantly 118 times before the 1900
time periods. As another example, male chamber-
lain/head of staff (I. k.� A

�g) appears 9,518 before the
1900 time periods, but only appears 914 times in
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Figure 1: a. A word cluster of chosen GloVe’s most sim-
ilar words of the female profession trader ( �é

�
Ëð� @

�Y��J �Ó) in
Shamela Library dataset in the time period before 1900,
demonstrating that its word cluster is including different
words with different meanings due to its homonymy.
b. A word cluster of chosen GloVe’s most similar words
of the female profession trader ( �é

�
Ëð� @

�Y��J �Ó) in Shamela Li-
brary dataset in the time period after 1900, illustrating
that a new related-trading activity word joining the pro-
fession word cluster, (trade/È �ð@ �Y��K)4

the time period after 1900, showing that this male
profession/position is on its way to extinction.

3.3 Polysemous/Homonymous Professions

The Arabic language is one of the most morpho-
logically rich languages, with a high level of or-
thographic ambiguity, causing native speakers to
use the optional diacritical marks to differentiate
between two words (Grosvald et al., 2019).5

We noticed in the Shamela Library dataset that
a few modern profession words change their con-
notations over time, and many profession words
have alternate meanings due to the Arabic’s ortho-
graphical ambiguity. We also found that this was
especially true of female profession words. For
example, the word ( �é �� ��P �Y�Ó) for female teacher also

means a school building ( �é �� �P �Y�Ó), another word

( �è �PA��J
 �£) for a female pilot also means an airplane

4English translations of the word clusters are automat-
ically generated using Google Translator API that is in-
cluded in the deep-translator Python model (https://
deep-translator.readthedocs.io).

5In our preprocessing, we removed the optional diacriti-
cal marks as is generally recommended for Arabic NLP as a
first step to reducing some data sparsity (Obeid et al., 2020).
Unfortunately, removing diacritical marks increases the ortho-
graphic ambiguity, but retaining them would lead to a high
degree of variance for the same word because the placement
of diacritical marks varies with the grammatical placement of
the word in a sentence. It is a difficult tradeoff for Arabic NLP
that other researchers are attempting to tackle with advanced
techniques, such as stemming and lemmatization (Kadri and
Nie, 2006; Mubarak, 2017).

( �è �PA��J
 �£). In all these cases, this complicates the use
of both word counts and word embeddings in track-
ing the relative uses of profession words over time.

One homonymous example is the female trader
( �é
�
Ëð� @

�Y��J �Ó) profession. The same word ( �é
�
Ë �ð@ �Y��J �Ó) also

means common, famous, familiar, or circulating
to describe a current news event. We see this al-
ternate meaning dominate the usage of the word,
complicating any attempt to study the prevalence
of females engaged in this profession. Interest-
ingly, we see evidence of change over time in the
usage of this word. To investigate the semantic
meaning of related words to the trading activity,
we studied GloVe’s most similar words (calculated
based on the cosine similarity between two word
vectors) for this profession word in two time peri-
ods of the Shamela Library dataset: before 1900
and after 1900. As shown in Figure 1a, before
1900, none of most similar words reflect the trad-
ing profession word ( �é

�
Ëð� @

�Y��J �Ó). However, in Figure
1b, after 1900, we see a word related to trading
activity (trade/È �ð@ �Y��K) appear in the most similar
words of GloVe model. Thus, the connotation of
the female trader ( �é

�
Ëð� @

�Y��J �Ó) profession is changing
over time to more often reflect the actual profession
of female trader ( �é

�
Ëð� @

�Y��J �Ó) and not just the alternate
meaning of current news events.

3.4 Illegal Professions

In the religion of Islam, some professions are for-
bidden, for example, all types of usury, and serving,
selling, or drinking alcohol. We examined a set of
illegal/religiously forbidden profession words in Is-
lam across the 11 ages of the Arabic poems, such as
male usurer (ú
G.� @

�Q �Ó), female usurer ( �éJ
K.� @ �Q
�Ó), male bar-

tender (ú

�̄
� A
��), and female bartender ( �é�J
�̄� A ��). Specif-

ically, we closely focused on the diachronic seman-
tic meaning change of the bartending profession
words in the parallel eras of the APCD dataset. In-
terestingly, we found that bartending profession
words in the early ages of the Arabic poems like
Pre-Islamic, Islamic, and Umayyad only point to
providing water to people but not serving wine even
though the wine does exist. Those bartending pro-
fession words are polysemous and could carry other
meanings like the male bartender (ú


�̄
� A
��) could have

a meaning of the phrase ‘my leg’ (ú

�̄
� A
��), while the

female bartender ( �é�J
�̄� A ��) could have as well the
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Figure 2: a. A word count of the occurrence of the male
bartender (ú


�̄
� A
��) across the 11 ages of the Arabic poems

in the APCD dataset, showing the related meanings of
the profession word like serving water, wine, or could
be entirely meaning something that entirely unrelated to
the profession word’s meaning of serving drinks.
b. A word count of the occurrence of the female bar-
tender ( �é�J
�̄� A ��) across the 11 ages of the Arabic poems in
the APCD dataset, showing the related meanings like
serving water, wine, or could be entirely meaning some-
thing that entirely unrelated to the profession word’s
meaning of serving drinks.

meaning of ‘a water creek or an aqueduct’ ( �é�J
�̄� A ��).

To thoroughly investigate the occurrence of
those profession words regarding their correlation
with water – the allowed/halal drink, and the wine
–– the forbidden/haram drink in Islam, we manu-
ally analyzed the Arabic poems of each age and
decided whether that word occurrence is a water-
related meaning, wine-related meaning, or other
unrelated meanings to both of the drinks. Figure
2a shows that the male bartender (ú


�̄
� A
��) profession

word started to appear in the Arabic poems as a
profession of serving alcohol generally, wine exclu-
sively, as a symbol of love, passion, and adoration
for women from the age of between Umayyad and
Abbasid until the Modern age.

One example of that is when the Ab-
basid Arabic poet, Abu Bakr Al-Sanobi
(ø
 QK. ñ

	J�Ë@ QºK. ñK.


@), said in his famous poem,

the Pole of Pleasure in the Descriptions

of Wines (PñÒ	mÌ'@ 	¬A�ð


@ ú


	̄ PðQå�Ë @ I. ¢
�̄):

“O bartender of wine, do not forget
us, O Goddess of Oud, spur singing

( A�	J 	ª� Ë @ ú

���æ �k X� ñ �ªË@

�é��K. P AK
ð − A 	J� 	���K B Q�Ò
�	mÌ'@ ú


�̄
� A
�� A�K




@)."

Another example of that in another age, the Ot-
toman age, is for the Arabic poet, Abdul Ghani Al-
Nabulsi (ú
æ�ÊK. A

	JË @ ú

	æ 	ªË @ YJ.«), said in this romantic

poem, Bartender O Bartender (ú

�̄ A� AK
 ú


�̄ A�): "Bar-

tender O bartender, Give me some of his remaining
wine (ú


�̄
� A
�J. Ë @ è�Q�Ô

�	g 	áÓ� ú

	æ�J

�®��@ − ú


�̄
� A
�� A�K
 ú


�̄
� A
��)

Similarly, in Figure 2b, the female bartender
( �é�J
�̄� A ��) started to appear as a profession of serv-
ing wine from the age of between Umayyad and
Abbasid until the Modern age as same as the
male bartender (ú


�̄
� A
��) profession word, except

they did not appear in the two ages of Ayyubid
and Ottoman. While the female and male bar-
tender ( �é�J
�̄� A �� ð ú


�̄
� A
��) surprisingly appeared in cor-

relation with wine in the Arabic poems despite
its religious forbiddance, both of the two pro-
fession words also refer to water-related words.
For example, the female bartender ( �é�J
�̄� A ��) refers
to the ‘water creek or aqueduct.’ One example
to show that is when the Modern Arabic poet,
Rashid Ayoub (H. ñK




@ YJ
 ��P), said in his poem: “I

sat in the meadow alone at the water creek, in
which the water echoed the sound of my melodies",��é�J
�̄� A ��

�Y 	J«� ø
 Y� g
�ð 	�� ð ��QË @ ú


	̄
�

��I�
�
Ê �g.

ú

	G� A
�mÌ'
�

@ �Hñ �� A�îD
	̄� Z A �ÜÏ @ �X ��X �Q�K


4 Changes in Chinese Over Time

Although our primary focus in this study has been
on Arabic, we found interesting evidence of change
over time in Chinese as well. Classical Chinese (be-
fore 1900) uses a vocabulary and grammar that dif-
fers significantly from modern Chinese. We were
surprised to find evidence not just of changes in
professions over time, but also changes in defining
set words. As we found in the diachronic corpora in
Arabic, we expected changes in profession words
over hundreds of years, but thought that the more
fundamental defining set words like woman/man,
girl/boy and madam/sir would not change substan-
tially.

In Chinese, the word ‘woman’ can be translated
in many ways, including “女子”, “女人”, and “妇
女”. The word “女子” was popularly used in an-
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Figure 3: A timeline of word frequencies of different
translations of word ’woman’: “女子”, “女人”, and “妇
女” that were found in multi-sources printed between
1500 and 2019 using Google Books Ngram Viewer.

cient times, but its usage has decreased in modern
writing. In Figure 3, we used Google Books Ngram
Viewer to chart the word frequencies of the differ-
ent translations of the word ’woman’: “女子”, “女
人”, and “妇女” found in sources printed between
1500 and 2019 in Google’s Books corpora in En-
glish, Chinese, French, German, Hebrew, Italian,
Russian, or Spanish (Karch, 2021). This shows us
that as languages evolve over time, defining sets,
like profession sets, may also have to evolve to mea-
sure gender bias using methods like the Bolukbasi
et al. (2016)’s method.

Besides using Google Books Ngram Viewer, we
also assembled a small collection of works that
might be considered “classics” in Chinese span-
ning the period 475 BC - 1992, for example 司
马迁 (Records of the Grand Historian) by Qian
Sima,萧红 (Tales of Hulan River) by Hong Xiao,
and论语 (The Analects). We found that roughly
half of the profession words used by Chen et al.
(2021) did not appear, and that also two of the
defining set words “boy” and “madam” used did
not appear. Interestingly, Google Books Ngram
Viewer showed that the word ‘madam’ was used
very frequently between 1905 and 1910, but our
small classics corpora did not include texts written
in that time period. Again, these results indicate
that as languages evolve over time, profession sets
and even defining set words would have to evolve
to measure gender bias.

5 Conclusion and Future Work

In order for NLP to reflect the rich multilingual,
multicultural, and historical heritage of human text,
it is essential that NLP techniques be extended be-
yond modern digital English text to multilingual
and diachronic corpora. In this paper, we have
explored the challenges of applying an important

technique for measuring the gender bias learned
by word embedding systems to diachronic corpora.
We also have shown how techniques like those pi-
oneered by Bolukbasi et al. (2016) and extended
by Chen et al. (2021) have fundamental limitations
when analyzing corpora spanning large periods of
time. We showed that their technique based on an-
alyzing the gender bias of profession words would
have difficulty because professions change drasti-
cally over hundreds of years. Interestingly, we also
documented changes in defining and profession
set words over time and also challenges with poly-
semous/homonymous profession words especially
female profession words in Arabic.

In this paper, we have focused mostly on iden-
tifying the problems with techniques applied suc-
cessfully to measure gender bias in modern corpora
like Google News or Wikipedia. In the future work,
we plan to focus more on modifying profession
sets and defining sets over time to overcome these
problems. Our results indicate that as languages
evolve over time, defining sets and profession sets
would have to evolve to measure gender bias.

In this study, we focused on Arabic and Chinese,
but we would like to extend our work to more lan-
guages. Adding an English corpora may be our
next step. Although we like to actively focus on
languages besides English, English can serve as an
important comparison point because so much of
the modern NLP tool chain has been optimized for
English. We may be able to study the impact of
changes in profession sets and defining sets over
time with fewer complicating factors. We would
also like to experiment with different advanced
Arabic NLP techniques like stemming and lemma-
tization (Kadri and Nie, 2006; Mubarak, 2017) and
see how applying such techniques could improve
the results and reduce Arabic’s orthographical am-
biguity or even other Arabic NLP-related current
issues like correcting spelling errors, especially in
Arabic dialects, where there are no official orthog-
raphy rules (Habash et al., 2018).
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Abstract
We present the first shared task on semantic
change discovery and detection in Spanish and
create the first dataset of Spanish words man-
ually annotated for semantic change using the
DURel framework (Schlechtweg et al., 2018).
The task is divided in two phases: 1) Graded
Change Discovery, and 2) Binary Change De-
tection. In addition to introducing a new lan-
guage the main novelty with respect to the pre-
vious tasks consists in predicting and evaluating
changes for all vocabulary words in the corpus.
Six teams participated in phase 1 and seven
teams in phase 2 of the shared task, and the
best system obtained a Spearman rank corre-
lation of 0.735 for phase 1 and an F1 score of
0.716 for phase 2. We describe the systems de-
veloped by the competing teams, highlighting
the techniques that were particularly useful and
discuss the limits of these approaches.

1 Introduction

Lexical Semantic Change Detection (LSCD) is the
task of detecting words which have changed their
meaning over time in a diachronic corpus of text
(Schlechtweg et al., 2020), usually an unsupervised
task. In recent years, several LSCD shared tasks
have been organized (Schlechtweg et al., 2020;
Basile et al., 2020; Kutuzov and Pivovarova, 2021).
These tasks have contributed to a better understand-
ing of LSCD, but have also had their shortcomings:
(i) they have used mainly small pre-selected sets of
target words creating an unrealistic evaluation sce-
nario for the application of computational models
in historical semantics and lexicography where re-
searchers typically aim to cover the full vocabulary
of a language (Kurtyigit et al., 2021), (ii) different
formalizations of the LSCD task have been pro-
posed including binary classification and ranking
tasks (Schlechtweg et al., 2018; Schlechtweg and
Schulte im Walde, 2020; Schlechtweg, 2022) and
these have been employed inconsistently, and (iii)
none of them have focused on Spanish, despite the

fact that there are more than 450 million native
speakers of this language.

We tackle these shortcomings by organizing a
shared task on Spanish diachronic data with a more
realistic evaluation scenario requiring participants
to provide Lexical Semantic Change (LSC) predic-
tions for the full corpus vocabulary (Discovery).
Additionally, we cover previous scenarios by ask-
ing participants to predict LSC only in the limited
sample of annotated target words (Detection). By
offering a range of additional optional tasks (de-
fined on the same annotated data) participants are
able to evaluate and compare models on various
formalizations of the LSCD task. In order to derive
gold LSC labels for target words, we annotate and
publish the largest existing data set of semantic
proximity judgments covering 100 words with ap-
proximately 62k judgments from 12 human native
speakers.1

2 Related Work

The detection of lexical semantic changes is of
great interest in research areas such as historical
semantics, lexicography, linguistics and NLP. For
a comprehensive review of the literature on the
area we refer the reader to the recent surveys (Tah-
masebi et al., 2021; Kutuzov et al., 2018; Hengchen
et al., 2021). In previous years several shared
tasks have been organized: SemEval-2020 Task
1 (Schlechtweg et al., 2020) for English, German,
Latin, and Swedish, DIACR-Ita for Italian (Basile
et al., 2020), and RuShiftEval for Russian (Kutuzov
and Pivovarova, 2021).2 All shared tasks applied
an evaluation setup where LSC was measured be-
tween pairs of time periods.

SemEval used a total of 156 target words for
all languages with no development/test split. Ap-

1The data set is available at https://zenodo.org/
record/6300104.

2There was also a student shared task on German data
(Ahmad et al., 2020).
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proximately half of these were drawn from ety-
mological dictionaries or research literature, while
the other half was drawn from the corpus vocabu-
laries by selecting lemmas with similar POS and
frequency as the first half of target words. Tar-
get word occurrences in sentences (usages) were
combined into pairs and these were annotated for
their semantic proximity (Schlechtweg et al., 2021).
Target words were excluded if they had a high
number of undecidable use pairs or were anno-
tated too sparsely. Sense clusters were inferred
from the annotation. From the clusters a binary
(sense loss/gain vs. none) and a graded (Jensen-
Shannon distance between cluster distributions)
change score were derived and used to evaluate
participants on a corresponding binary classifica-
tion and ranking task.

DIACR-Ita used a total of 18 target words with
no development/test split. All of these were drawn
from an etymological dictionary. Target word us-
ages were annotated with word sense definitions.
Words with a high number of OCR errors and an-
notator disagreements were excluded. From the an-
notation Binary Change scores similar to SemEval
were derived and used to evaluate participants on a
binary classification task.

RuShiftEval used a total of 111 target words
(all nouns) split into 12 for development and
99 for testing. These were selected in a similar
procedure to SemEval: approximately half of
these were drawn from etymological dictionaries,
research literature or “invented” by the authors,
while the other half was drawn from the corpus
vocabularies by selecting lemmas with similar
POS and frequency as the first half of target
words. Target word usages from different time
periods were combined into usage pairs and
annotated for semantic proximity. From these
the DURel COMPARE score (see Subsection 3.3
for more details) (Schlechtweg et al., 2018) was
derived, which can be seen as an approximation
of SemEval’s Graded Change score (Schlechtweg,
2022). Participants were evaluated in a ranking
task on the COMPARE scores.

As we can see, target words in previous shared tasks
have been strongly preselected and systems have
been evaluated on different tasks. They have also
yielded (seemingly) contradictory results: while
type-based model architectures have dominated

in SemEval and DIACR-Ita, token-based architec-
tures have dominated in RuShiftEval. In all tasks
clustering-based models have shown rather low per-
formance.

3 Task description

Our task was designed in two phases:

1. Graded Change Discovery, and

2. Binary Change Detection.

Note that discovery introduces additional difficul-
ties for models as compared to the more simple
semantic change detection, e.g. because a large
number of predictions is required and the target
words are not preselected, balanced or cleaned (cf.
Kurtyigit et al., 2021). Yet, discovery is an impor-
tant task, with applications such as lexicography
where dictionary makers aim to cover the full vo-
cabulary of a language.

3.1 Phase 1: Graded Change Discovery
Similar to Kurtyigit et al. (2021), we define the task
of Graded Change Discovery as follows:

Given a diachronic corpus pair C1 and C2,
rank the intersection of their (content-word)
vocabularies according to their degree of
change between C1 and C2.

The participants were asked to rank the set of con-
tent words in the lemma vocabulary intersection of
C1 and C2 according to their degree of semantic
change between C1 and C2 where a higher rank
means stronger change. The true degree of seman-
tic change of a target word w was given by the
Jensen-Shannon distance (Lin, 1991; Donoso and
Sanchez, 2017) between w’s word sense frequency
distributions in C1 and C2 (cf. Schlechtweg et al.,
2020). The two word sense frequency distributions
were estimated via human annotation of word us-
age samples for w from C1 and C2 (see Subsection
4.4). Participants’ predictions were not evaluated
on the full set of target words, as this would be
unfeasible to annotate, but on an (unpublished) ran-
dom sample of words from the full set of target
words. The predictions were scored against the
ground truth via Spearman’s rank-order correlation
coefficient (Bolboaca and Jäntschi, 2006).

3.2 Phase 2: Binary Change Detection
Similar to Schlechtweg et al. (2020), we define the
task of Binary Change Detection as follows:
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Given a target word w and two sets of its us-
ages U1 and U2, decide whether w lost or
gained senses from U1 to U2, or not.

The participants were asked to classify a pre-
selected set of content words into two classes, 0 for
no change and 1 for change. The true binary labels
of word w were inferred from w’s word sense fre-
quency distributions in C1 and C2 (see Subsection
3.1). Participants’ predictions were scored against
the ground truth with the following metrics: F1
(main metric), Precision, and Recall. A crucial
difference compared to Graded Change Discovery
was that the public target words corresponded ex-
actly to the hidden words on which we evaluated.
Also, we published the usages sampled for annota-
tion. Hence, participants could work with the exact
annotated data, which was not possible in the first
phase where participants could only work with the
full corpora (from which the usages for annotation
were sampled).

3.3 Optional tasks
Participants could submit predictions for several
optional tasks:

Graded Change Detection was defined similar
to Graded Discovery. The only difference was that
the public target words corresponded exactly to the
hidden words on which we evaluated. Participants
were scored with Spearman correlation.

Sense Gain Detection was similar to Binary
Change Detection. However, only words which
gained (not lost) senses receive label 1. Partici-
pants were scored with F1, Precision and Recall.

Sense Loss Detection was similar to Binary
Change Detection. However, only words which
lost (not gained) senses received label 1. Partici-
pants were scored with F1, Precision and Recall.

COMPARE asked participants to predict the
negated DURel COMPARE metric (Schlechtweg
et al., 2018). This metric is defined as the average
of human semantic proximity judgments of usage
pairs for w between C1 and C2.3 It can be seen
as an approximation of JSD (Graded Change)
(Schlechtweg, 2022). Participants were scored
with Spearman correlation.

3Contrary to the original metric we first take the median of
all annotator judgments for each usage pair and then average
these values. For details see: https://github.com/
Garrafao/WUGs.

Corpus Time period Tokens
Old corpus (C1) 1810–1906 ∼ 13M
Modern corpus (C2) 1994–2020 ∼ 22M

Table 1: Sizes of both corpora.

Participants’ submission files only needed to in-
clude predictions corresponding to the obligatory
tasks in order to get a valid submission. They did
not see the leaderboard while the evaluation phases
were running. Furthermore, participants only had
three valid submissions for each evaluation phase.4

4 Data

In this section, we describe the corpora, the selec-
tion process of target words, the sampling of usages
and their annotation. Moreover, we explain how
the target words were presented to the participants
considering the two phases of the shared task.

