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Abstract

Contextual word embedding techniques for se-
mantic shift detection are receiving more and
more attention. In this paper, we present What
is Done is Done (WiDiD), an incremental ap-
proach to semantic shift detection based on
incremental clustering techniques and contex-
tual embedding methods to capture the changes
over the meanings of a target word along a di-
achronic corpus. In WiDiD, the word contexts
observed in the past are consolidated as a set
of clusters that constitute the “memory” of the
word meanings observed so far. Such a mem-
ory is exploited as a basis for subsequent word
observations, so that the meanings observed in
the present are stratified over the past ones.

1 Introduction

The use of contextual embedding techniques is re-
ceiving more and more attention in the field of
semantic shift detection. In particular, pre-trained
models like BERT (Hu et al., 2019; Martinc et al.,
2020a), ELMo (Kutuzov and Giulianelli, 2020;
Rodina et al., 2020), and XLM-R (Cuba Gyllen-
sten et al., 2020; Rother et al., 2020), are being
proposed as promising solutions to capture the
different meanings of a target word according to
the different contexts in which the word appears
throughout a considered diachronic corpus. Such
solutions generally employ clustering techniques
to aggregate embeddings of a specific word into
clusters (Martinc et al., 2020a; Karnysheva and
Schwarz, 2020). The idea is that each cluster de-
notes a specific word meaning that can be recog-
nized in the considered documents. In this way,
it is possible to analyze the shift of a word mean-
ing/sense by exploiting the evolution of a cluster
over time. For instance, an increasing number of
elements in a cluster denotes that the associated
word meaning is getting frequently adopted. On
the opposite, a cluster with a decreasing number of
elements over time refers to a word meaning that

is getting obsolete. Usually, the corpus is static,
meaning that all the documents of the considered
time periods are available as one whole, and a sin-
gle clustering activity is performed over the en-
tire corpus, generating clusters of word meaning
with documents of different time periods (Kutuzov
et al., 2018; Tahmasebi et al., 2018, 2021). As
a result, the time period in which a document is
added to the corpus is not taken into account for
cluster composition, and this is not completely sat-
isfactory for an appropriate recognition of meaning
changes over time. When a dynamic corpus is
considered, namely time periods and documents
can be progressively added, scalability issues also
arise, since the clusters of word meanings need to
be re-calculated or updated. As a possible solu-
tion, some recent works propose to perform clus-
tering separately for each time period. In this case,
the resulting clusters need to be aligned in order
to recognize similar word meanings in different,
consecutive time periods (Kanjirangat et al., 2020;
Montariol et al., 2021). However, solutions based
on clustering alignment are not satisfactory as well,
since they do not capture the possible evolution
pattern of a meaning across different time peri-
ods. A recent work proposes an average-based
approach to track semantic shift via continuously
evolving embeddings (Horn, 2021) computed as
a weighted running average (Finch, 2009) of em-
beddings generated by a contextual model. This
method is suitable to be applied on stream data and
it is far more scalable than typically cluster-based
methods. Nevertheless, it does not allow to analyse
which meanings are actually changed.

In this paper, we present What is Done is Done
(WiDiD), an incremental approach to semantic shift
detection based on incremental clustering tech-
niques and contextual embeddings to capture the
changes over the meanings of a target word along a
diachronic corpus. In WiDiD, we work under the as-
sumption that the documents of the corpus become
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available as a stream and they are segmented in a
sequence of time periods. The word contexts ob-
served in past time periods are consolidated as a set
of clusters that constitute the “memory” of the word
meanings observed so far. Such a memory is then
exploited as a basis for subsequent word observa-
tions in the current time period. The idea of WiDiD
is that the clusters of word meanings previously
created cannot be changed (what is done is done),
and the word meanings that are observed in the
present must be stratified/integrated over the past
ones. To enforce scalability, incremental clustering
techniques are employed in WiDiD, so that the word
embeddings extracted from the documents of the
current time period are compared and assimilated
into the set of consolidated clusters coming from
the past time periods. A comparative evaluation of
the proposed WiDiD approach against a reference
benchmark is discussed in the paper according to
multiple configurations characterized by different
clustering algorithms and embedding methods. In
particular, we present experiments based on a pre-
trained BERT model as well as results obtained
from a trained Doc2Vec model, which has been
adapted to provide pseudo-contextual word embed-
dings to extend the conventional static word repre-
sentations of context-free embedding techniques.
As a further contribution of WiDiD, different metrics
for semantic shift evaluation of word meanings are
defined in the paper and experimental results are
provided to discuss their effectiveness.