4.1 Corpora
We created two corpora covering disjoint time pe-
riods: 1810 to 1906 (old corpus, C1) and 1994
to 2020 (modern corpus, C2) (see Table 1). The
former was created using different sources freely
available from Project Gutenberg5 and the latter
using different sources available from the OPUS
project6 (Tiedemann, 2012). For the old corpus, all
the sources collected were concatenated. As for the
modern corpus, four datasets were used: Spanish
portion of TED2013, Spanish portion of News-
Commentary v16, Spanish portion of MultiUN and
Spanish version of Europarl corpus. TED2013 was
used in its entirety, while 50 snippets with 5000
lines each were extracted from the other datasets
by cutting the corpora into snippets of the men-
tioned size and randomly choosing 50 of them.

Both corpora were parsed using spaCy (Hon-
nibal et al., 2020).7 Each corpus contains four

4We decided not to include the binary subtasks in phase
1, as the usage samples were not published which meant that
participants needed to work with the full corpora instead of the
samples on which the gold scores were inferred. We assumed
that the sampling error between usages in the full corpora and
our samples is much larger for Binary Change than for Graded
Change (cf. Schlechtweg, 2022).

5https://www.gutenberg.org/browse/
languages/es

6https://opus.nlpl.eu/
7Find details issues in Appendix A.
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versions of the original dataset (raw, tokenized,
lemmatized and POS-tagged).

4.2 Target words
4.2.1 Phase 1 (Graded Discovery)
Public target words was a list of 4385 words
created in the following way: we first took the cor-
pus vocabulary intersection from the lemmatized
versions of both corpora. Then we removed words
below a minimum frequency threshold of 40 for the
old corpus and 73 for the modern corpus.8 Then we
removed all non-content words, i.e., we left only
nouns, verbs, adjectives and adverbs. The final
list of target words was published and participants
were required to submit results for all 4385 words
in the development and evaluation phase 1.

Hidden target words The large number of pub-
lic target words was crucial to our task. However,
it was not feasible to annotate all of them. Hence,
we only annotated a subset of the public target
words for semantic change. Participants’ predic-
tions for development and evaluation phase 1 were
evaluated only on this subset of target words, which
remained hidden from the participants. We selected
the hidden target words in the following way: Ini-
tially, a list of 15 changing words was selected
by scanning etymological dictionaries and consult-
ing with a linguistic specialist to obtain words for
changes from C1 to C2. Likewise, it was verified
that these words were in both corpora. Additionally,
a list of 85 words were randomly sampled from the
public target words. The 85 + 15 = 100 words
were annotated as described in Section 4.4. Then,
20 words were excluded based on inter-annotator
agreement.9 The remaining set of 80 target words
were split randomly into two groups, 20 words for
the development set and 60 for the evaluation set
(see Table 3). Uploaded submissions were scored
against these 20/60 annotated words during devel-
opment/evaluation phases.

4.2.2 Phase 2 (Binary Detection)
The target words corresponded to the 20/60 hidden
words from Phase 1 for development/evaluation.

840 was chosen by us for the old corpus and then we
calculated 73 for the new corpus to reflect the same proportion
of the frequency threshold to corpus size.

9We removed target words with agreements of less than
0.3 Krippendorf’s α and less than 0.3 on a version of Krippen-
dorf’s α where expected disagreements were calculated from
the full annotated data (instead of for each word separately).
The latter measure is less sensitive to skewed judgment distri-
butions for individual words.

x

4: Identical
3: Closely Related
2: Distantly Related
1: Unrelated

Table 2: DURel relatedness scale (Schlechtweg et al.,
2018).

There it was no distinction here between public
and hidden target words. Participants also got ac-
cess to the annotated usages (20+20 from each cor-
pus). Uploaded submissions were scored against
the 20/60 public annotated words.

4.3 Word usages
All occurrences of the target words per corpus were
extracted according to the lemma. Then, 20 usages
were randomly sampled per target word from each
corpus.

4.4 Annotation
We applied the SemEval procedure to annotate tar-
get word usages, as described in Schlechtweg et al.
(2020, 2021). Annotators were asked to judge the
semantic relatedness of pairs of word usages, such
as the two usages of servidor in (1) and (2), on the
scale in Table 2.

(1) Todo esto lo hago con mi iPhone; se va
derecho al servidor, allí se hace el trabajo de
archivo, clasificación y ensamble.
‘I do all this with my iPhone; it goes straight
to the server, there the work of archiving,
sorting and assembling is done.’

(2) Llamó a grandes voces a sus servidores, y
únicamente le contestó el eco en aquellas
inmensas soledades, y se arrancó los cabellos
y se mesó las barbas, presa de la más
espantosa desesperación.
‘He called out to his servants, and only the
echo in those immense solitudes answered
him, and he pulled out his hair and ruffled his
beard, prey to the most frightening
desperation.’

The annotated data of a word was represented in
a Word Usage Graph (WUG), where vertices rep-
resented word usages, and weights on edges repre-
sented the (median) semantic relatedness judgment
of a pair of usages such as (1) and (2). The final
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G, D = (23, 17) G1, D1 = (20, 0) G2, D1 = (3, 17)

Figure 1: Word Usage Graph servidor (left), subgraphs for old corpus G1 (middle) and for modern corpus G2

(right). The colors correspond to the clusters. black/gray lines indicate high/low edge weights.

WUGs were clustered with correlation clustering
(Bansal et al., 2004; Schlechtweg et al., 2020, 2021)
(see Figure 1, left) and split into two subgraphs G1

and G2 representing nodes from subcorpora C1

and C2 respectively (middle and right). Clusters
were then interpreted as word senses and changes
in clusters over time as lexical semantic change.10

In contrast to Schlechtweg et al., we used
the openly available DURel interface for anno-
tation and visualization.11 This also implied a
change in sampling procedure, as the system im-
plemented only random sampling of usage pairs
(without SemEval-style optimization, i.e., sampling
in rounds with connection of clusters). For each
target word we sampled |U1| = |U2| = 20 us-
ages (sentences) per subcorpus (C1, C2) and up-
loaded these to the DURel system, which pre-
sented usage pairs to annotators in randomized or-
der. We recruited twelve Spanish native speakers
(4 Chileans, 4 Colombians, 2 Cubans, 1 Spaniard
and 1 Venezuelan). All had university level educa-
tion, while seven had a background in linguistics
of which two had one in historical linguistics. We
monitored agreement between annotators during
the annotation process and discussed some strong
annotation disagreements with certain annotators.
This led to the exclusion of one annotator early
in the process who often completely inverted the
annotation scale (e.g. judged 1 while agreeing that
the two usages have identical meanings).

Similar to Schlechtweg et al. (2020), we ensured
the robustness of the obtained clusterings by con-
tinuing the annotation of a target word until all
clusters in its WUG were connected by at least one

10We used Schlechtweg et al. (2020, 2021)’s code
provided at https://www.ims.uni-stuttgart.de/
data/wugs.

11https://www.ims.uni-stuttgart.de/
data/durel-tool.

judgment.12 For 16 words the annotation had to be
stopped before this condition was met. We man-
ually inspected the unconnected clusters of some
words and concluded that missing connections did
not lead to clustering errors.

We finally labeled a target word as Binary
Change if it gained or lost a cluster over time.
For instance, servidor in Figure 1 was labeled
as change as it gained the orange cluster from
C1 to C2. Consequently, servidor was also la-
beled as gaining a sense; but not as losing a sense,
since the blue cluster persists. Graded Change was
defined as the Jensen-Shannon distance between
the normalized cluster frequency distributions D1

and D2 yielding a high value of 0.82 (ranges be-
tween 0.0 and 1.0) for servidor, as sense proba-
bilities changed drastically. The negated COM-
PARE score was derived by averaging over all
graph edges with nodes from different time periods
and negating this value, yielding a high score of
−1.97 (ranges between −4.0 and −1.0) for servi-
dor.13 Following Schlechtweg et al. (2020) we
used k and n as lower frequency thresholds for
the binary notions to avoid that small random fluc-
tuations in sense frequencies caused by sampling
variability or annotation error were misclassified as
change. As proposed in Schlechtweg and Schulte
im Walde (submitted) for comparability across sam-
ple sizes we set k = 1 ≤ 0.01 ∗ |Ui| ≤ 3 and
n = 3 ≤ 0.1 ∗ |Ui| ≤ 5, where |Ui| was the num-
ber of usages from the respective time period.14

12Note that this condition was more strict than Schlechtweg
et al. (2020)’s where only connection of multi-clusters (clus-
ters with more than one usage) was guaranteed. Their condi-
tion was always met in our data.

13Find a more detailed discussion of different change scores
in Schlechtweg et al. (2020) and Schlechtweg (2022).

14That is, k was always between 1 and 3. There are three
possible cases: k = 1 if 0.01 ∗ |Ui| ≤ 1, k = 0.01 ∗ |Ui| if
1 < 0.01 ∗ |Ui| < 3, k = 3 if 0.01 ∗ |Ui| ≥ 3. Similarly for
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This resulted in k = 1 and n = 3 for all target
words.

Find an overview over the final set of WUGs
in Table 3. We reached an inter-annotator agree-
ment of Krippendorff’s α = .53 and Spearman’s
ρ = .57 which was comparable to previous studies
(e.g. Schlechtweg et al., 2018; Rodina and Kutu-
zov, 2020; Kurtyigit et al., 2021; Baldissin et al.,
2022).15

5 Systems

We now summarize the baseline systems as well as
the systems and resources used by the participating
teams.

5.1 Baselines
For both phases we use five baselines:

baseline1 Skip-Gram with Negative Sampling
+ Orthogonal Procrustes + Cosine Distance
(SGNS+OP+CD) This approach learned vector rep-
resentations for each word (type-based) in two in-
put corpora with a shallow neural language model
(Mikolov et al., 2013a,b).16 These were then
aligned using Orthogonal Procrustes (Hamilton
et al., 2016). For phase 1, the method computed
Graded Change as the cosine distance between old
and modern vectors for all words in the vocabu-
lary. This same value was used in the COMPARE
subtask. In phase 2, binary predictions were com-
puted by setting a threshold to the cosine distances,
which was calculated as the sum between the mean
and the standard deviation (std) of all these dis-
tances (Kaiser et al., 2020b). All words with values
above the threshold were classified as change, and
values below were classified as no change. This
approach has shown high performance in several
previous studies and shared tasks (Schlechtweg
et al., 2019; Pömsl and Lyapin, 2020; Kaiser et al.,
2020b; Pražák et al., 2020).

baseline2 Normalized Log-Transformed Fre-
quency Difference (FD) For phase 1, this method
calculated the frequency of each target word in each
of the two corpora, normalized it by the logarithm

n.
15We provide WUGs as Python NetworkX graphs, de-

scriptive statistics, inferred clusterings, change values and
interactive visualizations for all target words and the respec-
tive code at https://www.ims.uni-stuttgart.de/
data/wugs (DWUG ES).

16As parameters we chose dim=100, window size=10,
epochs=5, number of negative samples=5, subsampling
threshold=0.001 (cf. Kaiser et al., 2020a).

of the total corpus frequency and then calculated
absolute differences between these values as a mea-
sure of change. We submitted these values for
the change graded and COMPARE subtasks. For
phase 2, the method applied the same thresholding
approach used in baseline1. For the sense loss sub-
task, it first verified that the target word presents
change using the value of the change binary sub-
task. Then, if the differences were negative, the
words were classified as loss = 1 and as loss = 0
otherwise. For sense gain the labeling is reversed.

baseline3 Grammatical profiles were generated
from tagged and parsed corpora (Kutuzov et al.,
2021). These profiles were essentially frequency
vectors of various morphological and syntactic fea-
tures (for example, case = Nominative, or syntax
role = subject) for a given word in a given his-
torical corpus. The cosine distance between the
profile vectors of the same word for the two peri-
ods was used as an estimate of graded semantic
change and COMPARE. Binary predictions were
generated from ordered lists of graded scores for all
target words by applying an offline change-point de-
tection algorithm based on dynamic programming.
The algorithm finds a point (a word) in an ordered
list of scores, where the scores become significantly
higher. This word and all words with score values
above it were assigned the class “changed”. This
baseline did not produce predictions for the sense
loss and sense gain subtasks.17

baseline4 Minority class This baseline produced
predictions by labeling each word with the minority
class label of the respective Binary Change score
(change binary, loss, gain). This is label 1 (change)
in all cases. It only applied to phase 2.

baseline5 Random baseline This baselines pro-
duced random predictions for all subtasks in both
phases. For phase 1, we generated random values
between 0 and 1 from a uniform distribution for
all hidden target words and computed Spearman
correlation with the gold scores. This process was
repeated 100 times and we reported the average
performance over all repetitions. For phase 2, we
used a parallel procedure generating random labels
∈ {0, 1} from a uniform distribution.18

17All results for baseline3 were computed and submitted
by Andrey Kutuzov using the code at https://github.
com/glnmario/semchange-profiling.

18Baseline3, baseline4 and baseline5 were added after the
shared task finished.
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Data set n N/V/A |U| AN JUD AV KRI SPR UNC LOSS LSCB LSCG

development 20 13/4/3 40 10 12k 40 .53 .59 0 .53 .55 .39
evaluation 60 30/14/16 40 12 38k 40 .58 .60 0 .45 .47 .37
discarded 20 8/6/6 40 12 12k 40 .27 .33 0 .52 .30 .18

full 100 51/24/25 40 12 62k 40 .53 .57 0 .48 .45 .34

Table 3: Overview target words. n = no. of target words, N/V/A = no. of nouns/verbs/adjectives+adverbs, |U |
= avg. no. of usages per word, AN = no. of annotators, JUD = total no. of judged usage pairs, AV = avg. no.
of judgments per usage pair, KRI = Krippendorff’s α, SPR = weighted mean of pairwise Spearman, UNC = avg.
no. of uncompared multi-cluster combinations, LOSS = avg. of normalized clustering loss * 10, LSCB/G = mean
binary/Graded Change score.

5.2 Participating systems
Below we present a summary of the methods de-
veloped by the participants:19

HSE (Kashleva et al., 2022) This team partici-
pated with two different methods. The first con-
sisted of fine-tuning BERT (Devlin et al., 2019) on
the lemmatized versions of the corpora in order to
extract embeddings of the target words separately
for each period, which are then clustered using
K-means. Graded Change was estimated as the
average cosine distance between all pairs of cluster
centroids in the first and second periods. In order
to estimate Binary Change, the Graded Change
scores were thresholded by clustering them into
two clusters.

The second method was based on grammatical
profiles (Kutuzov et al., 2021). The frequency of
morphological and syntactic categories for each
target word in both corpora (parsed with UdPipe,
Straka and Straková, 2017) were counted and used
as features in two time-specific vectors. Graded
Change was measured by the cosine distance be-
tween these vectors, while Binary Change was mea-
sured by thresholding the graded scores.

GlossReader (Rachinskiy and Arefyev, 2022)
This system fine-tuned the XLM-R multilingual
language model (Conneau et al., 2019) as part of
a gloss-based Word Sense Disambiguation (WSD)
system on a large English WSD dataset. It em-
ployed zero-shot cross-lingual transferability to
build contextualized embeddings for Spanish data.
The Graded Change score for each word was cal-
culated as the Average Pairwise (Manhattan) Dis-
tance (APD) between the embeddings for (non-

19The descriptions are based on the system description pa-
pers submitted by the participating teams, with the exception
of Rombek who did not provide a paper but gave us a brief
description by e-mail.

preprocessed) word usages in the old and new cor-
pus. Binary changes were estimated by threshold-
ing these scores. For the sense gain and sense loss
subtasks the same predictions were reused.

UAlberta (Teodorescu et al., 2022) This team
applied different methods to the two subtasks. For
Graded Change Discovery, they followed the de-
sign of CIRCE (Pömsl and Lyapin, 2020) and
computed distances based on both static (type-
based) and contextual (token-based) embeddings,
with their relative weights tuned on the devel-
opment set. For static embeddings, they used
SGNS+OP+Euclidean Distance on the lemmatized
versions of the corpora. For contextual embeddings,
the XLM-R model was trained on the combined
corpus (tokenized) to predict masked instances of
the target words and Graded Change was measured
using Euclidean APD. For Binary Change Detec-
tion, they framed the task as a WSD problem, cre-
ating sense frequency distributions for target words
in the old and modern corpus with an end-to-end
WSD system (Orlando et al., 2021). It was assumed
that the word semantics has changed if: (1) a sense
is observed in the modern corpus but not in the old
corpus (or vice versa), or (2) the relative change for
any sense exceeds a tuned threshold.

CoToHiLi (Sabina Uban et al., 2022) This team
proposed a type-based embedding model combined
with hand-crafted linguistic features. The system
computed several features for every target word
based on embedding distances between time pe-
riods and linguistic hand-crafted features, which
were then weighted into an ensemble model to pre-
dict the final score. First, the system obtained word
embeddings separately on the two corpora (tok-
enized) with the Continuos Bag-of-Words (CBOW)
model (Mikolov et al., 2013a,b), which were then
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aligned to obtain a common embedding space. The
alignment algorithms used were: supervised align-
ment using a seed word dictionary and a linear
mapping method, a semi-supervised algorithm and
unsupervised alignment based on adversarial train-
ing (Artetxe et al., 2016, 2017, 2018a,b). Finally,
cosine distance between embeddings of the same
word in different corpora was used as an indicator
of graded semantic change. For the binary task, the
system used thresholding the graded scores.

DeepMistake (Homskiy and Arefyev, 2022) This
team employed a Word-in-Context (WiC) model,
i.e., a model designed to determine if a particu-
lar word has the same meaning in two given con-
texts. In essence, they attempted to directly apply
a model trained on a related task to our problem.
The WiC model was initially trained by fine-tuning
the XLM-R language model on the Multilingual
and Cross-lingual Word-in-Context (MLC-WiC)
dataset (Martelli et al., 2021). Subsequently, it was
further fine-tuned on the provided annotations for
the development set in this shared task and on the
Spanish portion of the multi-language XL-WSD
dataset (Pasini et al., 2021). Graded Change was
measured similarly to APD by averaging same-
sense probabilities between embeddings for us-
ages (no preprocessing) from different time periods.
For the change binary subtask, the authors applied
thresholding to the Graded Change scores, for the
sense gain and sense loss subtasks the same predic-
tions were reused.

They also experimented with clustering by rep-
resenting word usages and their same-sense proba-
bilities in a weighted undirected graph, which was
then clustered with Correlation Clustering. Graded
Change was measured with JSD, while Binary
Change was measured with the Binary Change
score definition from Section 4.4.

BOS (Kudisov and Arefyev, 2022) The system
described by this team was based on generating
lexical substitutes that describe old and new senses
of a given word. These were generated using the
XLM-R masked language model. For polysemous
words, lexical substitutes depended on the mean-
ing expressed in a particular context. For each
target word, usages were sampled from both cor-
pora, lemmatized and used to generate lexical sub-
stitutes. Next, two sets of vectors were built for old
and new usages where each usage is represented
by a vector of the probabilities of its substitutes.

For Graded Change the Cosine APD between old
and new vectors was computed, while for Binary
Change a threshold was applied to this score. The
authors also proposed three different approaches
based on pairwise distances for the sense gain and
loss subtasks.

Rombek This system adapted ideas from the
Word Sense Induction (WSI) task. Lexical sub-
stitutes were generated in the same way as with the
BOS system (see above) and arranged in a matrix.
Agglomerative clustering was then applied to each
target word to obtain clusters with candidate senses.
JSD was applied between clusters to obtain Graded
Change estimates. Thresholding was applied to
produce binary predictions.20

5.3 Summary
Most systems were based on three main compo-
nents: (i) a semantic representation of words or
word usages as vectors, (ii) an aggregation method
over vectors, and (iii) a change measure. Type-
based systems usually employed an additional
alignment step over semantic representations. Also,
the preprocessing of data was crucial for the per-
formance of contextualized embeddings (Laicher
et al., 2021).

Preprocessing Some teams only used the tok-
enized version of the shared task dataset (CoTo-
HiLi, UAlberta), while other teams only used the
lemmatized version (UAlberta, BOS, HSE). One
team varied the preprocessings with systems (UAl-
berta): lemmatization for type-based embeddings
and tokenization, lemmatization and POS-tagging
for the WSD system. Two teams did not use any
sort of preprocessing (GlossReader, DeepMistake),
while two teams used substitution with dynamic
patterns (e.g. <mask> (y [target]), [target] (por
ejemplo <mask>)) for their lexical substitution
models (BOS, Rombek).

Semantic representations Most systems used
token-based contextualized embeddings such as
BERT (HSE) and XLM-R (DeepMistake, Gloss-
Reader, Rombek, UAlberta, BOS). Some teams
further fine-tuned these embeddings on Language
Modeling, WSD or WSI/WiC tasks. One team
(DeepMistake) fine-tuned on the semantic proxim-
ity judgments from the published development data.
Only three teams used type-based semantic rep-

20This team did not submit a paper to the shared task.
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resentations including SGNS (UAlberta), CBOW
(CoToHiLi) and Grammatical Profiling (HSE).

Vector aggregation Participating teams used dif-
ferent approaches to aggregate vectors into more
abstract semantic representations. A common strat-
egy was to model the COMPARE score by com-
puting Average Pairwise Distances (APD) between
vectors from different time periods (DeepMistake,
GlossReader, UAlberta, BOS). This strategy has
shown to perform well in various previous studies
and shared tasks (Kutuzov and Giulianelli, 2020;
Laicher et al., 2021; Kurtyigit et al., 2021; Arefyev
et al., 2021). Another strategy was to cluster the
vectors (HSE, Rombek, DeepMistake). Cluster-
ing algorithms used are: Agglomerative Clustering
(Rombek), K-means (HSE) and Correlation Clus-
tering (DeepMistake). One system used a WSD
system to assign cluster labels (UAlberta).

Change Measure For Graded Change most
teams using contextualized embeddings directly
relied on APD scores as described above. They
used different distance measures such as: Co-
sine (BOS), Euclidean (UAlberta) and Manhattan
(GlossReader) distances. One team averaged same-
sense probabilities (DeepMistake). The teams rely-
ing on clustering mostly used the JSD to measure
Graded Change (Rombek, DeepMistake). One
team instead used cosine distance between clus-
ter centroids (HSE). The teams relying on type-
based representations used either Cosine (CoTo-
HiLi, HSE) or Euclidean distance (UAlberta). For
Binary Change most teams relied on thresholding
the graded predictions (DeepMistake, GlossReader,
Rombek, HSE, CoToHiLi, BOS). This strategy has
shown high performance in several previous studies
and shared tasks (Schlechtweg et al., 2020; Kaiser
et al., 2020b; Kurtyigit et al., 2021). Two teams us-
ing a clustering approach measured Binary Change
by applying exactly the definition from the annota-
tion process (DeepMistake) or a similar definition
(UAlberta).

6 Results

The results shown in Tables 4, 5 and 6 correspond
to the best submissions per subtask.21

Graded Change Discovery As shown in Table
4, GlossReader and DeepMistake obtained first

21In the case of HSE who used two different systems, the
displayed results correspond to the token-based system.

and second place in the main task of evaluation
phase 1, while HSE came third.22 These were
the only teams that managed to outperform base-
line1 (SGNS+OP+CD) and baseline3 (Grammat-
ical Profiles). The three winning systems were
based on fine-tuned versions of contextualized em-
beddings with average vector aggregation (Gloss-
Reader, DeepMistake) or clustering (HSE). Inter-
estingly, the top two systems did not model the
JSD between cluster distributions (as done on the
annotation to derive gold scores), but instead model
the COMPARE score (with APD). We discuss this
observation further in Subsection 6.1.

COMPARE Discovery GlossReader and Deep-
Mistake also reached the first and second place on
the COMPARE task in evaluation phase 1. This is
not surprising, because they actually modeled the
COMPARE score with APD. Consequently, also
the correlation was considerably higher than with
Graded Change (e.g. ρ = 0.842 vs. 0.735). Base-
line1 took the third place.

Binary Change Detection For Phase 2 (Tables 5
and 6), again GlossReader performed best, this
time followed by UAlberta and Rombek. Interest-
ingly, with the exception of GlossReader the sys-
tems used in Phase 1 did not obtain a good perfor-
mance in Phase 2. However, participants managed
to outperform all baselines with the exception of
HSE not outperforming baseline4 (minority class).
Two out of the winning systems used threshold-
ing (GlossReader, Rombek), i.e., they modeled the
COMPARE score or the JSD and then thresholded
these scores to obtain Binary Change predictions.
From these teams only UAlberta inferred sense
clusters. Hence, here we saw again what we saw
for phase 1: the top-performing teams were often
not modeling the annotation procedure.

Sense Gain/Loss Detection The top perfor-
mance for sense gain (F1 = 0.591) was clearly
lower than for Binary Change, while for loss the
top performance (F1 = 0.688) approaches the one
for Binary Change. The best results for sense gain
were obtained by DeepMistake, followed by BOS
and GlossReader. In the sense loss subtask, Gloss-
Reader obtained the best performance, followed
by Rombek and BOS. GlossReader and DeepMis-
take submitted the same results to both subtasks as
for Binary Change Detection implicitly assuming

22Since not not all users reported a team name on Codalab,
some leaderboard entries are filled with usernames.
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Task Change graded COMPARE
# Team name SPR SPR
1 GlossReader 0.735 (1) 0.842 (1)
2 DeepMistake 0.702 (2) 0.829 (2)
3 HSE 0.553 (3) 0.558 (4)
4 baseline1 0.543 (4) 0.561 (3)
5 baseline3 0.508 (5) 0.459 (5)
6 Rombek 0.497 (6) 0.456 (6)
7 CoToHiLi 0.282 (7) –
8 baseline2 0.092 (8) 0.088 (7)
9 baseline5 0.064 (9) -0.072 (8)
10 BOS -0.125 (10) -0.129 (9)

Table 4: Summary of system performance in phase 1. Teams are ranked according to SPR score for the Graded
Change subtask in decreasing order. The values corresponding to the three best systems are highlighted in bold type.

Task Change binary Change graded COMPARE
# Team name F1 P R SPR SPR
1 GlossReader 0.716 (1) 0.615 (3) 0.857 (3) 0.735 (1) 0.842 (1)
2 UAlberta 0.709 (2) 0.549 (7) 1.000 (1) – –
3 Rombek 0.687 (3) 0.590 (4) 0.821 (4) 0.535 (5) 0.546 (5)
4 BOS 0.658 (4) 0.510 (8) 0.929 (2) 0.209 (8) 0.163 (7)
5 DeepMistake 0.655 (5) 0.633 (2) 0.679 (6) 0.676 (2) 0.821 (2)
6 CoToHiLi 0.636 (6) 0.553 (6) 0.750 (5) 0.282 (7) –
7 baseline4 0.636 (6) 0.467 (11) 1.0 (1) – –
8 HSE 0.586 (7) 0.567 (5) 0.607 (7) 0.553 (3) 0.558 (4)
9 baseline3 0.548 (8) 0.500 (9) 0.607 (7) 0.373 (6) 0.423 (6)

10 baseline1 0.537 (9) 0.846 (1) 0.393 (9) 0.543 (4) 0.561 (3)
11 baseline5 0.508 (10) 0.484 (10) 0.536 (8) 0.064 (10) -0.072 (9)
12 baseline2 0.222 (11) 0.500 (9) 0.143 (10) 0.092 (9) 0.088 (8)

Table 5: Summary of the results of Phase 2 for substasks Graded Change, COMPARE and Binary Change. Teams
are ranked according to F1 score for subtask Change binary in decreasing order. The values corresponding to the
three best systems are highlighted in bold type.

that gain and loss always occur together. In this
way, they mostly outperformed Rombek and BOS
who tried a more principled approach.

Graded Change/COMPARE Detection The top
performance for these tasks was the same in evalu-
ation phase 1 and 2 (ρ = 0.735 and 0.842). Some
teams had the same results in both phases (Gloss-
Reader, HSE, CoToHiLi) and thus likely submitted
the same predictions. Two teams improved their
results (Rombek, BOS), while one team had lower
results (DeepMistake). We are unsure about the
impact of the published target words and their us-
ages on these results, as teams did not consistently
report whether they used this information in phase
2.

6.1 Discussion
The Graded Change Discovery subtask was solved
with a rather high performance by the winning team
(ρ = 0.735). This is comparable to the top perfor-
mance in SemEval (ρ = 0.725 for DE) obtained
with type-based embeddings. The COMPARE Dis-
covery subtask was solved with even higher per-
formance (ρ = 0.842). This is comparable to the
top performance in RuShiftEval (ρ = 0.822). How-
ever, the results in our shared task were obtained un-
der harder conditions, i.e., for a large number of un-
cleaned target words (Discovery).23 This suggests
that, as far as Graded Change is concerned, LSCD

23We assume that the performance of participating systems
obtained on the hidden target words generalizes roughly to the
full set of public target words as the sample was taken largely
random.
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Task Sense gain Sense loss
# Team name F1 P R F1 P R
1 GlossReader 0.511 (3) 0.333 (5) 0.929 (2) 0.688 (1) 0.564 (2) 0.880 (2)
2 DeepMistake 0.591 (1) 0.433 (1) 0.929 (2) 0.582 (5) 0.533 (3) 0.640 (4)
3 HSE 0.250 (8) 0.192 (9) 0.357 (5) 0.364 (7) 0.421 (5) 0.320 (5)
4 baseline1 – – – – – –
5 Rombek 0.50 (4) 0.409 (2) 0.643 (4) 0.681 (2) 0.727 (1) 0.640 (4)
6 baseline3 – – – – – –
7 BOS 0.520 (2) 0.361 (4) 0.929 (2) 0.610 (3) 0.529 (4) 0.720 (3)
8 baseline2 0.211 (9) 0.400 (3) 0.143 (6) 0 (8) 0 (8) 0 (7)
9 UAlberta 0 (10) 0 (10) 0 (7) 0 (8) 0 (8) 0 (7)
10 CoToHiLi 0.462 (5) 0.316 (6) 0.857 (3) 0 (8) 0 (8) 0 (7)
11 baseline4 0.378 (6) 0.23 (8) 1.0 (1) 0.588 (4) 0.416 (6) 1.0 (1)
12 baseline5 0.333 (7) 0.313 (7) 0.357 (5) 0.367 (6) 0.375 (7) 0.36 (6)

Table 6: Summary of the results of Phase 2 for subtasks Sense loss and Sense gain. The values corresponding to the
three best systems are highlighted in bold type.

systems are applicable to solve real-world prob-
lems and may be useful in historical semantics or
lexicography. However, the more relevant task for
these fields is Binary Change Detection/Discovery
(Schlechtweg and Schulte im Walde, 2020). The
results for Binary Change Detection were lower
(F1 = 0.716), but still clearly higher than the best
baseline (0.636). Results in SemEval were mixed,
but mostly not higher than F1 = 0.7 (DE), while
results in DIACR-Ita were high with an accuracy of
0.94, which was, however, obtained with a different
metric and on a very small and strongly preselected
set of target words. A future challenge will thus be
to improve performance on the binary task.

Our shared task was clearly dominated by token-
based systems. Out of seven participants only two
used a (standalone) type-based system which also
performed much worse than the winning teams
(CoToHiLi, HSE).24 Also, our type-based base-
line1 was clearly outperformed by a number of
token-based systems (three in phase 1 and six in
phase 2). This confirms the tendency observed
in RuShiftEval where token-based systems outper-
formed type-based ones on LSCD. Before that, in
SemEval and DIACR-Ita the type-based systems
had dominated. Potential reasons for this switch are
the understanding of biases in contextualized em-
beddings (Laicher et al., 2021), their optimization
through fine-tuning (Arefyev et al., 2021; Arefyev
and Bykov, 2021) and the optimization of vector ag-
gregation methods (Kutuzov and Giulianelli, 2020;

24The result reported by the HSE team in the leaderboard
corresponds to the first method described in Section 5.2.

Laicher et al., 2021; Arefyev et al., 2021).
In our task, we saw clustering methods amongst

the best-performing systems (HSE, UAlberta) for
the first time. This is an important development,
because the current top-performing system (Gloss-
Reader), as well as many other systems not relying
on clustering, did not model the target word anno-
tation procedure (cf. Subsection 4.4). Instead, it ex-
ploited correlations between the COMPARE score
and JSD as well as Binary Change. These scores
are known to correlate strongly in current LSCD
datasets (Schlechtweg, 2022), including ours. The
correlation between gold (negated) COMPARE and
JSD scores in our dataset is 0.92, while it is 0.69
for gold (negated) COMPARE and Binary Change.
This means that modeling the COMPARE score
is a good predictor for Graded as well as Binary
Change. However, this also means that, the current
best-performing systems have a clear upper bound
on their potential to solve LSCD tasks (where this
upper bound is higher for Graded than for Binary
Change). Hence, if we want to break through this
upper bound in the future, we need to develop or
improve other system types possibly relying on
clustering to model the annotation procedure.25

In order to see how far the current approach of
thresholding COMPARE/JSD/graded scores car-
ries, we compared performance of the top three
systems in evaluation phase 1 across binarization
thresholds in Figure 2. As we can see, the three

25Homskiy and Arefyev (2022) had promising results with
applying the clustering framework used in the annotated data
and semantic proximity graphs derived from fine-tuned con-
textualized embeddings.
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Figure 2: F1 scores over binarization thresholds based on percentiles on submitted Graded Change predictions for
top four teams in evaluation phase 1.

systems had a similar maximum performance of
roughly F1 = 0.72 around a binarization thresh-
old of 50− 70 %.26 At 100 % they all converged
to the minority class baseline (all target words la-
beled as 1). The upper bound on this approach was
given by the maximum performance of the gold
JSD (graded_gold) and the gold COMPARE score
(compare_gold). These upper bounds were 0.88
and 0.81 respectively. This means that perfectly
modeling the COMPARE or even the JSD score
can reach high but never perfect performance on
Binary Change.

7 Conclusion

We conducted the first shared task on semantic
change discovery and detection in Spanish. We
manually annotated 100 Spanish words for seman-
tic change between two corpora, an old one cov-
ering the period between 1810 and 1906, and a
modern one covering the years between 1994 and
2020. The discovery part of our task imposed sev-
eral computational challenges for participants, as it
required calculating semantic change scores for all
words in the vocabulary.

We received predictions from six teams in phase
26Interestingly, HSE here obtained maximum performance

amongst all systems (0.73), much higher than their submission
in evaluation phase 2. A similar observation holds for our
baseline1. This shows how crucial threshold selection is in
this approach.

1 and seven teams in phase 2. Participants ap-
plied systems using static and contextualized word
embeddings in combination with various fine-
tuning procedures, vector aggregation methods and
change measures. Graded Change Discovery was
solved with high performance while Binary Change
Detection still remains far from being solved. The
most successful method winning both main tasks
is a system fine-tuning contextualized multilin-
gual XML-R embeddings on WSD data, aggregat-
ing vectors into cross-corpus pairs and measuring
change as the average of their distances, or a bi-
narization of these values. However, we showed
that this approach has a clear upper bound which
will not allow to solve the tasks completely reliably
in the future. Another interesting result from our
task was that clustering approaches are amongst
the winning teams for the first time.

We hope that this shared task will help pave the
way for future research in the discovery and de-
tection of semantic lexical changes for the Spanish
language, and that our data can be used in the future
for the proposal of novel ideas and techniques.
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Appendix

A Lemmatization

Manual inspection showed that spaCy sometimes
yielded erroneous lemmatization. This happened
more frequently for sentences in the old corpus and
for tokens at the beginning of sentences as shown
in the example below:

Example:
"Decidióse ésta por Teresa la expósita, y así se vio a la
vagamunda tomar bajo su amparo a la pobre desheredada
como ella."
Lemmatization:
Decidióse este por Teresa el expósita , y así él ver a el
vagamunda tomar bajo su amparo a el pobre desheredado
como él .

As can be seen, the lemma of the word Decidióse
was not found, nor was the word converted to lower-
case. SpaCy version 3.1.1 with es_core_news_md
(3.1.0) was used.

B Target indices of annotated usages

In the first version of the extracted word usages
which were uploaded to the DURel interface for
annotation there were frequent errors for the target
word indices. As a result, the wrong target words
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were marked in these usages. However, annota-
tors were instructed to search for the correct target
words and to judge these instead. We corrected the
indices for the data provided to participants during
the shared task. However, we later noticed that
some indices included punctuation immediately
following the target word as shown below:

Example
lemma: sexo
context: 136. Los apellidos de familia no varían de termi-
nación para los diferentes sexos; y así se dice «don Pablo
Herrera», «doña Juana Hurtado», «doña Isabel Donoso».
137 (b).
indexes_target_token: 75:81

After the shared task we uploaded a data version
with corrected indices.

164



Proceedings of the 3rd Workshop on Computational Approaches to Historical Language Change, pages 165 - 172
May 26-27, 2022 ©2022 Association for Computational Linguistics

BOS at LSCDiscovery: Lexical Substitution for Interpretable Lexical
Semantic Change Detection

Artem Kudisov∇ Nikolay Arefyev♢,∇,△

∇Lomonosov Moscow State University / Moscow, Russia
△National Research University Higher School of Economics / Moscow, Russia

♢Samsung Research Center Russia / Moscow, Russia
dark.artbeam@gmail.com, nick.arefyev@gmail.com

Abstract

We propose a solution for the LSCDiscovery
shared task on Lexical Semantic Change De-
tection in Spanish. Our approach is based on
generating lexical substitutes that describe old
and new senses of a given word. This approach
achieves the second best result in sense loss
and sense gain detection subtasks. By observ-
ing those substitutes that are specific for only
one time period, one can understand which
senses were obtained or lost. This allows pro-
viding more detailed information about seman-
tic change to the user and makes our method
interpretable.

1 Introduction

LSCDiscovery is a shared task on Lexical Semantic
Change Detection (LSCD) in Spanish (D. Zamora-
Reina et al., 2022). The participants were pro-
vided with two corpora in Spanish, correspond-
ing to 1810-1906 and 1994-2020 respectively, and
were asked to solve two subtasks. In the first sub-
task the participants were asked to rank the given
list of about 4K words according to the degree of
their semantic change. The second subtask required
to determine for each given word if its senses oc-
curring in two corpora are different (and optionally,
if it has acquired some new senses, and if it has lost
any old ones).

2 Background

Our approach is based on the bag-of-substitutes
(BOS) representation of word meaning in con-
text (Başkaya et al., 2013; Arefyev and Zhikov,
2020). Lexical substitutes are those words that can
replace a given target word in a given text fragment
without making this fragment ungrammatical or
substantially changing the meaning of the target
word. For ambiguous words, lexical substitutes
depend on their meaning expressed in a particular
context. For instance, some reasonable substitutes
for the word fly in the sentence A noisy fly sat on

my shoulder are bug, beetle, butterfly, firefly, insect,
etc. But in the sentence We will fly to London they
are different: walk, run, bike, etc.

In order to generate lexical substitutes, we em-
ploy the XLM-R1 masked language model (Con-
neau et al., 2020). This model was pre-trained on
2.5T of data in 100 languages as a masked language
model, i.e. it received text fragments with some
tokens hidden (replaced with the special <mask>
token) and was trained to guess those hidden to-
kens by their context. This kind of pre-training
is partially aligned with the lexical substitution
task because the model can predict words compati-
ble with the given context. However, there are no
guarantees that these words are similar or related
by meaning to the target word. Suitable types of
lexical substitutes (e.g., synonyms, hypernyms, co-
hyponyms) and suitable degree of their similarity
to the target word depend on the target task and
can be controlled with various techniques explored
in (Arefyev et al., 2020). In our solution, we em-
ploy the dynamic patterns proposed by Amrami
and Goldberg (2018) and explained in 3.2.

Unlike the traditional bag-of-words representa-
tion, which contains those words that occur in a
text fragment, the BOS representation is built from
lexical substitutes. Thus, it better represents the
meaning of some specific target word in a given
text fragment rather than the whole fragment in gen-
eral. Clustering of the BOS vectors is a successful
approach to solve the Word Sense Induction (WSI)
task, i.e. to discover senses of ambiguous words.
This approach was explored in many papers, includ-
ing (Başkaya et al., 2013; Amrami and Goldberg,
2018, 2019; Arefyev et al., 2019, 2020) among
others. Also, a substitution-based WSI model was
employed to solve the LSCD task in (Arefyev and
Zhikov, 2020; Arefyev and Bykov, 2021). How-
ever, in our solution we avoid solving the more

1The pre-trained xlmr.large from fairseq library is used
without any fine-tuning.
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<mask>-(y-T) <mask><mask>-(y-T) <mask>-(incluso-T)
Substitute Prob. Substitute Prob. Substitute Prob.
documentos (documents) 0.367 archivos (records) 0.016 documentos (documents) 0.391
libros (books) 0.160 escritos (letters) 0.012 libros (books) 0.082
datos (data) 0.052 informes (reports) 0.010 datos (data) 0.039

actos (acts) 0.036 dos documentos (two
documents) 0.010 textos (texts) 0.037

textos (texts) 0.032 expedientes (records) 0.008 contratos (contracts) 0.014

Table 1: For the word actas (reports) in ayer recibimos dos actas literales (yesterday we received two verbatim
reports), 5 most probable substitutes with 1 or 2 subwords are shown. The patterns with y (and) and incluso
(including).

general and probably more difficult WSI task that
requires clustering. Instead, we propose methods
to directly obtain LSCD predictions from the BOS
vectors.

3 Model description

For each target word we sample some examples of
its usage from both corpora and generate lexical
substitutes for them. Then we build two sets of
BOS vectors for old and new examples, describing
old and new senses of the word respectively. Fi-
nally, the distances from old to new examples are
calculated, and their average is returned as the pre-
dicted score of graded change. Following previous
works on LSCD (Giulianelli et al., 2020; Laicher
et al., 2021), we will denote this average as the
Average Pairwise Distance (APD). Notice that our
vector representation is very different from those
works.

For the second subtask, if APD is greater than
a certain threshold, we predict that this word has
changed its meaning. To determine whether it has
acquired new senses and whether any old senses
were lost, we propose three different methods based
on pairwise distances.

3.1 Collected data
For each target word wi, we lemmatize2 both cor-
pora and retrieve all examples with wi in different
grammatical forms. Then we take the same number
Ni of examples from the old and the modern set of
examples.3

3.2 Substitute generation
For each example we generate several types of
substitutes with different dynamic patterns, post-

2We used the Spanish lemmatizer from Spacy proposed by
the organizers.

3If possible, Ni = 100 examples are sampled without
replacement from each set. Otherwise, we take all Ni < 100
examples from the smaller set and sample the same number
of examples from another set.