The paper is organized as follows. In Section 2,
the relevant literature is discussed. In Section 3, we
present the WiDiD approach. Incremental clustering
techniques and semantic shift measures of WiDiD
are illustrated in Sections 4 and 5, respectively.
Experimental results are discussed in Section 6.
Section 7 finally provides our concluding remarks.

2 Related work

Works related to WiDiD are about the use of
word embeddings for semantic shift detection
by leveraging the idea that semantically-related
words are close to each other in the embedding
space (Mikolov et al., 2013). In approaches rely-
ing on context-free embeddings, independent word
vectors defined over different “temporal” vector
spaces can be compared after applying an align-
ment mechanism (Hamilton et al., 2016) such as
the Procrustes (Schönemann, 1966). Moreover, re-
cent contextualised architectures are proposed, like

ELMo (Peters et al., 2018), BERT (Devlin et al.,
2019), and XLM-R (Conneau et al., 2020), which
generate dynamic word embeddings according to
the use of the words in the input sequences, thus
enabling the recognition of different meanings by
comparing the context in which words are used
throughout the text. The solution proposed in Hu
et al. (2019) is one of the first examples based on
BERT embeddings to track changes in word mean-
ings and it requires lexicographic supervision, like
the use of a reference dictionary (e.g., the Oxford
dictionary for the English language) to list the pos-
sible word meanings beforehand, thus it is hardly
applicable to low-resource languages.

A number of unsupervised approaches based on
contextual embeddings are proposed to sidestep
the need of lexicographic resources (Schlechtweg
et al., 2020; Tahmasebi et al., 2021). In gen-
eral, these kinds of approaches follow a three-step
scheme: i) extraction of embeddings for each oc-
currence of a target word from a contextual model
such as BERT (Hu et al., 2019; Martinc et al.,
2020a), ELMo (Kutuzov and Giulianelli, 2020; Ro-
dina et al., 2020), or XLM-R (Cuba Gyllensten
et al., 2020; Rother et al., 2020); ii) aggregation
of the embeddings with a clustering algorithm like
K-Means (Giulianelli et al., 2020; Cuba Gyllen-
sten et al., 2020), Affinity Propagation (Martinc
et al., 2020a; Kutuzov and Giulianelli, 2020), or
DBSCAN (Rother et al., 2020; Karnysheva and
Schwarz, 2020); iii) comparison of the vector dis-
tribution over clusters according to time by using
a semantic distance measure, like Jensen-Shannon
divergence (Martinc et al., 2020a), Entropy Dif-
ference (Giulianelli et al., 2020), or Wasserstein
Distance (Montariol et al., 2021). The main limita-
tion of applying clustering to word embeddings is
the scalability issues about memory consumption
and time. As a recent contribution, in Montariol
et al. (2021), a scalable and interpretable method is
proposed based on merging of similar embeddings
to reduce the number of representations to consider
for a given word and time slice. Further solutions to
overcome scalability issues are provided by Rodina
et al. (2020) and Laicher et al. (2021). In particular,
they propose to limit the number of embeddings
by randomly sampling sentences from each period.
The intrinsic time-complexity issues of applying
clustering algorithms to embeddings are also ad-
dressed in Rother et al. (2020) by reducing the em-
bedding dimensionality. In Martinc et al. (2019),
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the contextual embeddings of a word are averaged
to generate a single word representation for each
time period. In Giulianelli et al. (2020), the average
pairwise distance between embeddings of different
time periods is calculated. Even if these solutions
are more efficient and scalable than clustering, they
provide uninterpretable results since multiple word
occurrences are collapsed into a single representa-
tion, like in context-free embeddings. Most of the
cluster- and average-based approaches estimate the
magnitude of semantic shifts ignoring the uncer-
tainty of their estimations. As a result, estimations
can be erroneously inflated since the irregularities
of word frequencies over time can negatively affect
the stability of word embeddings (Zhou et al., 2021;
Wendlandt et al., 2018). In this respect, Liu et al.
(2021) propose a solution based on the combina-
tion of BERT embeddings with permutation-based
statistical test and term-frequency thresholding.