Pattern weight
<mask> 0.25
<mask>-(y-T) 0.25
T-(y-<mask>) 0.25
<mask>-(incluso-T) 0.0625
T-(incluso-<mask>) 0.0625
<mask>-(por-ejemplo-T) 0.0625
T-(por-ejemplo-<mask>) 0.0625

Table 2: In LS_m1_7, we employ 7 single-subword pat-
terns with y (and), incluso (including) and por ejemplo
(for example) with the specified weights.

LS_m1_2 patterns LS_m2_2 patterns weight
<mask>-(y-T) <mask><mask>-(y-T) 0.5
T-(y-<mask>) <mask><mask>-(y-T) 0.5

Table 3: In LS_m1_2 and LS_m2_2 we employ 2 single-
subword and 2 two-subword patterns respectively.

process them and combine together to get a sin-
gle vector representation. Dynamic patterns are
similar to the Hearst patterns by nature (Hearst,
1992). They were proposed in (Amrami and Gold-
berg, 2018) to obtain from masked language mod-
els those substitutes that do not only fit the given
context, but also are similar or related to the target
word by meaning. For instance, using patterns with
the Spanish conjunction y (English: and) we hope
to obtain mostly co-hyponyms of the target word,
while patterns with the adverb incluso (English:
including) shall bias the model towards generat-
ing hypernyms or hyponyms, depending on the
position of the target word. Table 1 shows some
examples.

Table 2 lists all dynamic patterns we use. All
patterns contain the special token <mask> that
XLM-R is asked to recover, and some of them
contain the variable T representing the target word.
Given a pattern and an example for some target
word, first we replace the target word with this
pattern, and then replace the variable T (if any)
back with the target word. For simplicity, let us
consider an example in English. Given the sentence
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We can fly to London and using the pattern <mask>
(and T), we first obtain We can <mask> (and T) to
London, and finally have We can <mask> (and fly)
to London.

The vocabulary of XLM-R consists of 250K
subwords in 100 different languages, which are
sometimes whole frequent words, but most often
pieces of words. To better describe word mean-
ing, we generate substitutes consisting of differ-
ent number of subwords. To achieve this, we ap-
ply patterns with several <mask> tokens, for in-
stance,<mask><mask> (y T).

To find probable sequences of subwords that
could fill the <mask> tokens, we apply a slightly
modified greedy decoding strategy. For the left-
most <mask> token, topK = 150 most proba-
ble subwords are predicted first. Then for each
of those subwords we generate one continuation
using greedy decoding. Below we will say that a
substitute is not generated for a particular pattern
in a particular example if it was not among topK
substitutes generated this way. For computational
reasons, we generated only substitutes with one or
two subwords and did not apply beam search for
decoding. Examples of two-subword substitutes
are in table 1.

3.3 Substitute post-processing and
combination

Next, we post-process all substitutes for each exam-
ple: convert them to lower case, remove all words
except for the last one from multi-word substitutes,
apply stemming.4 After post-processing, we sum
the probabilities of duplicated substitutes.

For each example, we combine substitutes gen-
erated for different patterns by calculating the
weighted average of the corresponding probabil-
ity distributions. In LS_m1 and LS_m2 (Lexical
Substitution with one-subword substitutes and two-
subword substitutes respectively), for combination
we use patterns and weights presented in Tables 2
and 3. The weights were selected based on a few
experiments on the development set consisting of
20 words, so these weights are likely suboptimal.
It is possible that one of the substitutes is not gen-
erated by XLM-R for a certain pattern. In this case,
during combination we assume that the correspond-
ing probability is equal to the minimal probability
among all substitutes generated for this pattern.

4The Spanish stemming from nltk.stem.snowball was used.

Model/Team JSD,SPR COMPARE,SPR
baselines

baseline1 0.543 (4) 0.561 (3)
baseline2 0.092 (8) 0.088 (6)

best results of other teams
myrachins 0.735 (1) 0.842 (1)
UsrD7 0.702 (2) 0.829 (2)
aishein 0.553 (3) 0.558 (4)

our results
#LS_m1_7+APD -0.125 (9) -0.129 (8)

our post-evaluation results
LS_m1_7+APD 0.584 (3*) 0.598 (3*)
LS_m1_2+APD 0.562 (3*) 0.562 (3*)
LS_m2_2+APD 0.576 (3*) 0.637 (3*)

Table 4: Graded Change Discovery results. # denotes
the buggy implementation. * denotes possible ranks of
the corresponding results in the leaderboard.

3.4 BOS vectors

For each target word wi we build 2Ni BOS vec-
tors for old and new examples. These vectors are
basically bag-of-word vectors built for topK most
probable substitutes for each example. Only sub-
stitutes that were generated for more than 3% and
less than 90% of examples of the target word are
taken into account5.

3.5 Graded Change Discovery

APD (Average Pairwise Distance). After building
the BOS vectors, we calculate the cosine distance
from each old to each new example, resulting in
a matrix of size Ni ×Ni. The APD is calculated
by averaging all cells in this matrix. Finally, we
sort test words according to their APDs and submit
their ranks as the predicted change scores.6

3.6 Binary Change Detection

For the main Binary Change Detection subtask,
if the calculated APD is greater than the certain
threshold7, then we predict that this word has
changed its meaning. In this case we also try to
determine if it has acquired new senses and if it has
lost some old ones (sense loss and sense gain detec-
tion subtasks). We try three methods to determine
that.

5We used CountVectorizer from scikit-learn, where
min_df = 0.03 was selected in range from 0 to 0.05 with
0.01 step and max_df = 0.9 was selected in range from 0.85
to 1 with 0.01 step.

6There was a mistake in the original implementation of the
ranking procedure. After the competition we fixed it, which
significantly improved the results of this method (see table 4
for comparison).

7threshold = 0.8 was selected on the development set in
the range from 0.7 to 0.9 with 0.05 step.
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Model/Team CH, F1 GAIN, F1 LOSS, F1
baselines

baseline1 0.537 (9) NaN (8) NaN (6)
baseline2 0.222 (10) 0.211 (7) 0.000 (6)

best results of other teams
myrachins 0.716 (1) 0.491 (3) 0.688 (1)
dteodore 0.709 (2) 0.000 (8) 0.000 (6)
rombek 0.687 (3) 0.490 (4) 0.593 (3)

our results
LS_m1_7+AID 0.658 (4*) 0.393 (6*) 0.137 (6*)
LS_m2_2+min 0.636 (6*) 0.418 (6*) 0.610 (2*)
LS_m1_7+perc. 0.658 (4) 0.520 (2) 0.600 (2)

our post-evaluation results
LS_m1_2+AID 0.628 (7*) 0.4 (6*) 0.076 (6*)
LS_m1_2+min 0.628 (7*) 0.583 (2*) 0.387 (5*)
LS_m1_2+perc. 0.628 (7*) 0.486 (5*) 0.608 (2*)
LS_m2_2+AID 0.636 (6*) 0.382 (6*) 0.193 (6*)
LS_m2_2+perc. 0.636 (6*) 0.376 (6*) 0.600 (2*)
LS_m1_7+min 0.658 (4*) 0.533 (2*) 0.564 (5*)

Table 5: Binary Change Detection results. * denotes
possible ranks of the corresponding results in the leader-
board.

AID (Average Inner Distance). We calculate
APDs between only new examples AID1 and be-
tween only old examples AID2. If AID1 >
(AID2−b1), we predict that a new sense appeared.
If AID2 > (AID1 − b2), we predict that an old
sense is lost.8 Thus, we assume that a difference
in average inner distances for two sets of examples
indicates that there is a difference in underlying
sets of senses.

min. We calculate an Ni ×Ni matrix of pair-
wise distances from old to new examples and as-
sume that if some new sense appeared, then a new
example exists that is far from all old examples.
Thus, if there is at least one new example whose
minimal distance to the old examples is greater than
some threshold 9, we predict that a new sense ap-
peared. Sense loss is determined symmetrically.

perc. (percentile). This is similar to the pre-
vious method, but we calculate the 5th percentile
instead of the minimum, i.e. we allow at most 5%
of examples from the old corpus to be closer to an
example of the new sense from the new corpus than
the specified threshold. We assume that this should
make the model less sensitive to noisy examples
and more stable.

8b1 = 0.03, b2 = 0. These values were selected on the
development set in the range from -0.1 to 0.1 with 0.01 step.

9threshold = 0.8 was selected on the development set in
the range from 0.7 to 0.9 with 0.05 step.

Model GAIN,F1 LOSS,F1
LS_m1_2+AID 0.4 (6*) 0.076 (6*)
LS_m1_2+min 0.583 (2*) 0.387 (5*)
LS_m1_2+perc. 0.486 (5*) 0.608 (2*)
LS_m2_2+AID 0.382 (6*) 0.193 (6*)
LS_m2_2+min 0.418 (6*) 0.610 (2*)
LS_m2_2+perc. 0.376 (6*) 0.600 (2*)
LS_m1_7+AID 0.393 (6*) 0.137 (6*)
LS_m1_7+min 0.533 (2*) 0.564 (5*)
LS_m1_7+perc. 0.520 (2) 0.600 (2)

Table 6: Comparison of aggregation methods. * denotes
possible ranks of the corresponding results in the leader-
board.

4 Experiments and Results

4.1 Phase 1: Graded Change Discovery

In this subtask, it was required to rank about 4K
target words according to their degree of semantic
change (the higher rank, the stronger change). The
final quality of ranking was evaluated for 60 hidden
words only by the Spearman’s correlation with the
gold ranks (Bolboaca and Jäntschi, 2006).

Table 4 provides the results for the first phase.
Our original implementation of the ranking proce-
dure had mistakes in the ranking procedure, so the
results are poor. After the competition, we fixed
the mistake and obtained the correct results, which
are comparable to the 3rd best participant in the
leaderboard.

LS_m1_2 and LS_m2_2 differ only in the num-
ber of masks in the used patterns. So comparing
their scores, we can say that using two-subword
substitutes is more preferable than one-subword
substitutes. In LS_m2_7 seven patterns are com-
bined compared to two patters in LS_m1_2, this
gives a significant improvement despite somewhat
arbitrarily selected weights. Developing some prin-
cipled ways of finding promising dynamic patterns
and weights for their combination is a reasonable
direction for future work. LS_m1_7 has a slightly
higher JSD,SPR score, but its COMPARE,SPR
score is lower and it uses a more complex pattern
combination than LS_m2_2. A more detailed in-
vestigation is presented in Appendix A.

4.2 Phase 2: Binary Change Detection

In this subtask the participants were asked to deter-
mine if target words have changed their meanings.
And if so, how exactly (have acquired and/or have
lost senses). Three F1-scores are calculated: Bi-
nary Change Detection (CH), Sense Gain Detection
(GAIN), Sense Loss Detection (LOSS). Results are
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presented in Table 5 where we have the 2nd best
submission for GAIN and LOSS optional subtasks.

LS_m1_2 + APD and LS_m2_m2 + APD
have 0.628 and 0.636 CH,F1 scores respectively,
which means that using two-subword substitutes is
slightly better than one-subword. But in the case
of LS_m1_7 + APD we already get 0.658 CH,F1
resulting in the 4th rank.

Using AID method does result in good GAIN,F1
and LOSS,F1 scores (Table 6). At the same time
min and percentile show a better results but they
highly depend on used LS patterns, i.e., in the some
cases these methods improves only GAIN,F1 or
LOSS,F1 scores, but not both of them.

5 Discriminative substitutes

The main advantage of LS-based models is their
interpretability. We can roughly understand word
meanings looking at the discriminative substitutes,
i.e. the substitutes specific for a particular subset
of examples.

Table 7 provides some examples for disco (disc)
and satélite (satellite). We take old examples O and
those new examples M , that were determined by
LS_m1+percentile model as being far away from
O. Then we find substitutes with the largest ratio
P (w|M)
P (w|O)

10, i.e. those substitutes that are rarely gen-
erated for old examples but frequently generated
for new examples that are not similar to any old
examples.

Disco (disc) Satélite (satellite)
LP 0.72/0.00 CD 1.00/0.00
EP 0.55/0.00 video 1.00/0.00

documentos 0.55/0.00 internet 1.00/0.00
videos 0.50/0.00 televisión 0.88/0.00

mp 0.50/0.00 FM 0.88/0.00
anime 0.44/0.00 señal 0.88/0.00

memoria 0.44/0.00 Internet 0.88/0.00
PC 0.44/0.00 canal 0.88/0.00

USB 0.44/0.00 TV 0.88/0.00
b 0.44/0.00 web 0.88/0.00

MP 0.44/0.00 vídeo 0.77/0.00

Table 7: Discriminative substitutes generated for the
<mask> (y T) pattern. The probabilities P (w|M) and
P (w|O) are shown for each substitute. Documentos is
’documents’, señal is ’signal’, memoria is ’memory’ and
canal is ’channel’.

From the Table 7 we can see that disco (disc)
and satélite (satellite) have acquired new senses
as a data storage device and satellite television
respectively.

10If the word denominator is 0, we demand P (w|M) to be
greater 0.2, otherwise we don’t consider such word.

6 Efficiency

The set of the target words proposed in Phase 1 was
supposed to be a challenge for participants due to
its size. For 4385 words given we have collected
about 777K examples. Generation of substitutes
for all examples took 13 GPU-hours and 310 GPU-
hours for each one-mask and two-mask pattern
respectively on V100 GPUs. All other steps took
incomparably less time.

7 Conclusion

We have proposed an interpretable approach to
lexical semantic change detection. This approach
shows the 2nd best result for sense loss and sense
gain detection subtasks. It provides techniques to
understand which senses were obtained or lost by
a word.
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Osman Başkaya, Enis Sert, Volkan Cirik, and Deniz
Yuret. 2013. AI-KU: Using substitute vectors and
co-occurrence modeling for word sense induction
and disambiguation. In Second Joint Conference
on Lexical and Computational Semantics (*SEM),
Volume 2: Proceedings of the Seventh International
Workshop on Semantic Evaluation (SemEval 2013),
pages 300–306, Atlanta, Georgia, USA. Association
for Computational Linguistics.

Sorana-Daniela Bolboaca and Lorentz Jäntschi. 2006.
Pearson versus spearman, kendall’s tau correlation
analysis on structure-activity relationships of biologic
active compounds. Leonardo Journal of Sciences,
5(9):179–200.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Frank D. Zamora-Reina, Felipe Bravo-Marquez, and
Dominik Schlechtweg. 2022. Lscdiscovery: A
shared task on semantic change discovery and de-
tection in spanish. In Proceedings of the 3rd Inter-
national Workshop on Computational Approaches to
Historical Language Change, Dublin, Ireland. Asso-
ciation for Computational Linguistics.

Mario Giulianelli, Marco Del Tredici, and Raquel Fer-
nández. 2020. Analysing lexical semantic change
with contextualised word representations. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 3960–
3973, Online. Association for Computational Lin-
guistics.

Marti A Hearst. 1992. Automatic acquisition of hy-
ponyms from large text corpora. In Proceedings of
the 14th conference on Computational linguistics-
Volume 2, pages 539–545. Association for Computa-
tional Linguistics.

P. S. Kostenetskiy, R. A. Chulkevich, and V. I. Kozyrev.
2021. HPC resources of the higher school of eco-
nomics. Journal of Physics: Conference Series,
1740:012050.

Severin Laicher, Sinan Kurtyigit, Dominik Schlechtweg,
Jonas Kuhn, and Sabine Schulte im Walde. 2021. Ex-
plaining and improving BERT performance on lex-
ical semantic change detection. In Proceedings of

the 16th Conference of the European Chapter of the
Association for Computational Linguistics: Student
Research Workshop, pages 192–202, Online. Associ-
ation for Computational Linguistics.

170



A Substitute analysis

Our models mostly depend on the used LS patterns
and ways of their combination. So it is important
to make some investigations about them. In this
section we study the following questions.

• Which single-subword pattern gives the best
results and how these results depend on the
number of substitutes generate (topk)?

• Is it better to use single-subword or multi-
subword substitutes?

• Do brackets and dashes affect the results?

Figure 1: Dependence of the JSD,SPR score on the
pattern and topk.

Figure 2: Dependence of the COMPARE,SPR score on
the pattern and topk.

For brevity, we will use M instead of <mask>
in the pattern descriptions. In the follow-

ing figures mask position describes the po-
sition of the <mask> token. For example,
if the pattern is M (y T) / T (y M), mask
position=left refers to the pattern M (y T),
and mask position=right refers to T (y M).
Finally, mask position=combination de-
notes the combination of these patterns with equal
weights.

A.1 One-subword subword

In LS_m1_7 we use 7 patterns with different
weights, which were selected after only a few ex-
periments on the development set. In this section
we study how the results depend on the patterns
and try to find simpler and more intuitive ways of
the substitute combination. Figures 1 and 2 show
JSD,SPR and COMPARE,SPR for different pat-
terns.

It is interesting that in all cases the left pat-
terns give better results than the right ones, ex-
cept for the incluso-based patterns. Also in all cases
the combination averages the results of both pat-
terns, again except for the combination of incluso-
based patterns which on the contrary improves the
results.

Figure 3: Comparison of one-subword and two-subword
substitutes.

A.2 One-subword substitutes vs.
two-subword substitutes

We assume that using more masks should improves
results because this allows to generate more di-
verse substitutes. Figure 3 provides comparison of

171



patterns with different number of masks. As we
suspect, using T (y MM) pattern gives a much better
results than T (y M). However combination of two-
mask patterns results in just slightly higher score
and one-mask pattern M (y T) even outperforms MM
(y T).

Figure 4: Comparison patterns with and without brack-
ets.

Figure 5: Comparison patterns with and without brack-
ets.

A.3 Patterns without brackets and dashes

In the patterns discussed above we have extra
dashes which were added by mistake and poten-
tially could affect the results, so firstly we remove

them from patterns. Also we have assumption that
using brackets is not common thing in Spanish so
such patterns could spoil generated substitutes and
final results. To prove it we decide to compare
y-based patterns with and without brackets and
dashes.

In the Figures 4 and 5 we can see that in all
cases refusal to use brackets and dashes improves
our results quite well, especially the right pat-
tern get around 0.1 growth in JSD,SPR and COM-
PARE,SPR scores.
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Abstract

In this paper we describe our solution of
the LSCDiscovery shared task on Lexical Se-
mantic Change Discovery (LSCD) in Span-
ish (D. Zamora-Reina et al., 2022). Our solu-
tion employs a Word-in-Context (WiC) model,
which is trained to determine if a particular
word has the same meaning in two given con-
texts. We basically try to replicate the anno-
tation of the dataset for the shared task, but
replacing human annotators with a neural net-
work. In the graded change discovery subtask,
our solution has achieved the 2nd best result.
In the main binary change detection subtask,
our F1-score is 0.655 compared to 0.716 of
the best submission, corresponding to the 5th
place. However, in the optional sense gain de-
tection subtask we have outperformed all other
participants.1

During the post-evaluation experiments we
compared different ways to prepare WiC data
in Spanish and fine-tune our model. We have
found that it helps leaving only examples an-
notated as 1 (unrelated senses) and 4 (identical
senses) rather than using 2x more examples in-
cluding intermediate annotations. Generating
additional examples from a WSD dataset also
significantly improves the results.

1 Introduction

Given a list of words, a Lexical Semantic Change
Detection (LSCD) system applied to diachronic
corpora shall determine how these words change
their meaning over time. The LSCDiscov-
ery (D. Zamora-Reina et al., 2022) shared task on
LSCD in Spanish consists of two main subtasks
and a few optional ones. In the graded change
discovery subtask, the participants were asked to
rank 4385 words according to the degree of their
change. In the binary change detection subtask, it
was necessary to develop a binary classifier that

1The code is available: https://github.com/
Daniil153/DM-in-Spanish-LSCDiscovery

finds among 60 given words those that have either
lost some old senses, or obtained some new ones.
Two optional binary subtasks required separately
finding words with lost senses and words with new
senses.

In order to annotate the test set for the shared
task, for each word from the test set some examples
were sampled from the old and the new corpus.
Then human annotators were asked to annotate
pairs of examples with scores from 1 to 4 according
to the similarity of two occurrences of the same
word by meaning. This kind of annotation is very
similar to the Word-in-Context (WiC) task, which
asks a model to determine if two occurrences of
the same word have the same or different meaning.

2 Background

2.1 The Word-in-Context model

In order to solve the LSCD task, we address the
Words-in-Context (WiC) task first. The WiC task
is a simplified version of the Word Sense Disam-
biguation (WSD) task that can be reduced to binary
classification. Each example in WiC consists of
two occurrences of the same usually polysemous
target word w (probably, in different grammatical
forms) in two different contexts. The task is to
determine if the target word has the same or dif-
ferent senses in two contexts. In our work we em-
ploy the Multilingual and Cross-Lingual Word-in-
Context (MCL-WiC) dataset from SemEval-2021
Task2 (Martelli et al., 2021). Table 1 shows some
statistics for this dataset.

We employ the WiC model proposed in (Davle-
tov et al., 2021). In this model, the encoder from
XLM-R (Conneau et al., 2020) is used to vectorize
input examples. XLM-R is a Transformer-based
neural network pre-trained as a masked language
model (MLM) on about 2TB of texts in 100 lan-
guages. This not only makes our WiC model mul-
tilingual, but also enables zero-shot cross-lingual
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trasferability, i.e. after training on the MCL-WiC
dataset it can be applied even to those languages
that are not present in this dataset (for instance,
Spanish).