Original contribution of WiDiD. With respect
to the above solutions, the WiDiD approach is based
on incremental clustering techniques applied to
contextual word embeddings. In WiDiD, the “mem-
ory” of word meanings observed in the past is con-
solidated in a set of clusters that is not re-calculated
in subsequent time periods. As a result, only the
word embeddings of the current time period are
analyzed with the aim to measure the change with
respect to the clusters of past word meanings. This
way, it is possible to compare specific word mean-
ings also from a qualitative point of view (i.e., inter-
pretable results) without requiring any alignment
mechanisim across time periods. In other words,
the stratified layers of clusters over time allow to
reconstruct not only the quantity of semantic shift
but also the evolution of a word meaning.

3 The WiDiD approach

Consider a diachronic document corpus C = C1 ∪
C2 where C2 denotes a set of documents of the
time t and C1 denotes a set of documents cumu-
latively collected in the t − n time periods prior
to t. Given a target word w, the goal of semantic
shift detection is to measure how much the mean-
ing(s) of w is changed from C1 to C2. The WiDiD
approach relies on a contextual embedding model
to represent each occurrence of the target word w
in a corpus Cj (either C1 or C2). We keep track of
the word embedding representations collected for
w over time by relying on the embedding model E1

that contains the word vectors computed over C1.

Given this input, we process the new documents in
C2 as follows (see Figure 1).

Document selection. In this step, we select the
subset of documents Cw,2 ⊆ C2 that are relevant
for the word w. Cw,2 is composed by the docu-
ments containing the word w. As an alternative,
any information retrieval technique suitable for
finding relevant documents for a given target can
be exploited for the composition of Cw,2.

Fine tuning. In this step, the model E1 used to
generate the word vectors over C1 can be optionally
updated/fine-tuned into a new model E2 to take
into account the new documents in C2 (Kim et al.,
2014; Giulianelli, 2019). When the observed time
t is the initial one, the model E1 is trained on C2

or a pre-trained model is used. The WiDiD approach
is compatible with any technique for contextual
word embedding, that is any method that produces
a vector embedding the meaning of a word in a
specific document.

Embedding extraction. In this step, we isolate
the embedding vectors representing the contextual
meaning of the word w. The contextualised embed-
ded representation of the word w in the k-th doc-
ument of a corpus Cw,j is denoted by ejw,k. Then,
the representation of the word w in the corpus Cj

is defined as:

Φj
w = {ejw,1, . . . , e

j
w,m},

with m being the number of documents in Cw,j .
As the final output of this step, we have two sets
of embedding vectors: Φ1

w that is produced in the
previous iterations of the WiDiD approach over the
corpus Cw,1 and Φ2

w, produced at the current time
t for the corpus Cw,2.

Clustering. In this step, vectors in Φ1
w ∪ Φ2

w are
clustered in order to group vectors representing
similar meanings. The set of clusters produced in
this step is denoted K2 and the i-th cluster in K2 is
denoted ϕw,i. A distinguishing feature of WiDiD is
to perform also the clustering step in an incremen-
tal fashion, by updating the clusters K1 computed
in the previous iterations of WiDiD. A more detailed
description of the incremental clustering techniques
used in WiDiD is given in Section 4. The clusters of
K2 can be classified in three types (see Figure 2).
Cluster types (A) and (C) contain vectors that de-
rive from a single corpus, either the past (i.e., C1)
or the current one (i.e., C2). The cluster type (B) is
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Figure 1: The WiDiD approach
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Figure 2: Types of clusters in K2

a mixture of vectors from the past (corpus C1) and
vectors from the present time (corpus C2). For each
cluster, we compute also the mean µi of the vectors
that are associated with the same time period (i.e.,
the same corpus).

Cluster refinement. The cluster set K2 may con-
tain poorly-informative clusters, such as clusters
containing a single vector, or aged information,
namely clusters that contain only vectors represent-
ing a word meaning observed a long time ago. In
order to get rid of poor or aged information, in Wi-
DiD, it is (optionally) possible to perform a cluster
refinement step to drop the undesired clusters. We
note that this step is also useful to reduce the infor-
mation available about the past in view of a subse-
quent execution of WiDiD for the next time period
t+ 1. With regard to poorly-informative clusters,
we enforce standard cluster pruning techniques that
are typically based on a threshold over the cluster
size or the average distance of vectors from the
cluster centroid (Raskutti and Leckie, 1999). For
aged information, the idea of WiDiD is that each
cluster is associated with an aging index that mea-
sures how recently the cluster has been updated
during the incremental clustering process. This

index is updated each time a cluster in the cluster
set K1 is upgraded by adding vectors of Φ2

w (i.e.,
vectors deriving from the corpus C2). A threshold
over the aging index is then used to decide when
an aged cluster should be pruned from K2. As a
result, this is a mechanism to regulate how much
memory the WiDiD will keep about the past. The
final pruned cluster set is denoted K

′
2 and will be

the basis of the clustering step in the next iteration
of WiDiD.

Semantic shift measuring. To evaluate whether
a word w exhibits a semantic change between the
two corpora C1 and C2, we measure the distance
between the sets Φ1

w and Φ2
w using the clusters in

K
′
2. Further details on how to measure semantic

shift are provided in Section 5.

4 Incremental clustering

In WiDiD, we rely on incremental clustering to ag-
gregate contextual embedding vectors that repre-
sent similar word meanings into the same cluster.
We propose an incremental extension of Affinity
Propagation (AP) (Frey and Dueck, 2007), called
Affinity Propagation a Posteriori (APP) (see Algo-
rithm 1). Let’s call X and X1, and L and L1 the
embeddings and the cluster labels at time t and t−1,
respectively. At time t = 1 the standard AP clus-
tering is performed. At each time t > 1, for each
existing cluster computed at time t − 1, the data
points xi ∈ X1 are packed into a single average rep-
resentation, i.e. the centroid µ of each cluster. The
set of the centroids for X1 is denoted µX1. Then,
the standard AP algorithm is executed on µX1∪X ,
with the aim to obtain a new set of temporary la-
bels L2, i.e., the new assignment of data points to
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Algorithm 1 The APP algorithm
Input
t: time step
X: data at time step t
X1: data at time step t− 1
L1: labels at time step t− 1
γ: trim factor

Output
L,X: at time step t

1: if t == 1 then
2: L← AP (X)
3: L, X← Trim(L, X, γ)
4: yield L, X
5:
6: else if t > 1 then
7: µX1← Pack(L1, X1)
8: L2← AP ( µX1 ∪ X )
9: µL1, L← Split(L2)

10: L1← UnpackAndUpdate(µL1, µX1, L1, X1)
11: L, X← Trim( L1 ∪ L, X1 ∪ X, γ)
12: yield L, X
13: end if

clusters. Such labels are then split in two subsets,
µL1 and L, which contain labels for each average
representation in µX1 and for each data point in
X , respectively. Given µL1, µX1, L1, X1, we un-
pack the centroids of µL1 into the corresponding
data points X1 mapping the previous labels L1 into
the new labels of their respective centroids µL1.
Intuitively, clusters from time step t − 1 can’t be
changed, in the sense that each point from t − 1
remain in the same cluster after running AP at time
step t. However, each cluster from t − 1 can be
updated with points from t, and new clusters can
be created at time step t containing no points from
t − 1. Finally, APP returns L1 ∪ L, which is the
union of the unpacked and updated L1 and L. APP
includes the notion of aging index to use for cluster
refinement, implemented through a trim factor γ.
In our current implementation the idea of γ is that
clusters containing less than γ percent of the whole
set of embeddings Φ1

w ∪ Φ2
w at time t are assumed

to be poorly-informative and thus they are dropped.