The architecture of the WiC model is the follow-
ing. Two input sentences are concatenated and fed
into XLM-R in the following format:
<s>sentence1</s>sentence2</s>
For each sentence, the outputs of XLM-R on all

subwords of the target word are averaged (mean
pooling). This results in two embeddings for two
occurrences of the target word. Then these two
embeddings are combined and fed into the binary
classification head (see details below).

2.2 The RuShiftEval-2021 shared task

Our solution for the graded change discov-
ery subtask was initially developed during the
RuShiftEval-2021 shared task on LSCD for the
Russian language (Kutuzov and Pivovarova, 2021),
where it was the second best system during
the competition and outperformed the best sys-
tem in the post-competition experiments (Arefyev
et al., 2021). However, in this shared task
Spearman’s correlation with the gold COMPARE
scores (Schlechtweg et al., 2018) was the only met-
ric for evaluation unlike the LSCDiscovery shared
task, which offers more diverse metrics and several
subtasks.

The best results in RuShiftEval-2021 were
achieved with the following hyperparameters and
design choices. To combine the embeddings of
two occurrences of the target word, the L1-distance
between the normalized embeddings and the dot
product between the normalized embeddings are
concatenated ((∥x̄− ȳ∥1, ⟨x̄, ȳ⟩)). After batch nor-
malization, this representation is fed into a linear
classification head. All the weights of the network
are fine-tuned with the cross-entropy loss. Two-
step fine-tuning procedure consists of fine-tuning
on examples in 6 languages from the training and
the development sets of the MCL-WiC dataset, and
then fine-tuning on examples in Russian from the
RuSemShift (Rodina and Kutuzov, 2020) dataset,
which served as the training and the development
set in RuShiftEval-2021.

3 WiC-based LSCD

3.1 WiC training

To solve the Spanish LSCD task we used the WiC
model with the architecture and hyperparameters

Subset/language size #words Avg. len.
MCL-WiC

en-en 8008 3728 48
ru-ru 708 352 41
fr-fr 708 352 46
ar-ar 708 354 45
zh-zh 708 342 -
en-nen∗ 32 16 51

RuSemShift
ru-ru 3898 70 51

DWUG_es
es-esbin1

COMP 4831 15 167
es-esbin2

COMP 2638 15 165
es-esbin1

ALL 9465 15 168
es-esbin2

ALL 5443 15 167
es-esbin1

COMP (valid) 1376 5 155
Spanish XL-WSD

es-es 8260 310 98

Table 1: Training and development data for our WiC
model. L1-L2 means that the first sentence in each
pair is in language L1, while the second sentence is in
L2. en-nen∗ are en-ru, en-ar, en-fr, en-zh cross-lingual
examples.

described in 2.2 that have previously shown the
best results. Additionally, we fine-tuned the model
on the following data in Spanish (see table 1 for
statistics).

DWUG_es is the development set from the
shared task. In the previous experiments binariz-
ing human annotations and training the WiC model
as a binary classifier has shown better results than
training it as a regression model. Thus, we try two
binarization methods. In the first method (bin1),
the examples with annotations of 3 or 4 are treated
as positive examples, and those with annotations of
1 or 2 as negative. In the second method (bin2), the
examples with annotations of 2 or 3 were filtered
out first, and the rest were treated as before.

Also, we have created the COMP version of the
training set containing only COMPARE pairs (with
the first sentence from the old corpus and the sec-
ond from the new corpus), and the ALL version
containing all pairs of sentences. We have sepa-
rated all COMPARE pairs for 5 out of 20 words
and used them as a validation set for early stopping
during fine-tuning of the WiC model.

XL-WSD (Pasini et al., 2021) is a WSD dataset
in 18 languages. We used only the development
and the test subsets in Spanish to create additional
training data for the WiC model. After generating
all pairs of word occurrences with the same word
lemma, the pairs of word occurrences having the
same sense label were labeled as positive pairs,
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while the pairs of occurrences with different sense
labels were labeled as negative ones.

The WiC model was initialized with the standard
XLM-R weights from MLM pre-training. Then we
fine-tuned the model for the WiC task in one, two
or three steps.

MCL→RSS. This is the best performing model
from (Arefyev et al., 2021), which outperformed
the winning solution of the RuShiftEval-2021
shared task in the post-evaluation period. This
model was fine-tuned on multilingual MCL-WiC
data, and then on RuSemShift data in Russian.

MCL→RSS→DWUG_es. The previous model
was additionally fine-tuned on Spanish DWUG to
improve the quality for Spanish.

MCL→DWUG_es. We hypothesised that fine-
tuning on examples in Russian may hurt the perfor-
mance for Spanish, thus, excluded this intermedi-
ate fine-tuning step from the previous fine-tuning
scheme.

MCL→DWUG_es+XL-WSD. Finally, we de-
cided to add the examples from XL-WSD in Span-
ish to the examples from DWUG_es to fine-tune
on as many examples in Spanish as possible.

MCL→RSS→DWUG_es+XL-WSD. Our best
model from RuShiftEval-2021 fine-tuned on all
examples in Spanish we had.

MCL+RSS+DWUG_es+XL-WSD. We hypoth-
esised that fine-tuning the model in many steps
may result in forgetting information from the ear-
lier steps. Thus, we try fine-tuning on all WiC data
together in a single step.

3.2 Average Pairwise Distance (APD)

3.2.1 Graded change subtasks
For each target word, we retrieved 100 examples
(or all examples, if there were fewer than 100)
from the old and the modern corpora provided by
the organizers. To find the positions of the target
words, we used the lemmatizer from Spacy version
3.1.1 with the Spanish model es_core_news_md2.
Next we created 100 (or fewer) COMPARE pairs
of sentences. In Appendix A we study how the
results depend on this number of pairs.

The pairs of sentences are scored by the WiC
model. For each pair, the predicted probability of
the negative class, i.e. the probability of two occur-
rences having different senses, is taken from the
model. To estimate the graded change, for each

2https://github.com/explosion/spacy-
models/releases/tag/es_core_news_md-3.2.0

target word we average these probabilities for the
pairs of sentences containing this target word. The
predicted probabilities may violate some metric ax-
ioms, hence, they are not distances in the mathemat-
ical sense. Nevertheless, we will use the traditional
term Average Pairwise Distance (APD) (Giulianelli
et al., 2020) to denote our final word scores. For
the optional COMPARE subtask we used the same
scores.

3.2.2 Binary subtasks
To solve the binary subtasks, we use only the exam-
ples provided by the organizers for 60 words from
the test set. There are 20 old and 20 new examples
for each word, let us call them the gold examples.
Some pairs consisting of these examples were an-
notated by humans, and based on these annotations
the gold labels were calculated while creating the
test set. Thus, using these examples instead of the
randomly sampled ones shall improve the chances
to correctly predict the gold labels. However, it
is likely that some rare new or lost senses are not
among those 40 examples provided by the organiz-
ers. In real applications sampling more examples
will likely be beneficial.

We generate all possible COMPARE pairs of the
gold examples and calculate APDs for them. To
produce binary predictions, we apply APD thresh-
olding (APD-t). The threshold was selected to max-
imize the F1-score on the development set. The
same predictions are used for the binary change,
sense loss and sense gain detection subtasks.

3.3 Correlation Clustering (CC)

Since the gold COMPARE score for each word is
calculated by averaging human judgements about
the similarity of word occurrences taken from dif-
ferent time periods, our APD scores shall correlate
well with the negated gold COMPARE scores if
our WiC model approximates human judgements
reasonably well. However, it is not obvious if they
also correlate well with the Jensen-Shannon Dis-
tance (JSD) between the inferred sense distribu-
tions, which is the main metric in the graded change
discovery subtask. Also if a word obtains or loses
a rare sense while preserving the most frequent
sense, the average distance between old and new
examples shall be small and the APD-t method will
fail do detect the change.

To address these issues, we try to cluster word
uses the same way they were clustered by the or-
ganizers while creating the test set, but employing
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Method/Team JSD, SPR COMP, SPR
Baselines

baseline1 0.543 (4) 0.561
baseline2 0.092 (8) 0.088

Best results of other teams
myrachins 0.735 (1) 0.842
aishein 0.553 (3) 0.558

Our submissions: team DeepMistake, APD
MCL→RSS 0.701 (2*) 0.829
MCL→RSS→
DWUG_esbin1

ALL
0.702 (2) 0.829

#MCL→DWUG_esbin1
ALL 0.650 (2*) 0.787

Table 2: The results of the graded change discovery
models. The best result within each block is in bold,
the best result overall is also underlined. * indicates
the potential ranks of the corresponding results in the
leaderboard if they would have been submitted instead
of our best submission. # indicates buggy submissions
(incorrect indices of the target words).

annotations from our WiC model instead of hu-
man annotations. We generate all possible pairs of
the gold examples and score them with the WiC
model. Unlike the APD method which relies on the
distances between examples from different corpora
only, clustering-based methods can benefit from the
distances between examples from the same corpus
as well.

We use the implementation of Correlation Clus-
tering (CC) by Schlechtweg et al. (2021), which
presumably was also used to create the test set.3

This time we employ the binary predictions of the
WiC model instead of the predicted probabilities,
and treat positive predictions (same sense) as pos-
itive edges and negative predictions as negative
edges.4 After clustering, the aforementioned code
calculates both the JSD and the COMPARE scores,
and also all predictions for the binary subtasks.

3.4 Computational complexity

In order to solve the graded change discovery sub-
task, it was necessary to calculate scores for 4385
words. The WiC model processed about 388K
pairs of sentences in total, or 89 pairs per word
on average. This took about 3 hours on one V100
GPU. Additionally, about 7 hours of CPU time was
spent to lemmatize both corpora. The calculation

3https://github.com/Garrafao/WUGs
4The negative and positive predictions were converted to

the annotations of 1 and 2 respectively. We changed only the
arguments specifying the annotation range (min=1, max=2)
and the binarization threshold=1.5. The default values for
other hyperparameters were used: lowerrangemin=1, low-
errangemax=3, upperrangemin=3, upperrangemax=5, lower-
prob=0.01, upperprob=0.1

Method/Team JSD, SPR COMP, SPR
DWUG_es convertion comparison, APD

MCL→DWUG_esbin1
ALL 0.660 (2*) 0.800

MCL→DWUG_esbin2
ALL 0.672 (2*) 0.820

MCL→DWUG_esbin1
COMP 0.650 (2*) 0.800

MCL→DWUG_esbin2
COMP 0.669 (2*) 0.815

WiC fine-tuning schemes, APD
MCL 0.648 (2*) 0.791

MCL→
DWUG_esbin2

ALL+XL-WSD 0.712 (2*) 0.854

MCL→RSS→
DWUG_esbin2

ALL+XL-WSD 0.711 (2*) 0.855

MCL+RSS+
DWUG_esbin2

ALL+XL-WSD 0.719 (2*) 0.838

CC
MCL→

DWUG_esbin2
ALL+XL-WSD 0.650 (2*) 0.748

Gold scores
COMPARE scores 0.920 1.0
JSD scores 1.0 0.920

Table 3: Post-evaluation experiments with the graded
change detection models on the gold examples for 60
test words. * indicates the potential ranks of the corre-
sponding results.

of APDs took insignificantly small time.
For the graded change subtasks, we experi-

mented with correlation clustering only after the
competition and processed only 60 words from the
test set. This took about 18 hours of CPU time.

4 Results

4.1 Graded subtask

Table 2 shows the results for the graded change
discovery subtask. Our best submission has shown
2nd best result according to both metrics. The
model from RuShiftEval-2021 further fine-tuned
on the Spanish development set has shown the best
result among our submissions. However, further
fine-tuning has brought very small benefits. This is
likely due to suboptimal binarization of the Spanish
data.

During the post-evaluation experiments, we have
studied how the results depend on the training data.
The results in table 3 clearly indicate that leaving
only annotations of 1 and 4 (bin2) consistently im-
prove performance despite almost 2x reduction in
the number of training examples in Spanish. Using
ALL pairs gives 2x increase in the number of exam-
ples, but only marginal improvement in the perfor-
mance. This is probably because we use the model
to score COMPARE pairs only. Adding examples
generated from the Spanish part of XL-WSD gives
significant boost. This may be due to training on
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Binary change Sense gain Sense loss
Method/Team F1 P R F1 P R F1 P R

Baselines
baseline1 0.537 (9) 0.846 0.393 - - - - - -
baseline2 0.222 (10) 0.500 0.143 0.211 (7) 0.400 0.143 0.0 (6) 0.0 0.0

Best results of other teams
myrachins 0.716 (1) 0.615 0.857 0.491 (3) 0.333 0.927 0.688 (1) 0.564 0.880
dteodore 0.709 (2) 0.549 1.0 0.0 (8) 0.0 0.0 0.0 (6) 0.0 0.0
rombek 0.687 (3) 0.590 0.821 0.490 (4) 0.343 0.857 0.593 (3) 0.552 0.640
kudisov 0.658 (4) 0.510 0.929 0.520 (2) 0.361 0.929 0.600 (2) 0.514 0.720

Our submissions: team DeepMistake
#MCL→

DWUG_esbin1
ALL + XL-WSD
(CC)

0.420 (10*) 0.800 0.290 0.417 (6*) 0.500 0.360 0.280 (6*) 1.0 0.160

MCL→
DWUG_esbin1

ALL + XL-WSD
(APD-t)

0.655 (5) 0.633 0.679 0.591 (1) 0.433 0.929 0.582 (4) 0.533 0.640

Post-evaluation results for APD-t
MCL→DWUG_esbin1

ALL 0.706 (3*) 0.600 0.860 0.520 (1*) 0.350 1.0 0.650 (2*) 0.530 0.840
MCL→DWUG_esbin2

ALL 0.680 (4*) 0.560 0.860 0.490 (3*) 0.330 1.0 0.620 (2*) 0.490 0.840
MCL→DWUG_esbin1

COMP 0.640 (6*) 0.610 0.680 0.580 (1*) 0.420 0.930 0.570 (4*) 0.520 0.640
MCL→DWUG_esbin2

COMP 0.695 (3*) 0.590 0.860 0.510 (2*) 0.340 1.0 0.640 (2*) 0.510 0.840
MCL→

DWUG_esbin2
ALL + XL-WSD 0.712 (2*) 0.580 0.930 0.480 (4*) 0.310 1.0 0.660 (2*) 0.510 0.920

Post-evaluation results for CC
MCL→

DWUG_esbin2
ALL + XL-WSD 0.693 (3*) 0.553 0.929 0.462 (4*) 0.316 0.857 0.528 (4*) 0.500 0.560

Table 4: The results for the binary subtasks. * indicates the potential ranks of the corresponding results in the
leaderboard if they would have been submitted instead of our best submission. # indicates buggy submissions (CC
incorrectly executed).

2.5x more examples, but also 22x more different
target words. Fine-tuning on all datasets in one
step improves Spearman’s correlation with the JSD
scores a bit, but not with the COMPARE scores.
Comparing multi-step and single-step fine-tuning
is an interesting direction for the future work.

The CC method works worse than APD, a thor-
ough analysis is required to understand the rea-
sons. Also we notice that the gold COMPARE
scores have Spearman’s correlation with the gold
JSD scores of 0.92. This means that the limits of
the APD method are not achieved yet, and further
improvement of the WiC model for better repro-
duction of human annotations is a reasonable way
to improve the results.

4.2 Binary subtask

Table 4 shows the results for the binary subtasks.
Our model has outperformed all other participants
in the optional sense gain detection subtask. How-
ever, the F1-score for the main binary change de-
tection subtask is 6% below the best result. During
the post-evaluation experiments we have changed
the binarization to bin2, and also set the natural
threshold of 0.5, which improved the results for

binary change and sense loss detection to the level
comparable with 2nd best result in the leaderboard.
The APD-t method works better than CC, even
though it reuses the same predictions for all binary
subtasks.

5 Conclusion

This paper makes the first step towards answering
the question in its title: can a multilingual word-in-
context model replace human annotators for solv-
ing the LSCD task? For now, it seems that our
word-in-context model is not good enough to do
that. However, we have shown that experimenting
with the training data is a promising direction to
achieve this goal.
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A Graded change detection results
depending on the number of pairs
sampled

In the post-evaluation phase, we measured the per-
formance of the model in the graded change de-
tection subtask depending on how many pairs of
sentences are sampled. For this experiment, we
sampled 1000 sentences with replacement from
each corpora, built 1000 COMPARE pairs and an-
notated them with the WiC model. Then for each
number of pairs we sampled this number of pairs
100 times, and calculated the APD scores and the
target metrics. Finally, we calculated the mean and
the standard deviation of the target metrics for each
number of pairs.

We compare these results to the results on the
gold COMPARE pairs, i.e. annotating with our
WiC model the same pairs that were annotated by
humans. There are 278 unique pairs per word on
average. Also we compare to using all COMPARE
pairs consisting of gold examples only. There are
400 such pairs per word consisting of 20 old and
20 new examples.
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Figure 1: Spearman’s correlation of our APD scores
with the gold JSD scores depending on the num-
ber of COMPARE pairs sampled per word. Model:
MCL→DWUG_esbin2ALL+XL-WSD. The solid blue hor-
izontal line corresponds to all COMPARE pairs of the
gold examples. The dashed purple horizontal line corre-
sponds to the gold COMPARE pairs. Error bars show
one standard deviation.

From figures 1, 2 we can conclude that after
100-150 pairs of sentences sampled per word the
average quality stops increasing, only the standard
deviation decreases slowly.

Interestingly, when the number of pairs is large
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Figure 2: Spearman’s correlation of our APD scores
with the gold COMPARE scores depending on the num-
ber of COMPARE pairs sampled per word. Model:
MCL→DWUG_esbin2ALL+XL-WSD. The solid blue hor-
izontal line corresponds to all COMPARE pairs of the
gold examples. The dashed purple horizontal line corre-
sponds to the gold COMPARE pairs. Error bars show
one standard deviation.

enough the results on the retrieved examples are
a little bit higher on average than on the gold ex-
amples and significantly higher than on the gold
COMPARE pairs. This is despite the fact that the
gold scores were calculated based on human anno-
tations of the gold pairs, and may be related to the
imperfect approximation of human annotations by
our WiC model.
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Abstract
We describe our two systems for the shared
task on Lexical Semantic Change Discovery
in Spanish. For binary change detection, we
frame the task as a word sense disambiguation
(WSD) problem. We derive sense frequency
distributions for target words in both old and
modern corpora. We assume that the word se-
mantics have changed if a sense is observed
in only one of the two corpora, or the relative
change for any sense exceeds a tuned thresh-
old. For graded change discovery, we follow
the design of CIRCE (Pömsl and Lyapin, 2020)
by combining both static and contextual em-
beddings. For contextual embeddings, we use
XLM-RoBERTa instead of BERT, and train the
model to predict a masked token instead of the
time period. Our language-independent meth-
ods achieve results that are close to the best-
performing systems in the shared task.

1 Introduction

Lexical semantic change discovery is a task with
growing interest and applications in various areas,
such as natural language processing and lexicogra-
phy (Schlechtweg et al., 2020). The shared task on
semantic change discovery and detection in Span-
ish (LSCDiscovery) consists of two phases: 1)
graded change discovery, and 2) binary change
detection (Zamora-Reina et al., 2022). We adopt
different approaches for both phases.

The two sub-tasks consider different aspects of
lexical semantic change (LSC). The definition for
graded change discovery follows Kurtyigit et al.
(2021): given a diachronic corpus pair C1 and
C2, rank the intersection of their (content-word)
vocabularies according to their degree of change
between C1 and C2. For binary LSC detection, the
definition is the same as used in the SemEval-2020
Task 1: Unsupervised Lexical Semantic Change
Detection (Schlechtweg et al., 2020): given a tar-
get word *w* and two sets of its usages U1 and U2,
decide whether *w* lost or gained senses from U1

Figure 1: Lexical semantic change detection via WSD.

to U2, or not. The direction of change is not impor-
tant in either task. The inputs to the tasks consist
of a list of target words and a pair of corpora from
different time periods, annotated for the semantic
relationship between word usages. The gold labels
on a set of target words are inferred from sense
frequency distributions derived by clustering the
manual annotations (Zamora-Reina et al., 2022).
The output in phase 1 is a list of the target words
ranked by the amount of change. The output in
phase 2 is a list of binary change detection labels
per word.

For graded change discovery, our approach is
similar to CIRCE (Pömsl and Lyapin, 2020), the
top performing system in the SemEval 2020 task
for graded change. We use embeddings and Eu-
clidean distance to obtain rankings. However, we
obtain contextual embeddings from token predic-
tion instead of time period prediction. In addition,
we use XLM-RoBERTa instead of BERT, because
it performs well across a variety of tasks in Spanish
(Conneau et al., 2020), and models based on this ar-
chitecture produce effective contextual embeddings
(Ethayarajh, 2019).
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For binary change detection, we propose a novel
approach based on framing LSC discovery as word
sense disambiguation (WSD) problem, which is
the task of determining the meaning of words in
context given a sense inventory (Navigli, 2009).
Using a recently-proposed WSD system, AMuSE
(Orlando et al., 2021), we identify the sense of each
target word in context to determine if senses were
lost or gained over time. Following the theory of
Hauer and Kondrak (2020), we posit that wordnet-
type sense inventories match the intuitions of the
annotators of the shared task data. Our approach
has the advantage of being interpretable, provid-
ing interesting insights into the nature of lexical
semantic change by identifying specific senses that
appear or disappear in texts over time.

Our systems are highly competitive. For phase
1, our system achieves 0.5731 correlation between
the ranked words and ground truth on the test set,
which would put it in third place, based on our own
evaluation performed after the submission deadline.
For phase 2, our system obtains F-score of 88% on
the development set, and 71% on the evaluation
set, which ranks it as second according to the main
metric.

2 Related Work

In the SemEval 2020 task for graded change dis-
covery, the CIRCE system performed the best
(Schlechtweg et al., 2020). The system ensem-
bles static and contextual embeddings. Static em-
beddings with Skip-Gram with Negative Sampling
(Mikolov et al., 2013) are obtained for each corpus.
These embeddings are then aligned using Orthogo-
nal Procrustes analysis (Schönemann, 1966), and
the Euclidean distance is found between aligned
embeddings. Contextual embeddings from the
masked language model BERT (Devlin et al., 2019)
are used to classify the time period of sentences, as
time specific features are useful to learn. Then, em-
beddings are extracted from the last hidden layer
for each target word. To obtain a distance, the Eu-
clidean distance is computed pairwise between the
embeddings from the two corpora and the distances
are averaged. The target words are then ranked for
both types of embeddings. Finally, the rankings are
combined by a weighted average to obtain the final
ranking.

We modify the CIRCE approach for our graded
change discovery system by using XLM-RoBERTa
(Conneau et al., 2020) to obtain contextual embed-

dings. XLM-RoBERTa is a multilingual masked
language model. It uses the same bidirectional
transformer architecture as BERT (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019), and has
the same number of layers and size of layers as
RoBERTa. However, compared to BERT and
RoBERTa it has a larger vocabulary of 250,000
tokens, and employs the SentencePiece tokenizer
(Kudo and Richardson, 2018). Additionally, it is
trained on 100 languages, instead of just English
(Conneau et al., 2020).

Systems for binary change detection commonly
use embeddings for semantic representations, with
type embeddings often outperforming token em-
beddings (Schlechtweg et al., 2020). Some ap-
proaches ensemble models (Martinc et al., 2020;
Pömsl and Lyapin, 2020) or use a topic model
(Sarsfield and Tayyar Madabushi, 2020). Nulty
and Lillis (2020) detect change by considering the
relationship between nodes in a semantic network
graph. Orthogonal Procrustes analysis (Schöne-
mann, 1966) and vector initialization (Kim et al.,
2014) are techniques that can be used to align the
semantic representations. As a distance metric be-
tween embeddings, cosine and Euclidean distance
are commonly used.

Our approach based on applying WSD for binary
change detection is novel. A previous work has per-
formed word epoch disambiguation for determin-
ing changes in word usages overtime, but this task
predicts the time period (epoch) for instances (Mi-
halcea and Nastase, 2012). Some previous work
considers changes of senses overtime; however,
rather than WSD, they apply sense induction (Mi-
tra et al., 2014; Tahmasebi and Risse, 2017), topic
modelling (Lau et al., 2012), or Bayesian models
(Frermann and Lapata, 2016).

3 Methods

In this section, we describe our methods separately
for each of the two phases. Our code is available
for public use.1

3.1 Phase 1: Graded Change

We follow the approach implemented in CIRCE
(Pömsl and Lyapin, 2020), which has been shown
to perform well across a number of languages. We
use both static and contextual embeddings because
a combination of rankings from both embeddings

1https://github.com/sazzy4o/
ualberta-lscdiscovery

181



outperforms the ranking from either. We rank target
words based on the distance between embeddings
of both corpora.

To obtain static embedding rankings, we use the
same methods as CIRCE for the following 3 steps.
First, we train static embeddings using Skip-Gram
with Negative Sampling (Mikolov et al., 2013) for
the lemmatized version of each corpus, and align
embeddings from both corpora. Second, we obtain
the Euclidean distance between the aligned embed-
dings. Finally, we rank the target words by the
Euclidean distance.

The contextual embeddings used in CIRCE per-
form poorly compared to the static embeddings.
We posit that this is because the time period pre-
diction task is not well aligned with predicting the
meaning of words. To address this, we first train a
XLM-RoBERTa (Conneau et al., 2020) model to
predict randomly masked words in the combined
corpus from both time periods. Second, we mask
out each instance of a target word, and use our
trained model to predict the masked word. From
this prediction, we extract the embedding from the
features corresponding to the masked token in the
last hidden layer outputs of the model. Third, we
compute the pairwise Euclidean distance between
each pair of target word instances from different
time periods. Finally, we rank the target words by
the mean distance for each target word.

We follow a similar procedure to CIRCE to ob-
tain the final ranking by ordering the target words
by a weighted combination of the static and contex-
tual rankings. However, instead of calculating the
weighting based on the accuracy of our contextual
model, we tune the weighting to maximize Spear-
man’s rank-order correlation on the development
set.

This approach is quite computationally expen-
sive since it requires training the XLM-RoBERTa
model. The model takes approximately 3-4 hours
using an NVIDIA GeForce RTX 3090 to train. Ad-
ditionally, it takes approximately 45 minutes to
obtain the embeddings for the 60 target words in
the test set. The static embeddings are significantly
faster to obtain, taking only 3 minutes with an Intel
Xeon W-2255 CPU.

3.2 Phase 2: Binary Change

We approach binary semantic change detection as
WSD. We implement our approach using AMuSE,
a user-friendly end-to-end neural WSD system of

Orlando et al. (2021), which incorporates the pre-
processing steps of tokenization, lemmatization,
and parts of speech (POS) tagging. AMuSE is
trained on manual annotations involving English
WordNet senses, but thanks to its use of the multi-
lingual XLM-RoBERTa embeddings, it is also ap-
plicable to other languages that are represented in
BabelNet. According to the Universality Principle
of Hauer and Kondrak (2020), there is a one-to-one
correspondence between concepts in different lan-
guages. We apply AMuSE via the REST API2 to
all sentences that contain the target words.

We depict our process in Figure 1. For each
word, we compute its sense frequency distributions
in both the old and modern corpora based on the
output of the WSD system. If a sense is found in
the modern corpus but is missing in the old cor-
pus (or vice versa), a change is deemed to have
occurred (label 1). Otherwise, a word has the same
set of senses identified in both the old and modern
corpus. For each sense, we compute the relative
probability change (pr) as the ratio between the
absolute probability difference, and the larger of
the two probabilities (Formula 1). The probability
of a sense for a target word from the new and old
corpora is denoted as p1 and p2, respectively.

pr =
|p1 − p2|

max(p1, p2)
(1)

The resulting value is compared to a threshold,
which we tune on the development data by maxi-
mizing F-score. A relative change greater than the
threshold (set at 0.65) for any of the word senses
indicates that a change occurred for the given word
(label 1). Otherwise, we conclude that there is no
change (label 0).

The definition of binary change detection sug-
gests that it may be sufficient to determine if the set
of senses for a target word remains the same from
the old to the modern corpus. We implemented this
approach after the submission deadline, and ob-
tained 78% F-score on the development set, which
is below the F-score of 88% obtained with our prin-
cipal method described above.

Additionally, we computed two other metrics for
phase 2 after the submission deadline: sense gain
and sense loss detection. First, the same method-
ology is applied for detecting change, as sense
gain/loss is only applicable when there is change.

2https://nlp.uniroma1.it/amuse-wsd/
api-documentation
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If change is due to the threshold, we compare if
the old or modern probability is greater for sense
loss/gain. In scenarios where a sense was missing
in either the old sense set or the new sense set, we
use the direction of change to detect sense gain/loss.
Otherwise, if none of the above scenarios apply, we
conclude that there is no sense gain/loss. A lemma
can be labelled as having both sense gain and loss.
Our approach allows for this by calculating the la-
bels separately, and searching through the senses
for a word until gain/loss is detected before assign-
ing the no change label.

We consider our approach for phase 2 as
lightweight. Although AMuSE uses XLM-
RoBERTa embeddings, we did not have to train
them. Approaches that rely on contextual embed-
dings, such as BERT, may be computationally too
expensive to run on all instances (Kurtyigit et al.,
2021). Given a few hundred sentences per target
word in either corpus, we can run AMuSE on all
instances, rather than just a sample. We did not use
GPU, and simply ran the script on an Intel Xeon
CPU E5-2650 v4. The run time for WSD was ap-
proximately a few hours for the development set
(20 words) and close to a day for the evaluation set
(60 words). WSD results were only computed once
and then stored.

Further, we highlight how our approaches for
both phases are multilingual. Static embeddings
can be trained on the given corpora, and XLM-
RoBERTa is multilingual by nature. In phase 2,
the AMuSE WSD system allows for state-of-the-
art neural WSD in 40 languages. This demon-
strates that challenges described by Tahmasebi et al.
(2021), such as having a translated corpus to train
WSD systems, may not always be the case.

4 Evaluation

We test our methods on the development set, and re-
port the results on the evaluation set. Some results
were obtained after the submission deadline.

4.1 Phase 1: Graded Change

We use the tokenized and lemmatized versions of
the corpora provided in the competition to obtain
contextual and static embeddings, respectively. We
use CIRCE’s implementation3 for static embed-
dings, as well as for combining the predictions
between models. We use the implementation of

3https://github.com/mpoemsl/circe

Dev Eval
P R F1 P R F1

Change 79 100 88 55 100 71
Sense Gain 71 100 83 33 93 49
Sense Loss 30 100 46 50 92 65

Table 1: Results for the binary change tasks (in %) on
the development and evaluation sets.

XLM-RoBERTa from the Hugging Face transform-
ers library (Wolf et al., 2020)4 for contextual em-
beddings. We initialize the weights of the model to
the xlm-roberta-large available with the transform-
ers library.5

For evaluation, we use Spearman’s rank-order
correlation coefficient (Bolboaca and Jäntschi,
2006) between our ranking and the provided gold
ranking. After tuning weights on the development
set, the results of our system are 0.8375 and 0.5731
on the development and evaluation set, respectively.
Our results are much better than CIRCE, which
achieves a correlation of only 0.1894 averaged over
three runs on the evaluation set. Only two submis-
sions to the shared task achieved a higher correla-
tion on the evaluation set.

After analysing the rankings in the development
set, we find that aguantar and descendiente are
incorrectly ranked by 7 and 8 positions respectively.
Both of these words have a relatively low frequency
in the modern corpus. In addition, descendiente
occurs in the old corpus both as a noun and as a
verb. All of the other words are within 6 positions
of their correct rank with the majority being 2 or
fewer positions from their correct rankings.

4.2 Phase 2: Binary Change

The results of our method are shown in Table 1.
According to the official results, the F-score of
71% on the evaluation set, which is the main metric
for binary change detection, ranks our system as
second in the competition. It is interesting to note
that our approach obtains 100% recall, whereas the
baseline provided by the organizers obtains 100%
precision on the development set, so whenever the
two models agree, their classification is correct. For
the optional tasks of sense gain/loss detection, we
calculated our results after the official submission
deadline. At the time of writing, our results for

4https://huggingface.co/docs/
transformers/model_doc/xlm-roberta

5https://huggingface.co/
xlm-roberta-large
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sense gain and loss detection would place third and
second, respectively.

According to our error analysis on the devel-
opment set, our system disagrees with the gold
annotation by identifying semantic change in the
following three words: descendiente, músculo, and
reforma. In each of these cases, new senses were
found by AMuSE in the modern corpus; in addition,
two senses appear to have been lost for reforma.
Some instances could be interpreted as genuine lost
senses. For example, one of the senses of the noun
reforma, defined in WordNet 3.0 (Miller, 1995)
as “rescuing from error and returning to a rightful
course” occurs in the old corpus in the following
context: no puedo enseñar a las niñas más que dos
cosas: la reforma de letra y la fábula mitológica.
This suggests that WSD could be an effective ap-
proach for identifying changes in sense inventories.

Further inspection reveals that some instances of
a spurious new sense identification may have been
caused by incorrect POS tags assigned by AMuSE.
The gold annotations seem to consistently assign
a single POS tag to each target word. We experi-
mented with a modified approach to binary change
detection, which only considers the occurrences
in which the assigned POS tag matches the most
likely tag for a given lemma in BabelNet (Navigli
and Ponzetto, 2010), but the results were slightly
lower than for our main method.

5 Conclusion

We presented systems for both graded and binary
change discovery in the context of the shared task
on Lexical Semantic Change Discovery in Span-
ish. For the former, we proposed a system based
on CIRCE, with the modification of tuning the
weights between the static and contextual embed-
dings, and training the model to predict a masked
token rather than the time period. For the latter, we
demonstrated that a WSD system can be effective
in detecting word meaning changes. Future work
could include combining rankings from more than
two different models for graded LSC discovery. We
would also like to investigate if either of our two
methods could be applied to the other of the two
subtasks.

Acknowledgements

This research was supported by the Alberta Ma-
chine Intelligence Institute (Amii), the Natural Sci-
ences and Engineering Research Council of Canada

(NSERC), the Social Sciences and Humanities Re-
search Council (SSHRC), and Alberta Innovates.

References
Sorana-Daniela Bolboaca and Lorentz Jäntschi. 2006.

Pearson versus Spearman, Kendall’s Tau Correla-
tion Analysis on Structure-Activity Relationships of
Biologic Active Compounds. Leonardo Journal of
Sciences, 5(9):179–200.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
Cross-lingual Representation Learning at Scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Kawin Ethayarajh. 2019. How contextual are contextu-
alized word representations? Comparing the geom-
etry of BERT, ELMo, and GPT-2 embeddings. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 55–65,
Hong Kong, China. Association for Computational
Linguistics.

Lea Frermann and Mirella Lapata. 2016. A Bayesian
Model of Diachronic Meaning Change. Transac-
tions of the Association for Computational Linguis-
tics, 4:31–45.

Bradley Hauer and Grzegorz Kondrak. 2020. Synonymy
= translational equivalence. CoRR, abs/2004.13886.

Yoon Kim, Yi-I Chiu, Kentaro Hanaki, Darshan Hegde,
and Slav Petrov. 2014. Temporal Analysis of Lan-
guage through Neural Language Models. In Proceed-
ings of the ACL 2014 Workshop on Language Tech-
nologies and Computational Social Science, pages
61–65, Baltimore, MD, USA. Association for Com-
putational Linguistics.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

184



Sinan Kurtyigit, Maike Park, Dominik Schlechtweg,
Jonas Kuhn, and Sabine Schulte im Walde. 2021.
Lexical Semantic Change Discovery. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 6985–6998, Online.
Association for Computational Linguistics.

Jey Han Lau, Paul Cook, Diana McCarthy, David New-
man, and Timothy Baldwin. 2012. Word Sense In-
duction for Novel Sense Detection. In Proceedings
of the 13th Conference of the European Chapter of
the Association for Computational Linguistics, pages
591–601, Avignon, France. Association for Compu-
tational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Matej Martinc, Syrielle Montariol, Elaine Zosa, and
Lidia Pivovarova. 2020. Discovery Team at SemEval-
2020 Task 1: Context-sensitive Embeddings Not Al-
ways Better than Static for Semantic Change Detec-
tion. In Proceedings of the Fourteenth Workshop
on Semantic Evaluation, pages 67–73, Barcelona
(online). International Committee for Computational
Linguistics.

Rada Mihalcea and Vivi Nastase. 2012. Word epoch dis-
ambiguation: Finding how words change over time.
In Proceedings of the 50th Annual Meeting of the
Association for Computational Linguistics (Volume
2: Short Papers), pages 259–263, Jeju Island, Korea.
Association for Computational Linguistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed Representa-
tions of Words and Phrases and their Compositional-
ity. In Advances in Neural Information Processing
Systems, volume 26. Curran Associates, Inc.

George A. Miller. 1995. WordNet: A Lexical Database
for English. Commun. ACM, 38(11):39–41.

Sunny Mitra, Ritwik Mitra, Martin Riedl, Chris Bie-
mann, Animesh Mukherjee, and Pawan Goyal. 2014.
That’s sick dude!: Automatic identification of word
sense change across different timescales. In Proceed-
ings of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 1020–1029, Baltimore, Maryland. Asso-
ciation for Computational Linguistics.

Roberto Navigli. 2009. Word Sense Disambiguation: A
Survey. ACM Comput. Surv., 41(2).

Roberto Navigli and Simone Paolo Ponzetto. 2010. Ba-
belNet: Building a very large multilingual semantic
network. In Proceedings of the 48th Annual Meet-
ing of the Association for Computational Linguistics,
pages 216–225, Uppsala, Sweden. Association for
Computational Linguistics.

Paul Nulty and David Lillis. 2020. The UCD-Net Sys-
tem at SemEval-2020 Task 1: Temporal Referenc-
ing with Semantic Network Distances. In Proceed-
ings of the Fourteenth Workshop on Semantic Eval-
uation, pages 119–125, Barcelona (online). Interna-
tional Committee for Computational Linguistics.

Riccardo Orlando, Simone Conia, Fabrizio Brignone,
Francesco Cecconi, and Roberto Navigli. 2021.
AMuSE-WSD: An All-in-one Multilingual System
for Easy Word Sense Disambiguation. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing: System Demon-
strations, pages 298–307, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Martin Pömsl and Roman Lyapin. 2020. CIRCE at
SemEval-2020 Task 1: Ensembling Context-Free and
Context-Dependent Word Representations. In Pro-
ceedings of the Fourteenth Workshop on Semantic
Evaluation, pages 180–186, Barcelona (online). Inter-
national Committee for Computational Linguistics.

Eleri Sarsfield and Harish Tayyar Madabushi. 2020.
UoB at SemEval-2020 Task 1: Automatic Identi-
fication of Novel Word Senses. In Proceedings of the
Fourteenth Workshop on Semantic Evaluation, pages
239–245, Barcelona (online). International Commit-
tee for Computational Linguistics.

Dominik Schlechtweg, Barbara McGillivray, Simon
Hengchen, Haim Dubossarsky, and Nina Tahmasebi.
2020. SemEval-2020 Task 1: Unsupervised Lexical
Semantic Change Detection. In Proceedings of the
Fourteenth Workshop on Semantic Evaluation, pages
1–23, Barcelona (online). International Committee
for Computational Linguistics.

Peter H Schönemann. 1966. A generalized solution of
the orthogonal procrustes problem. Psychometrika,
31(1):1–10.

Nina Tahmasebi, Lars Borin, Adam Jatowt, Yang Xu,
and Simon Hengchen, editors. 2021. Computational
approaches to semantic change. Number 6 in Lan-
guage Variation. Language Science Press, Berlin.

Nina Tahmasebi and Thomas Risse. 2017. Finding
Individual Word Sense Changes and their Delay in
Appearance. In Proceedings of the International
Conference Recent Advances in Natural Language
Processing, RANLP 2017, pages 741–749, Varna,
Bulgaria. INCOMA Ltd.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven
Le Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander Rush. 2020. Transformers:
State-of-the-Art Natural Language Processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System

185



Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Frank D. Zamora-Reina, Felipe Bravo-Marquez, and
Dominik Schlechtweg. 2022. Lscdiscovery: A
shared task on semantic change discovery and de-
tection in spanish. In Proceedings of the 3rd Inter-
national Workshop on Computational Approaches to
Historical Language Change, Dublin, Ireland. Asso-
ciation for Computational Linguistics.

186



Proceedings of the 3rd Workshop on Computational Approaches to Historical Language Change, pages 187 - 192
May 26-27, 2022 ©2022 Association for Computational Linguistics

CoToHiLi at LSCDiscovery: the Role of Linguistic Features in Predicting
Semantic Change

Ana Sabina Uban♠,♡ Alina Maria Cristea♡ Anca Dinu♣,♡

Liviu P. Dinu♠,♡ Simona Georgescu♣,♡ Laurent, iu Zoicas, ♣,♡

♡Human Languages Technologies Research Center, University of Bucharest
♠ Faculty of Mathematics and Computer Science, University of Bucharest
♣Faculty of Foreign Languages and Literatures, University of Bucharest

auban@fmi.unibuc.ro, alina.cristea@fmi.unibuc.ro, anca.dinu@lls.unibuc.ro

ldinu@fmi.unibuc.ro, simona.georgescu@lls.unibuc.ro, laurentiu.zoicas@lls.unibuc.ro

Abstract

This paper presents the contributions of the
CoToHiLi team for the LSCDiscovery shared
task on semantic change in the Spanish lan-
guage. We participated in both tasks (graded
discovery and binary change, including sense
gain and sense loss) and proposed models based
on word embedding distances combined with
hand-crafted linguistic features, including pol-
ysemy, number of neological synonyms, and
relation to cognates in English. We find that us-
ing linguistically informed features combined
using weights assigned manually by experts
leads to promising results.

1 Introduction

In recent years, more and more studies in compu-
tational linguistics have focused on the issue of
lexical semantic change, tracking the shift in the
meaning of words by looking at their usage across
time in corpora dating from different time periods
(Hamilton et al., 2016; Schlechtweg et al., 2020).
Vector spaces and word embeddings have widely
been used for tracking semantic shifts of words
across different time periods.

Previous studies on the computational analysis
of lexical semantic change have found that differ-
ent word properties such as word frequency and
polysemy have a role in influencing the potential
semantic shift of the word, proposing statistical
laws of semantic change such as the law of innova-
tion and the law of differentiation (Hamilton et al.,
2016; Xu and Kemp, 2015; Uban et al., 2021b,
2019). Uban et al. (2021a, 2019) have proposed
that semantic change can be studied cross-lingually,
by comparing present meanings of cognate words,
which by definition share a common etymon from
which the current meanings have diverged. The re-
sulting implication is that analyzing cognates of the
target word in other languages can also potentially
provide clues regarding the word’s prior semantic
change. We provide more details on the linguistic

motivation for regarding these features as relevant
for the task of analyzing semantic change in the
following sections.