5 Semantic shift measuring

Clustering contextual word embeddings for a word
w at time t results in a set of k clusters K2 =
ϕw,1, ..., ϕw,k where ϕw,i ⊆ Φ1

w ∪ Φ2
w. In particu-

lar, we denote as ϕ1
w,i, ϕ

2
w,i the set of embeddings

from Φ1
w, and Φ2

w respectively, enclosed in the i−th
cluster; formally we define ϕ1

w,i = ϕw,i ∩ Φ1
w and

ϕ2
w,i = ϕw,i ∩ Φ2

w. According to this, in WiDiD,
we propose three different aggregation measures

to estimate semantic change. Borrowing from Giu-
lianelli (2019), we employ the Jensen-Shannon
divergence to measure semantic change leverag-
ing cluster distributions. In addition, we adapt
the methods of Martinc et al. (2019) and Kutu-
zov (2020) for scenarios where embeddings are
clustered.

Jensen-Shannon divergence (JSD). The Jensen-
Shannon divergence quantify the similarity be-
tween two probability distributions using a sym-
metrization of the Kullback-Leibler divergence.

JSD(p1w, p
2
w) = H

(
1

2

(
p1w + p2w

))

−1

2

(
H(p1w)−H(p2w)

) (1)

To quantify changes between word senses we create
two time-specific cluster distributions p1w, p

2
w as the

relative number of cluster members for t− n, and
t, respectively (Hu et al., 2019). Intuitively, we
compute the value related to the i−th cluster as:

pjw,i =
|ϕj

w,i|
|Φj

w|
(2)

where j ∈ {1, 2}.

Distance between prototype embeddings (PDIS).
Recent work used the term word prototype to in-
dicate a ‘prototypical’ representation of the word
computed by averaging all its embeddings in a spe-
cific temporal sub-corpus (Rodina et al., 2020; Ku-
tuzov, 2020; Martinc et al., 2019). In contrast to
this definition, we compute (i) sense prototypes
µ1
w,i, µ

2
w,i as the average embedding for each clus-

ter partition ϕ1
w,i, ϕ

2
w,i, respectively; and (ii) word

prototypes M1
w,M

2
w as the average embedding of

all sense prototypes µ1
w,i, and µ2

w,i respectively.
The idea is that computing the average of a smaller
set of more significant embeddings, i.e., the sense
prototypes, can be beneficial to reduce noise in
clusters.

The average-based method by Martinc et al.
(2019) consists in computing the cosine similar-
ity between the global average embeddings of all
embeddings from t− n and t, respectively. We ex-
tend this method by computing the cosine distance
between M1

w and M2
w.

PDIS(M1,M2) = 1− M1 ·M2

∥M1∥ × ∥M2∥ (3)
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Difference between prototype embedding diver-
sities (PDIV). The method proposed by Kutuzov
(2020) relies on the notion of “embedding diversity”
for word prototypes (DIV). We extend this method
considering sense prototypes. In particular, we esti-
mate the degree of ambiguity for w in C1, C2 as the
mean cosine distance d between sense prototypes
µj
w,i and the relative word prototype M j

w. The final
result is the absolute difference between the rela-
tive coefficients. For the sake of simplicity, let’s
denote as Ψ1

w and Ψ2
w the set of sense prototypes

of µ1
w,i, and µ2

w,i respectively.

PDIV (Ψ1
w,Ψ

2
w) =

∣∣∣∣∣

∑
µ1
w,k∈Ψ1

w
d(µ1

w,k,M
1
w)

|Ψ1
w|

−
∑

µ2
w,k∈Ψ2

w
d(µ2

w,k,M
2
w)

|Ψ2
w|

∣∣∣∣∣
(4)

6 Evaluation of WiDiD

For evaluation of WiDiD, we rely on the Task 1
framework of SemEval-2020. SemEval is a se-
ries of international NLP workshops based on a
collection of shared tasks in which computational
semantic analysis systems designed by different
teams are presented and compared. In particular,
we focus on SemEval-2020 Subtask 2 where the
goal is to consider texts from two distinct time pe-
riods and to evaluate the degree of semantic shift
of a set of target words (Schlechtweg et al., 2020).
In SemEval-2020, the semantic shift degree is mea-
sured by the Spearman’s rank-order correlation be-
tween the semantic shift index (i.e., the ground
truth) and the semantic shift assessment computed
by a model for each target word in the evaluation
set. Our evaluation is performed over the English
and Latin corpora of SemEval-2020. A summary
view of the considered corpora is provided in Ta-
ble 1. As proposed in Montariol et al. (2021), in the
English corpus, we removed POS tags from both
the corpus and the evaluation set.

Period Tokens Corpus Target
Words

SemEval
English

C1 1810 – 1860 6.5M
CCOHA 37

C2 1960 – 2010 6.7M
SemEval

Latin
C1 -200 – 0 65k

LatinISE 40
C2 0 – 2000 253k

Table 1: Period, size, and number of target words for
English and Latin corpora of SemEval-2020

6.1 Experimental setup

In the evaluation, the following configurations of
WiDiD have been adopted.

Word representations. Pre-trained BERT and
trained Doc2Vec models are exploited as embed-
ding models. We use the Transformers library
by HuggingFace to extract contextual word em-
beddings from pre-trained BERT models with-
out performing any fine-tuning stage (Wolf et al.,
2020). We use a specific model for each language,
namely bert-base-uncased1 for English and bert-
base-multilingual-uncased2 for Latin. The models
are base versions of BERT with 12 attention layers
and a hidden layer of size 768. The only model
available for Latin is a multilingual BERT model
trained on 104 languages, including Latin.

The acquisition of contextual embeddings is
done by feeding the models with text sequences
from the corpora in which the target words oc-
cur. Sequence embeddings are generated one se-
quence at a time by summing the last 4 encoder
output layers according to Devlin et al. (2019). Fi-
nally, given a sequence of size sequence length×
embeddings size, we cut it into pieces to get a
separate contextual embedding for each token in
the sequence. In this way, we extract token em-
beddings for each occurrence of a target word in a
corpus. Due to the byte-pair input encoding scheme
employed by BERT models, some tokens may not
correspond to words but rather to word pieces (Sen-
nrich et al., 2016; Wu et al., 2016). Therefore, if a
word is split into more than one token, we build a
single word embedding by concatenating them.

Pseudo-Word Representations. While BERT-
like models generate dynamic embeddings for a
word according to their belonging sequences (i.e.,
documents), Doc2Vec (Le and Mikolov, 2014) pro-
duces a static lookup table of word and sequence
embeddings only for words and sequences seen
during training. We exploit Doc2Vec by computing
pseudo-contextual word embeddings under the as-
sumption that word occurrences belonging to simi-
lar sequences have the same meaning. This means
that, given a target word w in the corpus Cj we
consider as Φj

w the set of sequence embeddings
related to sequences where w occurs. For training

1https://huggingface.co/
bert-base-uncased

2https://huggingface.co/
bert-base-multilingual-uncased
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Doc2Vec models, we use the Gensim library (Re-
hurek and Sojka, 2011). In particular, we trained
word and sequence embeddings of size 100 for 15
epochs, with a window size of 10.