2 Background

The LSCDiscovery shared task (D. Zamora-Reina
et al., 2022) on predicting semantic change for the
Spanish language consisted of two sub-tasks. For
the first task - graded discovery - the participants
were asked to rank the set of content words (N, V,
A) in the lemma vocabulary intersection of C1 and
C2 according to their degree of semantic change
between C1 to C2. The predictions were scored
against the ground truth via Spearman’s rank-order
correlation coefficient.

For the second sub-task - binary change - partic-
ipants were be asked to classify a pre-selected set
of content words (N, V, A) into two classes, 0 for
no change and 1 for change. The second sub-task
also included two optional sub-tasks on predict-
ing whether the target word undergoing semantic
change has gained or lost senses, also formulated
as a binary classification problem. Submissions
were graded using precision, recall and F1-score.

The data consisted of two corpora of texts in the
Spanish language: old corpus, created using differ-
ent sources freely available from Project Gutenberg
(containing texts published between 1810 - 1906),
and modern corpus, created using different sources
available from the OPUS project (with texts pub-
lished between 1994 - 2020).

We participated in the LSCDiscovery shared task
on semantic change in the Spanish language with
submissions in both main sub-tasks: graded dis-
covery and binary change, as well as the optional
tasks on sense gain and sense loss. For all tasks
we experimented with approaches based on dis-
tances in word embedding spaces combined with
hand-crafted linguistic features.
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3 System Overview

In this section we describe the features and models
used to make automatic predictions on the seman-
tic change of target words, for both sub-tasks. We
release all the code used for implementing our sub-
missions.1

The general method for our submissions in all
tasks has consisted of computing, for every given
target word, several metrics including embedding
distances and linguistic hand-crafted features, and
subsequently weighing them as features in a model
used to predict the final score. The list of features
used consists of the following:

• word embedding cosine similarity scores -
3 different scores according to the different
alignment methods (see following section for
details)

• word polysemy degree

• number of neological synonyms of the word

• Levenshtein distance to closest English word

In the following subsections we describe in detail
both the features and the models used to achieve
predictions.

3.1 Word Embedding Distances
The first type of features we used is based on word
embedding distances. Following already standard
approaches in the study of semantic change based
on diachronic corpora, we trained word embed-
dings separately on the two provided corpora, sub-
sequently used an alignment algorithm to obtain a
common embedding space, and finally measured
the cosine-distance between each target word’s rep-
resentation in the two embedding spaces, as a proxy
for the degree of its semantic shift between the two
periods represented in the corpora.

The embedding algorithm we used is word2vec
(Mikolov et al., 2013), trained with default parame-
ters in the gensim library. We trained two separate
models using the same settings on the tokenized
versions of the corpora (non-lemmatized). We then
aligned the obtained embedding spaces using three
different approaches based on (Artetxe et al., 2016,
2017, 2018a,b), using the open-source code pro-
vided by the authors2: supervised alignment using a
seed word dictionary and a linear mapping method,

1https://github.com/ananana/LSCDiscovery-cotohili
2https://github.com/artetxem/vecmap

semi-supervised alignment, optimized for using a
small seed word dictionary, and unsupervised align-
ment based on adversarial training.

We chose to include the semi-supervised and
unsupervised approach because of the small list
of seed words used (which we assumed could not
guarantee a high-quality aligned embedding space
using the supervised method). As seed words for
the supervised and semi-supervised settings we
used the same list of function words in Spanish
derived from the NLTK3 library, considering the
ones that also occur in the given corpora.

For all sub-tasks and systems submitted, we used
the aligned embedding spaces produced with the
method above. From a computational performance
perspective, the most costly process was alignment,
with the other steps completing in negligible time
on a GPU machine (using the default GPUs made
available on the Google Colaboratory4 platform):
from seconds for training the supervised models
to minutes for training the embedding spaces. For
the alignment stage, we ran the algorithms on a
CPU machine with an 8-core i7 processor. The
supervised alignment completed in approximately
5 minutes, while the semi-supervised and unsu-
pervised methods completed in 5 to 7 hours each.
The training phase for building and aligning the
embeddings models was the most costly from this
perspective, while the actual inference computed
for the sample of 4,000 target words was negligible
in comparison (consisting only of retrieving cosine
distance scores from the embeddings spaces and
combining it with linguistic features scores).

Model Correlation
LinReg with 0.282
cosine-dist and ling. feat.
Manual weighting (-)0.325
cosine-dist and ling. feat.
Baseline1 0.092
Baseline2 0.543

Table 1: Results for graded discovery task

3.2 Linguistic Features

Word Polysemy For each word, we computed its
polysemy degree by counting the number of synsets
it occurs in in WordNet(Miller, 1995), specifically
in Open Multilingual WordNet(Bond and Foster,
2013). The degree of polysemy is measured simply

3http://nltk.org/book/
4https://colab.research.google.com/
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Model F1 Precision Recall
Manual weighting of 0.636 0.353 0.750
cosine-dist and ling. feat.
DecisionTree with 0.4 0.143 0.211
cosine-dist and ling. feat.
Baseline1 0.537 0.846 0.393
Baseline2 0.222 0.500 0.143

Table 2: Results for binary change detection

as the number of synsets obtained (without distin-
guishing between polysemy and homonymy).

We assume that polysemy (i.e., the coexistence
of several possible meanings for one word) is a
relevant feature since it has been shown to be statis-
tically correlated with the rate of semantic change
in various previous studies (Bréal, 1897; Ullmann,
1963; Magué, 2005). Bréal (1897) and Ullmann
(1963) labelled polysemy as the core of meaning
change, considering that change occurs when a sec-
ondary or connotative meaning replaces the main
or denotative one. Ullmann (1963) underlines the
role of discontinuity as a "natural diachronic con-
sequence of the polysemic principle", explained in
terms of using a word outside of its initial context,
until its original meaning is either forgotten by the
speakers, or becomes secondary. Magué (2005)
defines polysemy as the synchronic manifestation
of semantic change. A possible difficulty in the
present task is that WordNet cannot make the dif-
ference between polysemic words and homonyms
(i.e., words that share the same form, but have dif-
ferent origins and, hence, meanings). Nonetheless,
the Spanish language has tended, throughout its
history, to avoid the homonymic clashes, either by
introducing a graphic distinction (e.g. Sp. gravar
"to charge" < Lat. gravare, vs Sp. grabar "to
record" < Fr. graver), either by simply replacing
one of the homonyms by an unambiguous lexeme.
Therefore, the cases of possible confusion between
polysemy and homonymy are found in a small per-
centage.

Number of Neological Synonyms As a second
feature, we considered the number of synonyms
the target word has, in particular neologisms. We
extract synonyms for a target word using WordNet
(considering all possible senses of the word). In or-
der to select only neological synonyms, we assume
a synonym is a neologism (literally, a new word) if
it does not occur in the old corpus provided in the
shared task.

Our hypothesis is that a word with new syn-

Model F1 Precision Recall
Manual weighing of 0.462 0.316 0.857
cosine-dist and ling. feat.
DecisionTree with 0.111 0.071 0.087
cosine-dist and ling. feat.
Baseline1 - - -
Baseline2 0.211 0.400 0.143

Table 3: Results for optional task on sense gain

onyms may have diverged from its original seman-
tic pattern, as its new lexical rival could have been
increasingly regarded as more suitable for the po-
sition of the target word. Obeying the tendency
of economy of language, it is counterproductive
to have two or more words occupying the same
position in the structure of the lexicon, therefore
one either migrates to a different semantic field,
either undergoes, most often, a semantic special-
ization (e.g. Lat. vivenda "living necessities" >
Sp. vivienda "living place"), a generalization (Lat.
denarius "an ancient Roman silver coin, worth ten
asses" > Sp. dinero "money" in general) or a cohy-
ponymic transfer (i.e. a word designating a certain
element of a class shifts as a denomination for an-
other element belonging to the same class, e.g. Lat.
pavus "peacock" > Sp. pavo "turkey"). This shift
generally affects the former holder of a position in
the lexical system, giving way to new candidates.

Levenstein distance to English Words English
has exerted, in recent decades, a strong influence
on the Romance languages, materialized both in
lexical borrowings, and especially in semantic bor-
rowings or calques (Dworkin, 2012).

We assume that the existence of a virtual cognate
in English (we understand by "virtual cognates"
two or more descendants of the same etymon in
different languages, without being inherited in each
language; in this investigation, we considered as
"virtual cognates" any pair consisting of a Romance
borrowing from a Latin word and the English loan-
word originated from the same Latin word, e.g. Sp.
directo and Eng. direct) with a similar pronunci-
ation (whether sharing the same meaning or not)
may be an indicator that the target word could have
been influenced by its English correspondent(Uban
et al., 2021a). As an example, we could mention
the case of Sp. servidor, whose significant diver-
gence from its original meaning could also be due
to the new acceptation it gained, in computer sci-
ence, through a calque of Eng. server "a computer
that provides client stations with access to files
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and printers as shared resources to a computer net-
work". We retrieve candidate cognate words in
English by using the Levenshtein distances from
the target word to any English word in the vocab-
ulary, and choosing the closest English word as
a potential cognate. We use the Levenshtein dis-
tance to this word as a feature in our model. Here
are just a few examples of Spanish - English word
pairs identified by using the Levenshtein distances,
where the influence of the English meaning on the
current use of the word in Spanish is significant:
Sp. administración, originally "act of administer-
ing", influenced by Eng. administration came to
mean as well "Government (of a country)"; Sp.
contemplar, originally "to see", also received the
meaning "to consider" under the influence of Eng.
contemplate; Sp. vegetales "plants" is also used in
the acceptation of Eng. vegetables "plant or part
of the plant used as food"; Sp. nominar "to give a
name" acquired as well the meaning of Eng. nomi-
nate "propose as a candidate for elections or for an
award", etc.

3.3 Linguistically-Informed Weighting of
Features

For one of our solutions submitted to the second
sub-task we attempt to combine the selected fea-
tures by manually assigning weights to each fea-
ture, using expert judgements from linguists spe-
cialized in Romance languages and in historical
semantics.

Table 4 shows the weights we assigned to each
feature. We chose the highest weights to the word
embeddings feature, giving more importance to
the ones obtained with the supervised alignment
approach. For the linguistic features, we consid-
ered word polysemy and number of neological syn-
onyms. The range of possible values for these fea-
tures contains higher numbers than the embedding
cosine distances, with comparable ranges between
the two linguistic features (natural numbers with
no upper limit in theory), which is why we assign
lower weights for the linguistic features. We con-
sider polysemy as more important than number of
synonyms (considering the theoretical justifications
presented above). Since the third linguistic feature,
designed to measure the closeness to an English
cognate (approximated with Levenshtein distance
to the closest English word) is less precise than the
other features in the way it is measured, and since
its effect on language change can be more com-

Feature Weight
embeddings-cosine-unsupervised 0.1
embeddings-cosine-supervised 0.4
embeddings-cosine-semi-supervised 0.1
nr-neo-synonyms 0.02
wordnet-polysemy 0.05

Table 4: Weights for the different features used, manu-
ally assigned with the assistance of linguistic experts

plex, it was difficult to decide on a specific relative
weight in this case that could be reliable, so we left
this feature out of this solution.

While we did not submit results using manual
weighting for the first sub-task on graded discovery,
we did incorporate them in our submission for the
second sub-task which included an optional task
on graded discovery. Due to an error when com-
puting the results, we reported the opposite score
to the one generated by the model (with a negative
sign), leading to a negative rank correlation with
the ground truth. We suggest that, disregarding
this error, the results can be considered with an
opposite sign, leading to a positive correlation.

For binarizing the results, we used a threshold
equal to the median score on the full set of target
words.

3.4 Supervised Learning of Feature Weights
As a second solution, we learn the relative weights
of each of the features considered using a super-
vised approach by training a simple model on a very
small number of annotated examples. As training
data, we used the examples and scores provided by
the organizers5 containing a list of 20 target words
along with semantic shift scores.

For sub-task 1 (graded discovery) we used a
linear regression model, trained to predict the se-
mantic shift degree on the small set of annotated
examples.

For sub-task 2 along with the optional subtasks
on binary change, we trained a decision tree model
to predict binary labels. We binarized the contin-
uous labels in the annotated examples by setting
a threshold equal to the median value of semantic
shift on the dataset: any score below this thresh-
old was considered a negative label, and any score
above it a positive label.

We additionally analyzed the weights learned
by the models in order to gain some insights into
the importance awarded automatically to each fea-
ture. The linear regression model learned the fol-

5https://zenodo.org/record/6300105#.YlK2AXVBxhE

190



lowing weights for the embedding-based cosine
scores: 0.35 for the unsupervised alignment space,
0.91 for the supervised space, and 0.34 for the
semi-supervised aligned space. For the linguistic
features, the model learned a weight of 1 for the
neological synonyms feature, 7 for polysemy de-
gree, and 0.27 for the Levenshtein score to English
words. We notice that all weights are positive, and
interestingly, that their relative importance matches
the one considered for setting weights manually
based on linguistic motivations.

For predicting decisions on the optional subtasks
of sense gain and sense loss, we combined the pre-
dictions for binary change with the values of some
of the linguistic features considered which could
serve as indicators for sense gains or losses, ac-
cording to the reasons stated before: we consider a
word to have lost a sense if it was predicted to have
changed its meaning, and it has any neological syn-
onyms, while polysemy is low (less than 2 senses).
Any word which was predicted to have changed
its meaning and not lost senses was considered to
have gained senses.

4 Results

4.1 Task 1: Graded Discovery

We show our results for sub-task 1 in Table 1. We
additionally report here the results obtained with
the manual weighting system not submitted to the
first sub-task, but submitted to the optional graded
change task in the second phase. The baselines
consisted of: a skip-gram embeddings model with
negative sampling, and orthogonal Procrustes for
embedding space alignment (baseline 2), and nor-
malized frequency difference.

4.2 Task 2: Binary Change

Results for sub-task 2 are shown in Table 2. We
also submitted predictions for the optional task of
sense gain, shown in Table 3. We obtained the
second place in terms of recall for sense gain. For
sense loss, we do not report detailed results since
neither of our systems were able to generate correct
predictions (obtaining scores of 0.0).

We notice that, in general, the unsupervised ap-
proach using manual weighting of features outper-
formed the supervised approach. This might be
due to the very small size of the annotated data, but
is also an encouraging result showing the success
of incorporating linguistically informed and expert
curated measures for predicting semantic change.

5 Conclusions

We have presented our methods and results in par-
ticipating in the Spanish semantic change shared
task. We proposed a system based in part on
word embedding distances, which are already the
norm in SOTA models for predicting semantic shift
(Schlechtweg et al., 2020), and in part on hand-
crafted linguistic features, chosen based on theo-
retical linguistic motivation and on empirical evi-
dence of their relevance to semantic change. While
we have done minimal experimentation with the
parameters and settings used in training word em-
beddings, and used supervised models trained on
very little data, we obtain encouraging results. For
the future, we suggest that combining embedding
models trained with more fine-tuned parameters op-
timized for the given task along with features such
as the ones described could lead to improved re-
sults. We conclude that incorporating linguistically
informed features (aside from word frequency)
in computational models for predicting semantic
change is a valuable and currently under-explored
avenue.
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Abstract
This paper describes the methods used for
lexical semantic change discovery in Spanish.
We tried the method based on BERT embed-
dings with clustering, the method based on
grammatical profiles and the grammatical pro-
files method enhanced with permutation tests.
BERT embeddings with clustering turned out
to show the best results for both graded and bi-
nary semantic change detection outperforming
the baseline.

1 Introduction

Lexical semantic change detection (LSCD) aims to
identify whether the words change their meaning
over time, or not. LSCD is usually divided into
two subtasks: graded change discovery and binary
change detection. Graded LSCD is a subtask of
ranking the intersection of (content-word) vocabu-
laries according to their degree of change between
a diachronic corpus pair C1 and C2 (Kurtyigit
et al., 2021). Binary LSCD is a subtask of identi-
fying whether a target word lost or gained senses
from the 1st set of its usage to the second, or not
(Schlechtweg et al., 2020).

Previous shared tasks on lexical semantic change
detection (LSCD) were developed for English, Ger-
man, Latin, and Swedish (Schlechtweg et al., 2020),
Italian (Basile et al., 2020), and Russian (Kutuzov
and Pivovarova, 2021). This one was in Spanish
(D. Zamora-Reina et al., 2022). Spanish is a fu-
sional Romance language of the Indo-European
language family with rich morphology and a lot
of national varieties. So far, LSCD in shared tasks
were developed for three Romance languages, three
German languages, and one Slavic language. Only
two of them are analytical (English and Swedish),
while others are fusional.

In this shared task we tested several methods.
For graded change discovery we used BERT em-
beddings with clustering (Montariol et al., 2021).

∗Equal contribution, the authors listed alphabetically.

For binary change detection we used 3 methods.
The first one was word embeddings again. Two
others were grammatical profiling (Kutuzov et al.,
2021), and grammatical profiling combined with
permutation tests (Liu et al., 2021).

Though grammatical profiles by themselves
yield worse performance than embedding-based
method, they could be significantly improved by
applying of additional significance tests.

2 Methods

2.1 BERT embeddings method

For this method we used a base version of BERT
with 12 attention layers and a hidden layer size
of 768. The exact pre-trained model was the one
for Spanish 1 (Devlin et al., 2019). All parameters
were set to the default as in the Transformers library
ver. 4.14.1 (Wolf et al., 2020).

The method consisted of several steps. First,
we split the corpora into train and test sets. The
train/test ratio was 90/10. We used the lemmatized
version of the corpora in this method. Then we took
the pre-trained BERT model for Spanish and ran a
fine-tuning process on the train set of the corpora
using the test set for evaluation. The code we used
for fine-tuning is provided as one of the examples
in the Transformers library repository 2.

After fine-tuning the model we extracted the em-
beddings for the target words from the full corpora
provided. The embeddings were extracted sepa-
rately for two time periods. To generate a final
embedding for each target word, the embeddings
from all 12 attention layers of the BERT model
were summarized. The embeddings for all entries
of every target word were extracted this way.

As a result, we obtained two matrices for every

1We used the following model:
https://huggingface.co/dccuchile/bert-base-spanish-wwm-
uncased

2https://github.com/huggingface/transformers/tree/main/
examples/pytorch/language-modeling
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target word. One matrix represented one time pe-
riod. The dimension of the resulting matrix was
Nx768, where N is the number of occurrences of
the target word in the corpus of particular time
period.

The final step was clustering. We ran a k-means
clustering algorithm on the rows of the resulting
matrices. It should be noted that we also attempted
to use the affinity propagation algorithm, but it
proved unfeasible at this point, as the number of
target words and the number of their embeddings
was too large for the affinity propagation approach.
So the final decision was to resort to the k-means
algorithm which is much faster. The number of
clusters was set as a hyperparameter which we
tuned at the development phase. The development
phase demonstrated that the results were the best
when the number of clusters equaled to a multiple
of 7 with the larger numbers showing better results.
In order to find a balance between the clustering
time and the results we decided that the number of
clusters should be 28.

The resulting clusters presumably represented
some gradations of word meanings. In order to
calculate the graded change between the sets of
clusters from two time periods, we used the average
of the cosine distances between all pairs of the
cluster centroids. The binary change was calculated
by clustering the resulting graded changes into two
clusters: the words that fall into the cluster with
higher centroid value were considered as changed.
The other words were considered as unchanged.

To detect binary gain/loss we took the cluster
centroids calculated on one of the previous steps.
Those centroids were clustered once again, but this
time we used the affinity propagation method that
determined the number of clusters automatically.
The result clusters presumably represented the ba-
sic meanings of target words. After that we com-
pared the number of resulting clusters for both time
periods. If the number of clusters in the first pe-
riod was larger than that in the second period, we
assumed that this word lost a sense. If not, we
assumed the word gained a sense.

As for the optional COMPARE task, our submis-
sion was identical to that for the main Graded task.
We did not use any other method for that.

2.2 Grammatical profiling

All language aspects are strongly interconnected.
It means that semantic changes may be tied with

grammatical changes. Diachronically, it can be
observed through lexicalization and grammatical-
ization in particular. In Spanish, the modern usage
of the verb andar ’to go’ can be a good example of
grammaticalization:

De que Blasillo ande al escuela me e holgado mucho (16th
c.).

‘Since Blasillo has been going to school, I have been very
happy.’

– ¿Y eso es todo el problema? — Ándale, exactamente eso.
(21th c.)

‘And that’s the whole problem? Yes, yes (lit. walk to it),

that’s exactly it.’ (Company Company, 2008)

So here we can see that this verb changed its
meaning while changing its form.

The idea of grammatical profiling is that seman-
tic change can be discovered through significant
changes in the distribution of morphosyntactic cate-
gories. This method is described in (Kutuzov et al.,
2021) in detail, so here we explain only the main
points. To get grammatical profiles, the frequency
of morphological and syntactic categories for each
target word were counted in both corpora, that were
in advance tagged and parsed with UDPipe (Straka
and Straková, 2017) 3. Then, for each target word
and for both morphological and syntactic dictio-
naries, a list of features was created by taking the
union of keys in the corresponding dictionaries for
the two time bins. After that, feature vectors x⃗1 and
x⃗2 were made. Each dimension of these vectors
represented a grammatical category and the value
it took was the frequency of that category in the
corresponding time period (Kutuzov et al., 2021).
Then, the cosine distance cos(x⃗1; x⃗2) between the
vectors were calculated to estimate the change in
the grammatical profiles of the target word 4. These
distances can be used for graded change discovery.
For binary detection, the top n target words were
classified in the ranking as ‘changed’ (1) and others
as ’stable’ (0).