Clustering of embeddings. For the evaluation of
WiDiD, we exploit the APP clustering algorithm de-
scribed in Section 4. Since APP is an extension of
the Affinity Propagation (AP) clustering algorithm,
we compared the results of APP against the results
of AP in the clustering step of the WiDiD approach.
In addition, we tested a further incremental exten-
sion of AP called IAPNA. IAPNA is an incremental
version of AP that has been proposed by Sun and
Guo (2014) and it is based on the idea of computing
a reasonable assignment for all the data points at
the same status. Then, when new points are avail-
able, the relationships between the new points and
the other points are assigned referring to their near-
est neighbors and by updating the responsibility
and availability indexes for those points. In particu-
lar, we use the scikit-learn (Pedregosa et al., 2011)
implementation for standard AP, that we extended
for implementing both IAPNA and APP.

Experiments. The following experiments have
been executed. We apply the semantic shift mea-
sures illustrated in Section 5 (i.e., JSD, PDIS,
PDIV) to the clusters of contextual embeddings
obtained by using AP, IAPNA, and APP, respec-
tively. Since PDIS and PDIV are extensions of
the CD (Cosine Distance over Word Prototypes)
and DIV (Difference between Token Embedding
Diversities) measures proposed by Martinc et al.
(2019) and Kutuzov (2020), we also consider them
as baselines.

6.2 Experimental results
The results of our evaluation are shown in Table 23.

Surprisingly, Doc2Vec proved to be a suitable
model for semantic shift detection, in both incre-
mental and non-incremental clustering contexts. It
performs well, while being smaller and faster than
contextual models. In particular, Doc2Vec-based
methods achieve the highest result in our experi-
ments on both Latin and English, with correlation
coefficient of 0.512 and 0.514, respectively. APP
provides top results on both Latin and English, al-
though AP has a slightly higher performance on
English.

3The source code of our experiments
is available under the MIT license at
https://github.com/umilISLab/LChange22

On average, both incremental clustering algo-
rithms IAPNA and APP perform well in semantic
shift detection compared to the conventional AP
clustering. We note that IAPNA and APP have op-
posite behavior on Latin and English: IAPNA has
higher results with BERT embeddings on Latin and
Doc2Vec embeddings on English, while APP has
higher results with Doc2Vec embeddings on Latin
and BERT embeddings on English, respectively.
The fact that IAPNA and APP perform differently
on different languages is consistent with the litera-
ture results (Kutuzov and Giulianelli, 2020).

As a further remark, we note that APP produces
a smaller and more reasonable number of clusters
compared to both AP and IAPNA. For instance,
we observed situations where both AP and IAPNA
produce more than 100 clusters, that is rather unre-
alistic if we assume that a cluster represents a word
meaning. On the opposite, in our experiments, the
number of APP clusters generally varies between
0 and 30. We also note that APP is sensitive to the
aging index. In Table 2, we present the top results
obtained with two different values of the aging in-
dex (i.e., 0 and 5). Removing clusters containing
less than 5% of the embeddings has a positive im-
pact just in some experiments with English, but
not with Latin. We plan to further investigate the
effects of the aging index in our future work.

About our proposed measures for semantic shift
detection (i.e., JSD, PDIS, PDIV), we note that
they always perform better than the baselines CD
and DIV. We also note that the CD baseline does
not work well on Doc2Vec embeddings, while DIV
does not work well in all our experiments. On
Latin, the highest results are achieved by JSD on
both Doc2Vec and BERT embeddings. On En-
glish, the top JSD and PDIS results are on Doc2Vec
and BERT embeddings, respectively. More ex-
periments are required on PDIV since it performs
very differently in the various experiments we per-
formed, and it achieves statistical significance only
in four out of twelve experiments (six on Latin, six
on English).

Finally, Table 3 provides the best results ob-
tained by other literature approaches for seman-
tic shift detection based on contextual word em-
beddings over the English and Latin corpora of
SemEval-2020. We note that both IAPNA and
APP are competitive when compared to the con-
sidered literature approaches. The WiDiD scores
are above average and slightly below the maxi-
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Latin (Spearman’s coefficients) English (Spearman’s coefficients)
Clustering Training Model JSD PDIS PDIV JSD PDIS PDIV

trained Doc2Vec 0.485* 0.229 -0.023 0.514* 0.139 0.134
AP

pre-trained BERT 0.394* 0.347* 0.236 0.356* 0.326* 0.406*
trained Doc2Vec 0.462* 0.354* -0.005 0.199 0.322* 0.336*

IAPNA
pre-trained BERT 0.411* 0.356* -0.148 0.336* 0.499* 0.213

trained Doc2Vec 0.5120* 0.3370* 0.3280* 0.3330* 0.0770 -0.0780APP
pre-trained BERT 0.3610* 0.2100 0.0360 0.3020° 0.5125* 0.3705*

CD DIV CD DIV
trained Doc2Vec 0.258° 0.138 - 0.092 0.010 -

pre-trained BERT 0.306* -0.017 - 0.486* 0.168 -

Table 2: Spearman’s correlation coefficients over different setups with Latin and English corpora. The asterisks
denote statistically significant correlations (p ≤ 0.05), while degree symbols denote low-level correlations with
(0.05 ≤ p ≤ 0.1). The subscript index indicates the value adopted for the aging index. We report in bold the highest
scores for each clustering-based method considering BERT and Doc2Vec.

Clustering Training Model Latin (Spearman’s coeff.) English (Spearman’s coeff.)
Beck, 2020 - pre-trained BERT 0.343 0.293

Karnysheva and Schwarz, 2020
K-means (English)
DBSCAN (Latin)

pre-trained ELMo 0.177 -0.155

Cuba Gyllensten et al., 2020 K-Means pre-trained XLM-R 0.399 0.209

Rother et al., 2020
HDBSCAN (English)

GMMs (Latin)
pre-trained BERT 0.321 0.512

Kanjirangat et al., 2020 K-means pre-trained BERT 0.333 0.159
Laicher et al., 2021 - pre-trained BERT N/D 0.571
Arefyev and Zhikov, 2020 - fine-tuned XLM-R -0.134 0.299

Kutuzov and Giulianelli, 2020 - fine-tuned ELMo (English)
BERT (Latin)

0.561 0.605

Montariol et al., 2021 AP fine-tuned BERT 0.496 0.456
Pömsl and Lyapin, 2020 - fine-tuned BERT 0.464 0.246

Rosin et al., 2021 - fine-tuned
TinyBERT (English)
LatinBERT (Latin)

0.512 0.467

Martinc et al., 2020b AP fine-tuned BERT 0.496 0.436
Liu et al., 2021 - fine-tuned BERT 0.304 0.341

Table 3: Spearman’s correlation coefficients obtained by different experiments with English and Latin corpora. We
report in bold the best scores for pre-trained and fine-tuned models. The hyphens indicate approaches that do not
cluster contextual embeddings. N/D indicates that experimental results are not available.

mum scores (in bold). We stress that we obtained
these results without fine-tuning, confirming that
the idea of using incremental clustering is promis-
ing. Compared to other literature approaches based
on pre-trained models without fine-tuning, we note
that incremental clustering algorithms achieve the
highest scores on Latin (0.512 with APP and 0.411
with IAPNA for Doc2Vec and BERT, respectively).
Our results on the English corpus come second
in the pre-trained ranking (0.512 with APP and
0.499 with IAPNA for Doc2Vec and BERT, respec-
tively) after Laicher et al. (2021). All in all, exclud-
ing Laicher et al. (2021) and Kutuzov (2020), our
results are the highest of all the considered litera-
ture works of Table 3, both on Latin and English.

7 Concluding remarks

In this paper, we presented the WiDiD approach
characterized by incremental clustering techniques

and contextual word embedding methods. Ongo-
ing work is about the fine-tuning of adopted em-
bedding models to further improve the quality of
results. Moreover, we are working on defining clus-
ter analysis techniques. The idea is to exploit the
results of semantic shift measures to interpret pos-
sible trend patterns over clusters along the time,
such as a broad meaning that forks into narrower
ones, or a meaning that increases its popularity and
vice versa. Further work is about the specification
of aging policies to manage the memory of aged
embeddings in the cluster evolution.
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