2.3 Grammatical profiling enhanced with
permutation-based statistical tests

Earlier statistical significance tests were applied
to semantic change detection methods based on
contextual word embeddings (Liu et al., 2021).
Permutation-based statistical testing can be applied
when data is limited. We used permutation tests
to improve the results obtained with grammatical

3We used the following model: spanish-gsd-ud-2.5-
191206.udpipe

4The code is available at https://github.com/
glnmario/semchange-profiling
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profiling, as the aim of the permutation test is to
discover whether the observed test statistic (i.e. the
cosine distance) is significantly different from zero
(Liu et al., 2021). Permutation tests reassigned
group labels (time periods) to all observations by
sampling without replacement.

For binary change detection we calculated the
default distance between grammar profiles. Then,
we took sentence indices from the first and the sec-
ond corpus for every target word and permute them
by randomly splitting them between two time peri-
ods. If the number of possible permutations were
less than 1000 we used all permutations. Then
we calculated cosine distance between grammar
profiles generated after shuffling. So, we have 2
sets of distances: the original cosine distance be-
tween grammar profiles and the permutated cosine
distances between grammar profiles.

Let us assume, there were 5 permutations, so
we got 5 distances, e.g., 0.1, 0.7, 0.4, 0.15, and
0.2, and the original cosine distance was 0.3. We
took only those permutated cosine distances that
were larger than the default cosine distance. In this
example, these are 0.7 and 0.4 (two values). So,
we divided the number of these larger permutated
distances by the number of permutations. In this
example, this is 2/5. This result is a p-value (Liu
et al., 2021).

If the number of permutations were greater than
1000, the procedure was the same, but we corrected
the p-value for every digit capacity, i.e., we took
the first significance threshold as 0.05 and step-by-
step reduced it till 0.005 (Liu et al., 2021). In other
words, we first randomly selected 1000 permuta-
tions and computed p-value. If this was larger 0.05,
we stopped the procedure, otherwise took more
permutations for more precise estimations.

As a result, we had the cosine distance between
grammar profiles and the p-value for every target
word. For binary change detection we sorted these
values both by the distance and the p-value and
labeled top n target words as changed.

3 Results

The submission results are presented in Table 1.
Clustering turned out to be the best one among

all our methods. In graded change discovery it was
proved to be better than both baselines and took the
3rd place in the leaderboard.

Grammatical profiling demonstrated the worst
results among three methods we used (see Table 1).

Graded
COMPARE Spearman

Clusters 0.558 0.553
Baseline 0.561 0.543
Grammar — 0.390

Binary
Precision Recall F1

Clusters 0.567 0.607 0.586
Grammar 0.714 0.357 0.476
Stats 0.750 0.429 0.545
Baseline 0.846 0.393 0.537

Gain
Precision Recall F1

Clusters 0.192 0.357 0.250
Baseline 0.400 0.143 0.211

Loss
Precision Recall F1

Clusters 0.421 0.320 0.364
Baseline 0 0 0

Table 1: Submission results: Clusters means embed-
ding clustering method, Grammar means grammati-
cal profiles and Stats means grammatical profiles com-
bined with a permutation test. Grammatical profiling
for graded discovery was made after the competition.

However, the results indicate that it was signifi-
cantly improved by applying a permutation test.
It should also be noted that grammatical profiling
with a permutation test demonstrated the best pre-
cision among all participants and was only outper-
formed by the baseline. We also applied grammati-
cal profiling for graded change discovery after the
competition. The result was worse than baseline
(see Table 1).

The clustering method was our only method
that was applied to the optional Gain/Loss task,
however, it did not show good results. While this
method surpassed the baseline numbers, it proved
to be significantly inferior to the other methods
participating in the task. We assume that it hap-
pened because we approached the Gain/Loss task
as a separate task. The better approach might have
been to somehow use the results we received on the
main Binary task in order to calculate the gain/loss
values.

There is another problem with the method that
we can think of. The method assigned a gain/loss
label for the word if the number of clusters in two
time epochs differs even by one. Perhaps a better
approach would have been to decrease the sensi-
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word
change
graded

change
graded
golden

change
graded

difference
actitud 0.369 0.925 0.556
propiamente 0.473 0 0.473
fallecimiento 0.468 0 0.468
viernes 0.447 0 0.447
trato 0.490 0.051 0.439
distribuir 0.438 0 0.438
banco 0.514 0.925 0.411
canal 0.607 1 0.393
variedad 0.392 0 0.392
socialista 0.391 0 0.391

Table 2: BERT-based predictions compared with the
gold standard.

tivity of the method and to ignore the insignificant
differences between the number of clusters.

4 Discussion

Table 2 presents the top 10 words with the largest
difference between BERT-based predictions and
the gold standard. Closer inspection shows that
there are two error types. According to the stan-
dard, some words (actitud, banco) changed a lot,
while our prediction for these words appeared to
be much lower. Meanwhile, there were words that
did not change, however, our model labeled them
as changed (propiamente, fallecimiento, viernes,
distribuir, variedad, socialista). Interestingly, that
within the top 10 words, the model fell into errors
on the side of changing more often.

Table 3 presents the top 10 words with the largest
difference between grammatical profiling predic-
tions and the gold standard. Our prediction for
these words was much lower than the gold stan-
dard. Some incorrect predictions are the same with
the incorrect predictions obtained with the BERT-
based method (actitud, canal, banco). A likely
explanation is that these words have a complicated
semantic structure and more than one meaning.

5 Conclusion

Further studies need to be carried out in order to
evaluate the combination of profiling with statis-
tical significance testing for other languages. Al-
though the BERT-based method demonstrated the
best results, more detailed error analysis is still
required.

word
change
graded

change
graded
golden

change
graded

difference
marco 0.018 1 0.982
prima 0.118 1 0.882
actitud 0.115 0.925 0.810
indicativo 0.202 1 0.798
canal 0.240 1 0.760
disco 0.167 0.915 0.748
pendiente 0.096 0.781 0.685
corriente 0.072 0.753 0.681
banco 0.246 0.925 0.678
cólera 0.098 0.741 0.643

Table 3: Grammatical profiles predictions compared
with the gold standard.
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Abstract

The contextualized embeddings obtained from
neural networks pre-trained as Language Mod-
els (LM) or Masked Language Models (MLM)
are not well suitable for solving the Lexical
Semantic Change Detection (LSCD) task be-
cause they are more sensitive to changes in
word forms rather than word meaning, a prop-
erty previously known as the word form bias or
orthographic bias (Laicher et al., 2021). Unlike
many other NLP tasks, it is also not obvious
how to fine-tune such models for LSCD. In
order to conclude if there are any differences
between senses of a particular word in two cor-
pora, a human annotator or a system shall ana-
lyze many examples containing this word from
both corpora. This makes annotation of LSCD
datasets very labour-consuming. The existing
LSCD datasets contain up to 100 words that
are labeled according to their semantic change,
which is hardly enough for fine-tuning.

To solve these problems we fine-tune the XLM-
R MLM (Conneau et al., 2020) as part of
a gloss-based WSD system on a large WSD
dataset in English. Then we employ zero-shot
cross-lingual transferability of XLM-R to build
the contextualized embeddings for examples in
Spanish. In order to obtain the graded change
score for each word, we calculate the average
distance between our improved contextualized
embeddings of its old and new occurrences. For
the binary change detection subtask, we apply
thresholding to the same scores.

Our solution has shown the best results among
all other participants in all subtasks except for
the optional sense gain detection subtask.

1 Introduction

LSCDiscovery (D. Zamora-Reina et al., 2022) is a
shared task on Lexical Semantic Change Detection
(LSCD) in Spanish. In general, LSCD is the task of
automatically analyzing differences between word
senses in two corpora. In the shared task, these
two corpora represent two time periods (1810-1906

and 1994-2020), and the participants are asked to
analyze changes in the meaning of words over time,
or diachronic change.

There are two main subtasks in the shared task:
graded change and binary change detection. In the
first subtask, the participants are asked to rank a
list of words according to the magnitude of change
in the relative frequencies of their senses (mea-
sured by the Jensen–Shannon distance between the
probability distributions over senses automatically
inferred by the organizers from the pairwise human
annotations). In the second subtask, for each given
word the systems should detect if the sets of its
senses appearing in the old and the new corpus are
different, i.e. if any new senses have appeared or
any old senses are not in use anymore.

Despite the success of recurrent and
Transformer-based neural networks pre-trained as
language models (LM) or masked language models
(MLM) on large corpora in a wide variety of NLP
tasks, they cannot be applied to the LSCD task in
a standard way. Most datasets used to fine-tune
such models for different NLP tasks contain
tens or hundreds of thousands examples, each of
these examples is a text fragment not longer than
several hundred words that contain all information
required to make a correct prediction. In LSCD
one example is a word, however, inspecting many
occurrences of this word in both old and new
corpora is required to draw correct conclusions
about changes of its meaning. This requires a
model that can extract information from many
word occurrences and somehow aggregate it to
produce the final prediction. Also, this makes
creating labeled datasets for the task extremely
labour-consuming, resulting in typical datasets
containing less than 100 labeled words per
language (Schlechtweg et al., 2021; Kutuzov and
Pivovarova, 2021), which is hardly enough for
fine-tuning.

Alternatively, in Laicher et al. (2021) the con-
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Figure 1: The multilingual gloss-based WSD model based on the BEM architecture.

textualized embeddings calculated by a pre-trained
MLM without any fine-tuning were applied to solve
the LSCD task. They found that the largest signal
in these embeddings corresponds to the grammat-
ical form, not to the meaning of words. This is
known as the grammatical or orthographic bias of
the contextualized embeddings and prohibits their
direct application to the LSCD task.

The main idea behind our solution is that fine-
tuning on some task that requires understanding
word senses and at the same time ignoring word
forms shall help to get rid of grammatical bias in
the contextualized embeddings. A suitable task
shall also have a large dataset for fine-tuning. In
our solution of the LSCD task, we fine-tune a pre-
trained MLM as part of a gloss-based WSD system,
i.e. a system that can select the most appropriate
gloss for a given word in a given context. Our
WSD system is based on the architecture proposed
in Blevins and Zettlemoyer (2020), however, we
replace English BERT with multilingual XLM-R to
make our system multilingual. We train the system
on English WSD data only, then apply it to the texts
in Spanish exploiting zero-shot cross-lingual trans-
ferability of XLM-R to obtain the contextualized
embeddings for Spanish words.

Despite not using any labeled data in Spanish,
the described method of fine-tuning XLM-R re-
sults in such contextualized embeddings that are
directly applicable for lexical semantic change de-
tection in Spanish. Our solution based on these
contextualized embeddings has achieved the best
results among all other participants in both main
subtasks, and also in all optional subtasks except

for the sense gain detection.1

2 Background

Our solution is inspired by the BEM (Bi-Encoder
Model) system developed by Blevins and Zettle-
moyer (2020) to solve the Word Sense Disambigua-
tion (WSD) task in English. While WSD is es-
sentially a classification task requiring to annotate
each occurrence of polysemous words with one of
their senses described in WordNet (Miller, 1995)
or other sense inventory, a huge number of senses
in WordNet (more than 100K) and zero or very
few examples for most senses and words in the la-
beled training sets make standard classification ap-
proaches not applicable. Instead of treating senses
as atomic classes, in BEM they are represented
with their glosses from WordNet. Two encoders
are introduced: the gloss encoder to build embed-
dings for glosses, and the context encoder to build
contextualized embeddings for word occurrences.
These encoders are trained jointly such that for
each word occurrence among all glosses of this
word a gloss describing its meaning in the given
context can be selected by the similarity between
the corresponding contextualized embedding and
the gloss embeddings.

The original BEM system employs English
BERT (Devlin et al., 2019) as both gloss and con-
text encoders. The system is trained on the En-
glish WSD dataset SemCor (Miller et al., 1994).
We replace English BERT with multilingual XLM-
R (Conneau et al., 2020). XLM-RoBERTa (XLM-
R for short) is basically the multilingual version

1Reproduction code: https://github.com/
myrachins/LSCDiscovery
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Figure 2: Employing the context encoder for distance estimation.

of RoBERTa (Liu et al., 2019), and RoBERTa is
BERT (Devlin et al., 2019) with several improve-
ments in the training procedure. All of these mod-
els essentially train the encoder of the Transformer-
based machine translation system (Vaswani et al.,
2017) with Masked Language Modeling (MLM)
objective, i.e. to restore some words in a text frag-
ment from nearby words (see Devlin et al. (2019)
for technical details). In contrast to BERT and
RoBERTa pre-trained on English texts only, XLM-
R is pre-trained on 2.5TB of texts in 100 languages.
Surprisingly, this allows not only processing texts
in all of these languages but also demonstrates zero-
shot cross-lingual transferability, meaning that af-
ter fine-tuning XLM-R to solve some classification
task on English texts only, it often can solve the
same task for texts in other languages reasonably
well (Conneau et al., 2020).

Our approach to the LSCD task was initially de-
veloped during our participation in the RuShiftEval-
2021 shared task on LSCD for the Russian lan-
guage (Kutuzov and Pivovarova, 2021) and de-
scribed in Rachinskiy and Arefyev (2021b). How-
ever, in RuShiftEval-2021 only a graded change de-
tection task was proposed and the only metric was
Spearman’s correlation with the gold COMPARE
score, which is the average similarity between word
occurrences in two corpora (Schlechtweg et al.,
2018). The LSCDiscovery shared task in Spanish
offers a more thorough comparison of competing
approaches by introducing both the graded change
and the binary change detection subtasks. It also
replaces the gold COMPARE scores with the gold
Jensen-Shannon distance between the sense distri-
butions inferred by the organizers, though calcu-
lating the gold COMPARE scores as an additional
metric as well. Also in RuShiftEval-2021 our best
solution was a linear regression model that used
different distances between the contextualized em-
beddings as features and was trained on additional

labeled data in Russian. This resulted in consistent
but not very large improvement compared to simply
using the raw distance between the contextualized
embeddings. Thus, for the LSCDiscovery task, we
decided to use the simpler solution that also does
not require any labeled data in Spanish.

3 System overview

The architecture of our gloss-based WSD system is
shown in figure 1. The architecture and the training
procedure are borrowed from Blevins and Zettle-
moyer (2020), except for the English BERT re-
placed with multilingual XLM-R in both context
and gloss encoders. As usual for XLM-R, the input
texts are surrounded by the special tokens <s> and
</s>. To obtain the contextualized embedding
for a word in context, the outputs at the positions
of the target word are taken from the last layer of
the context encoder. If the target word was split
into subwords by the XLM-R tokenizer, then mean
pooling is applied to the corresponding outputs. For
each sense of the target word described in Word-
Net, the corresponding gloss is encoded by taking
the output from the last layer of the gloss encoder
at the position of the special <s> token.2 The dot
product between the contextualized embedding of
the target word and the gloss embeddings for each
of its senses is calculated, then the softmax func-
tion is applied to obtain the probability distribution
over word senses.

The whole system is trained by minimizing the
cross-entropy loss between the predicted distribu-
tion over senses and the correct sense. Follow-
ing Blevins and Zettlemoyer (2020), we trained the

2This is the standard way of obtaining an embedding for
the whole input sequence from MLM models, which is also
used in the original BEM model. Some reasonable alternatives
are averaging the outputs at all positions, or prepending the
target word to each gloss and averaging the outputs at the
positions of subwords of the target word. In any case, we
believe that fine-tuning is important for obtaining good gloss
embeddings.
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system on English SemCor (Miller et al., 1994),
which is a large dataset consisting of more than
200K sense-annotated word occurrences. The
glosses were taken from WordNet 3.0 (Miller,
1995). The SemEval-2007 (Pradhan et al., 2007)
WSD dataset served as the development set to
choose the final checkpoint. The large version
of XLM-R was employed for both encoders. We
trained the system for 10 epochs, which took 3 days
on two V100 GPUs. The XLM-R model fine-tuned
as the context encoder of this WSD system is called
the Gloss Language Model (GLM) below to distin-
guish it from the standard XLM-R pre-trained with
the MLM objective only.

After the WSD system is trained, in order to
estimate the similarity in meaning between two
occurrences of the same word, we normalize their
contextualized embeddings (divide them by their
L1-norm) and calculate the Manhattan distance as
shown in figure 2.

3.1 Graded subtasks
For all graded change subtasks, given each target
word the score is calculated by the following algo-
rithm.

1. Retrieve all occurrences of the target word in
any of its forms from both corpora provided.
We employed the same Spanish lemmatizer
that was used by the task organizers. Then
sample up to 100 pairs of sentences with the
first sentence from the old corpus and the sec-
ond from the new one.3

2. For each pair of sentences, calculate the L1-
distance (the Manhattan distance) between the
normalized embeddings of two occurrences of
the target word. In order to normalize the em-
beddings, we divide them by their L1-norm.
This choice is motivated by the previous ex-
periments (Rachinskiy and Arefyev, 2021a,b).

3. Calculate the average of the distances from the
previous step. This is known as the Average
Pairwise Distance (APD) (Giulianelli et al.,
2020).

The APD scores calculated by the last step of
this algorithm seem to be a reasonable approxima-
tion of the gold COMPARE scores because they

3In (Arefyev et al., 2021) it was observed that taking
more than 100 pairs does not significantly improve the re-
sults, though this was observed for a different model.

both represent the average similarity between word
occurrences taken from two different corpora. But
they are likely sub-optimal as an approximation
of the gold JSD scores. In the future work, it is
worth developing some alternatives to specifically
approximate JSD.

The most computationally expensive part of
this algorithm is calculating embeddings for about
778K word occurrences (4385 target words, 88.68
pairs of occurrences per word on average) This
took about 6 GPU-hours on a V100 GPU. Comput-
ing distances and final scores takes an insignificant
proportion of the whole time.

3.2 Binary subtasks
To obtain binary change predictions, we apply
thresholding to our graded change predictions. Dur-
ing the competition, we experimented with two
thresholding strategies. First, based on the obser-
vation that 9 out of 20 words (45%) in the devel-
opment set belong to the negative class, we set the
threshold equal to the 45-th percentile of APDs for
the 60 hidden words revealed after the first subtask
(Thres. revealed). This results in the same pro-
portions of predicted classes in the test set as the
proportions of true classes in the development set.

Alternatively, we calculated the 55-th4 percentile
of APDs for all 4385 target words in the test set
from the first subtask (Thres. all). The same binary
predictions were submitted for all binary subtasks,
which is likely suboptimal and is the subject for
improvement in the future.

4 Results

Tables 1, 2 show our results compared to the base-
lines and to the best results of other participants.
In the graded subtasks our solution achieves the
best results among all participants. In the post-
evaluation experiments, we compared the fine-
tuned XLM-R model (GLM) with the original
one (MLM). Evidently, fine-tuning XLM-R on the
WSD task gives a huge boost in performance. Our
APD scores have a much higher Spearman’s corre-
lation with the gold COMPARE scores than with
the gold JSD scores, which supports our hypothesis
that simple averaging of the distances between the
contextualized embeddings is more suitable as an
approximation of the COMPARE metric.

4This should have been the 45-th percentile, but we made
a mistake and calculated the 55-th percentile instead. In the
post-evaluation period, we fixed this error (Thres. all, fixed
method in Table 2).
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Model JSD COMPARE
our submissions

GLM norm L1 .735 (1) .842 (1)
top3 other teams for each metric

UsrD7 .702 (2) .829 (2)
aishein .553 (3) .558 (4)
akutuzov .508 (5) .459 (5)

lscdiscovery baselines
baseline1 .543 (4) .561 (3)
baseline2 .092 (8) .088 (6)

our post-evaluation experiments
MLM norm L1 .505 (5*) .511 (4*)

Table 1: Results for the graded subtasks, Spearman’s
correlation with the gold JSD and COMPARE scores.
* denotes the ranks that we would have had if we had
submitted only this result.

Model bin. change sense gain sense loss
our submissions

Thres. all .716 (1) .491 (3) .688 (1)
Thres. revealed .656 (4*) .510 (3*) .621 (1*)

top3 other teams for each metric
dteodore .709 (2) .000 (8) .000 (6)
rombek .687 (3) .490 (4) .593 (3)
kudisov .658 (4) .520 (2) .600 (2)
UsrD7 .655 (5) .591 (1) .582 (4)

lscdiscovery baselines
baseline1 .537 (9) - -
baseline2 .222 (10) .211 (7) .000 (6)

our post-evaluation experiments
Thres. all, fixed .722 (1*) .483 (4*) .667 (1*)

Table 2: Results for binary subtasks, F1-scores. * de-
notes the ranks that we would have had if we had sub-
mitted only this result.

For the binary change detection and the sense
loss detection subtasks our solution also outper-
forms all other participants. However, for the
sense gain detection subtask our solution shows
F1-scores of 0.483-0.510, which is about 10 points
of F1-score worse than the best result in the compe-
tition. Notice that we did not specifically address
the optional sense loss and sense gain detection
subtasks, instead, we reused the predictions from
the main binary change detection subtask.

5 Conclusion

In this paper, we presented a solution for both
Graded and Binary Change Detection. Our solu-
tion achieves the best results among all participants
in both graded change detection subtasks, as well
as two out of three binary change detection sub-
tasks. The key component of our solution which
is shown to be very important is fine-tuning of a
masked language model as part of a gloss-based
WSD system.
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